1
|
Mao H, Xu Y, Lu F, Ma C, Zhu S, Li G, Huang S, Zhang Y, Hou Y. An integrative multi-omics approach reveals metabolic mechanism of flavonoids during anaerobic fermentation of de'ang pickled tea. Food Chem X 2024; 24:102021. [PMID: 39659682 PMCID: PMC11629561 DOI: 10.1016/j.fochx.2024.102021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/13/2024] [Accepted: 11/17/2024] [Indexed: 12/12/2024] Open
Abstract
Anaerobic fermentation (AF) is critical process for Yunnan De'ang pickled tea production. Therefore, widely targeted metabolomics and metagenomics were integrated to reveal the AF mechanism. Lactic acid bacteria (LAB) (e.g. Lactiplantibacillus plantarum, Lactobacillus vaccinostercus and Lactobacillus paracollinoides) and yeasts like Candida metapsilosis and Cyberlindnera fabianii dominated in the AF. Based on bacterial community succession and metabolites variation, the whole AF processes were divided into two phases, i.e., before and after four months. A total of 327 characteristic metabolites (VIP >1.0, P < 0.05, and FC > 1.50 or < 0.67) were selected from the AF. Besides amino acids increase, LAB and yeasts also promoted non-galloylated catechins, and several simple flavones/flavonols, flavanones/flavanonols and methoxy flavones/flavonols accumulations along with galloylated catechins, flavonol/flavone glycosides and anthocyanins decrease during the AF. This study would improve the understanding about AF mechanism of tea-leaves from the perspectives of flavonoids metabolism and microbial community succession.
Collapse
Affiliation(s)
- Honglin Mao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yang Xu
- International College, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Fengmei Lu
- Yunnan Defeng Tea Industry Co., Ltd, Mangshi 678400, Yunnan, China
| | - Cunqiang Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Shaoxian Zhu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Guoyou Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Siqi Huang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yi Zhang
- Yunnan Defeng Tea Industry Co., Ltd, Mangshi 678400, Yunnan, China
| | - Yan Hou
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| |
Collapse
|
2
|
Zhou J, Chen L, Foo HL, Cao Z, Lin Q. Changes in microbial diversity and volatile metabolites during the fermentation of Bulang pickled tea. Food Chem 2024; 458:140293. [PMID: 38970959 DOI: 10.1016/j.foodchem.2024.140293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/21/2024] [Accepted: 06/29/2024] [Indexed: 07/08/2024]
Abstract
The present study aimed to determine microbial community, short-chain fatty acids (SCFAs), and volatilome of Bulang pickled tea during fermentation. Sequencing of 16S rRNA and ITS revealed that Bualng pickled tea was dominated by Lactobacillus plantarum, unclassified Enterobacteriaceae, unclassified Debaryomyces, Candida metapsilosis, Cladosporium sphaerospermum, and unclassified Aspergillus. The overall contents of SCFAs increased, with acetic acid showing the highest content. A total of 398 differential volatile metabolites were detected using differential metabolomics analysis. Out of these different volatile compounds, ten key volatile compounds including (Z)-4-heptenal, 1-(2-thienyl)-ethanone, 5-methyl-(E)-2-hepten-4-one, 2-ethoxy-3-methylpyrazine, p-cresol, 2-methoxy-phenol, ethy-4-methylvalerate, 3-ethyl-phenol, p-menthene-8-thiol, and 2-s-butyl-3-methoxypyrazinewere were screened based on odor activity value (OAV). The Spearman correlation analysis showed a high correlation of SCFAs and volatile compounds with microorganisms, especially L. plantarum and C. sphaerospermum. This study provided a theoretical basis for elucidating the flavor quality formation mechanism of Bulang pickled tea.
Collapse
Affiliation(s)
- Jinping Zhou
- College of Food Science and Technology, Yunnan Agricultural University, Heilongtan, Kunming 650201, People's Republic of China
| | - Laifeng Chen
- College of Food Science and Technology, Yunnan Agricultural University, Heilongtan, Kunming 650201, People's Republic of China
| | - Hooi Ling Foo
- Department of Bioprocess Technology, Faculty of Biotechnology & Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Research Laboratory of Probiotics and Cancer Therapeutics, UPM-MAKNA Cancer Research Laboratory (CANRES), Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Zhenhui Cao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Heilongtan, Kunming 650201, People's Republic of China.
| | - Qiuye Lin
- College of Food Science and Technology, Yunnan Agricultural University, Heilongtan, Kunming 650201, People's Republic of China.
| |
Collapse
|
3
|
Li Q, Xiao K, Yi C, Yu F, Wang W, Rao J, Liu M, Zhang L, Mu Y, Wang C, Wu Q, Li D, Zhou M. Inhibition and Mechanism of Protein Nonenzymatic Glycation by Lactobacillus fermentum. Foods 2024; 13:1183. [PMID: 38672858 PMCID: PMC11049071 DOI: 10.3390/foods13081183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Lactobacillus fermentum (L. fermentum) was first evaluated as a potential advanced glycation end-product (AGE) formation inhibitor by establishing a bovine serum albumin (BSA) + glucose (glu) glycation model in the present study. The results showed that the highest inhibition rates of pentosidine and total fluorescent AGEs by L. fermentum were approximately 51.67% and 77.22%, respectively, which were higher than that of aminoguanidine (AG). Mechanistic analysis showed that L. fermentum could capture methylglyoxal and glyoxal, inhibit carbonyl and sulfhydryl oxidation, reduce the binding of glucose and amino groups, increase total phenolic content and antioxidant activity, and release intracellular substances to scavenge free radicals; these abilities were the basis of the antiglycation mechanism of L. fermentum. In addition, L. fermentum significantly prevented conformational changes in proteins during glycation, reduced protein cross-linking by 35.67%, and protected the intrinsic fluorophore. Therefore, the inhibition of L. fermentum on glycation mainly occurs through antioxidation, the capture of dicarbonyl compounds, and the protection of the BSA structure. These findings collectively suggest that Lactobacillus is an inhibitor of protein glycation and AGE formation and has the potential for nutraceutical applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Mengzhou Zhou
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratoy of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan 430068, China; (Q.L.); (K.X.); (C.Y.); (F.Y.); (W.W.); (J.R.); (M.L.); (L.Z.); (Y.M.); (C.W.); (Q.W.); (D.L.)
| |
Collapse
|
4
|
Qiu T, Zhang H, Lei H, Zhang L, Zhang Y, Shen X, Xu B, Zhu J, Xiao W, Zheng J, Chen J. Preparation of Anti-Zearalenone IgY and Development of an Indirect Competitive ELISA Method for the Measurement of Zearalenone in Post-Fermented Tea. Foods 2023; 12:4478. [PMID: 38137282 PMCID: PMC10742412 DOI: 10.3390/foods12244478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Post-fermented tea (PFT) is one of the most commonly consumed beverages worldwide. Rapid microbial growth and significant changes in the microbial composition of PFT during processing and storage pose a potential risk of contamination with mycotoxins such as zearalenone (ZEN). Screening for ZEN contamination in a simple, rapid, and inexpensive manner is required to ensure that PFT is safe for consumption. To monitor ZEN in PFT, ZEN was conjugated with bovine serum albumin to prepare egg yolk immunoglobulins (IgY). A specific indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) based on IgY was developed and validated. ZEN was extracted with acetonitrile and water (50:50, v/v) containing 5% acetic acid and purified using a mixture of primary and secondary amines and graphitized carbon black to remove matrix interference from the PFT samples. Under optimal conditions, the linear range of this assay was 13.8-508.9 ng mL-1, the limit of detection was 9.3 ng mL-1, and the half-maximal inhibitory concentration was 83.8 ng mL-1. Cross-reactivity was negligible, and the assay was specific for ZEN-related molecules. The recovery rate of ZEN in the control blanks of PFT samples spiked with a defined concentration of ZEN of 89.5% to 98.0%. The recovery and accuracy of the method were qualified for PFT matrices. No significant differences were evident between the results of the actual PFT samples analyzed by high-performance liquid chromatography and ic-ELISA. The collective data indicate that the developed ic-ELISA can be used for the rapid and simple detection of ZEN in PFT products.
Collapse
Affiliation(s)
- Taotao Qiu
- College of Physical Education and Health, Guangxi Normal University, Guilin 541004, China; (T.Q.); (H.Z.); (L.Z.); (B.X.); (J.Z.); (W.X.); (J.Z.)
| | - Huayi Zhang
- College of Physical Education and Health, Guangxi Normal University, Guilin 541004, China; (T.Q.); (H.Z.); (L.Z.); (B.X.); (J.Z.); (W.X.); (J.Z.)
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (H.L.); (Y.Z.); (X.S.)
| | - Lin Zhang
- College of Physical Education and Health, Guangxi Normal University, Guilin 541004, China; (T.Q.); (H.Z.); (L.Z.); (B.X.); (J.Z.); (W.X.); (J.Z.)
| | - Yaqiong Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (H.L.); (Y.Z.); (X.S.)
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (H.L.); (Y.Z.); (X.S.)
| | - Biyun Xu
- College of Physical Education and Health, Guangxi Normal University, Guilin 541004, China; (T.Q.); (H.Z.); (L.Z.); (B.X.); (J.Z.); (W.X.); (J.Z.)
| | - Jialin Zhu
- College of Physical Education and Health, Guangxi Normal University, Guilin 541004, China; (T.Q.); (H.Z.); (L.Z.); (B.X.); (J.Z.); (W.X.); (J.Z.)
| | - Wentao Xiao
- College of Physical Education and Health, Guangxi Normal University, Guilin 541004, China; (T.Q.); (H.Z.); (L.Z.); (B.X.); (J.Z.); (W.X.); (J.Z.)
| | - Jixu Zheng
- College of Physical Education and Health, Guangxi Normal University, Guilin 541004, China; (T.Q.); (H.Z.); (L.Z.); (B.X.); (J.Z.); (W.X.); (J.Z.)
| | - Jiahong Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (H.L.); (Y.Z.); (X.S.)
| |
Collapse
|
5
|
Guan Q, Tang L, Zhang L, Huang L, Xu M, Wang Y, Zhang M. Molecular insights into α-glucosidase inhibition and antiglycation properties affected by the galloyl moiety in (-)-epigallocatechin-3-gallate. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7381-7392. [PMID: 37390299 DOI: 10.1002/jsfa.12818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/25/2023] [Accepted: 06/30/2023] [Indexed: 07/02/2023]
Abstract
BACKGROUND Diabetes mellitus poses a substantial threat to public health due to rising morbidity and mortality. α-Glucosidase is one of the key enzymes affecting diabetes. Herein, (-)-epigallocatechin-3-gallate (EGCG) and (-)-epigallocatechin (EGC) were applied to clarify the role of the galloyl moiety of tea polyphenols in the inhibition of glycation and α-glucosidase activity. The structure-activity relationship of the galloyl moiety in EGCG on α-glucosidase was investigated in terms of inhibition kinetics, spectroscopy, atomic force microscopy and molecular docking. A bovine serum protein-fructose model was employed to determine the effect of the galloyl moiety on glycation. RESULTS The results indicated that the introduction of a galloyl moiety enhanced the capacity of EGCG to inhibit glycation and α-glucosidase activity. The IC50 value of EGC is approximately 2400 times higher than that of EGCG. Furthermore, the galloyl moiety in EGCG altered the microenvironment and secondary structure of α-glucosidase, resulting in a high binding affinity of EGCG to α-glucosidase. The binding constant of EGCG to α-glucosidase at 298 K is approximately 28 times higher than that of EGC. CONCLUSION Overall, the galloyl moiety of EGCG plays a crucial role in inhibiting glycation and α-glucosidase activity, which helps to enhance the molecular understanding of the structure and function of the polyphenol galloyl moiety in the science of food and agriculture. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qinhao Guan
- Institute of Chemical Industry of Forest Products, CAF; Key Lab. of Biomass Energy and Material, Jiangsu Province; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Lihua Tang
- Institute of Chemical Industry of Forest Products, CAF; Key Lab. of Biomass Energy and Material, Jiangsu Province; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Liangliang Zhang
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen, China
| | - Lixin Huang
- Institute of Chemical Industry of Forest Products, CAF; Key Lab. of Biomass Energy and Material, Jiangsu Province; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Man Xu
- Institute of Chemical Industry of Forest Products, CAF; Key Lab. of Biomass Energy and Material, Jiangsu Province; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Yuan Wang
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Meng Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, School of Wetlands, Yancheng Teachers University, Yancheng, China
| |
Collapse
|
6
|
Qiu T, Zhu J, Zhang H, Xu B, Guo Y, Li J, Xu X, Peng F, Liu W, Zhao S, Yin Z, Mao S. B-Type Fumonisins in Post-Fermented Tea: Occurrence and Consumer Dietary Exposure in Guangxi, China. Toxins (Basel) 2023; 15:534. [PMID: 37755960 PMCID: PMC10536045 DOI: 10.3390/toxins15090534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
Post-fermented tea (PFT), a commonly consumed beverage worldwide, is characterized by the rapid growth of its microbial groups and the substantial changes they undergo. Consequently, PFT may contain mycotoxins such as B-type fumonisins (FBs). This study aimed to assess the intake of FBs through the consumption of PFT among consumers in Guangxi, China. A novel quantitative method using high-performance liquid chromatography-mass spectrometry was used to determine the FB concentration in PFT products. Additionally, a PFT consumption survey was conducted using a face-to-face questionnaire, recording their body weight and PFT consumption patterns based on a three-day dietary recall method. Finally, hazard index was calculated to estimate the health risk of FBs from the consumption of PFT products in Guangxi. The results revealed that the occurrence of FBs in PFT was 20% (24/120), with a concentration ranging from 2.14 to 18.28 μg/kg. The results of the survey showed that the average daily consumption of PFT by consumers was 9.19 ± 11.14 g. The deterministic risk assessment revealed that only 0.026% of the provisional maximum tolerable daily intake of FBs was consumed through PFT, indicating that FB contamination in PFT is not a public health risk.
Collapse
Affiliation(s)
- Taotao Qiu
- College of Physical Education and Health, Guangxi Normal University, Guilin 541004, China; (T.Q.); (S.Z.)
| | - Jialin Zhu
- College of Physical Education and Health, Guangxi Normal University, Guilin 541004, China; (T.Q.); (S.Z.)
| | - Huayi Zhang
- College of Physical Education and Health, Guangxi Normal University, Guilin 541004, China; (T.Q.); (S.Z.)
| | - Biyun Xu
- College of Physical Education and Health, Guangxi Normal University, Guilin 541004, China; (T.Q.); (S.Z.)
| | - Yanju Guo
- College of Physical Education and Health, Guangxi Normal University, Guilin 541004, China; (T.Q.); (S.Z.)
| | - Jingrong Li
- College of Physical Education and Health, Guangxi Normal University, Guilin 541004, China; (T.Q.); (S.Z.)
| | - Xin Xu
- College of Physical Education and Health, Guangxi Normal University, Guilin 541004, China; (T.Q.); (S.Z.)
| | - Fenglin Peng
- College of Physical Education and Health, Guangxi Normal University, Guilin 541004, China; (T.Q.); (S.Z.)
| | - Weiguo Liu
- College of Physical Education and Health, Guangxi Normal University, Guilin 541004, China; (T.Q.); (S.Z.)
| | - Shengmei Zhao
- College of Physical Education and Health, Guangxi Normal University, Guilin 541004, China; (T.Q.); (S.Z.)
| | - Zuocheng Yin
- College of Physical Education and Health, Guangxi Normal University, Guilin 541004, China; (T.Q.); (S.Z.)
| | - Shihong Mao
- College of Tourism & Landscape Architecture, Guilin University of Technology, Guilin 541006, China
| |
Collapse
|
7
|
ZHOU X, YUE T, WEI Z, YANG L, ZHANG L, WU B, LIU W, PENG P. Tea-making technology by using quinoa raw materials. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.117422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Revealing the effects of Moringa oleifera Lam. leaves addition on Fuzhuan Brick Tea by metabolomic and microbiota analysis. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
9
|
Shakya S, Danshiitsoodol N, Sugimoto S, Noda M, Sugiyama M. Anti-Oxidant and Anti-Inflammatory Substance Generated Newly in Paeoniae Radix Alba Extract Fermented with Plant-Derived Lactobacillus brevis 174A. Antioxidants (Basel) 2021; 10:1071. [PMID: 34356304 PMCID: PMC8300999 DOI: 10.3390/antiox10071071] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
Fermentation of medicinal herbs can be a significant technique to obtain bioactive compounds. Paeoniae Radix (PR) used in the present study is a well-known herbal medicine that exhibits anti-inflammatory and immunomodulatory activity. The aim of this study is to explore the possibility that a bioactive compound is newly generated in PR extract by fermentation with a plant-derived lactic acid bacteria Lactobacillus brevis 174A. We determined the anti-inflammatory activities in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. The PR extract fermented with Lactobacillus brevis 174A markedly increased the total phenolic content, decreased intracellular ROS levels, inhibited the release of nitric oxide (NO). It also suppressed inflammatory cytokines IL-6, TNF-ɑ, while simultaneously downregulating the gene expressions of iNOS, IL-6, TNF-ɑ, and IL-1β compared to the unfermented PR extract. Furthermore, the bioactive compound newly generated from the fermentation was identified as pyrogallol. It inhibits the inflammatory responses in a dose-dependent manner suggesting that fermentation of the herbal extract used as a medium together with the plant-derived lactic acid bacterial strain may be a practical strategy to produce medicines and supplements for healthcare.
Collapse
Affiliation(s)
- Shrijana Shakya
- Department of Probiotic Science for Preventive Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (S.S.); (N.D.); (M.N.)
| | - Narandalai Danshiitsoodol
- Department of Probiotic Science for Preventive Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (S.S.); (N.D.); (M.N.)
| | - Sachiko Sugimoto
- Department of Pharmacognosy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan;
| | - Masafumi Noda
- Department of Probiotic Science for Preventive Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (S.S.); (N.D.); (M.N.)
| | - Masanori Sugiyama
- Department of Probiotic Science for Preventive Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (S.S.); (N.D.); (M.N.)
| |
Collapse
|
10
|
Muhialdin BJ, Meor Hussin AS, Kadum H, Abdul Hamid A, Jaafar AH. Metabolomic changes and biological activities during the lacto-fermentation of jackfruit juice using Lactobacillus casei ATCC334. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
11
|
Yulianti E, Sunarti, Wahyuningsih MSH. The effect of Kappaphycus alvarezii fraction on plasma glucose, Advanced Glycation End-products formation, and renal RAGE gene expression. Heliyon 2021; 7:e05978. [PMID: 33521358 PMCID: PMC7820565 DOI: 10.1016/j.heliyon.2021.e05978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/07/2020] [Accepted: 01/11/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Kappaphycus alvarezii (Doty) Doty ex P.C.Silva is a red algae with antioxidant and antiglycation activities. Algae still have not been widely used for treating diabetes, especially to prevent complications. The purpose of this study was to examine the effect of active fractions from Kappaphycus alvarezii on plasma glucose level, glycation process and renal RAGE gene expression. METHODS This study used bioassay-guided fractionation, consisting of three stages: extraction, partition, and fractionation. These processes were monitored with Thin Layer Chromatography and the BSA-Glucose method to select the best extract with antiglycation activity (calculated as the percentage of inhibition and IC50). The selected active fraction from four fractions was further used for in vivo study, which was conducted with hyperglycemic Wistar male rats. Plasma glucose level was measured using GOD-PAP methods, while plasma glycated albumin (GA) and Nε- (carboxymethyl) lysine (CML) levels were measured using ELISA. Renal RAGE gene expression was analyzed using qPCR. RESULTS Fraction II was selected as the active fraction of Kappaphycus alvarezii showing antiglycation activity with the highest percentage of inhibition and the lowest IC50. This fraction significantly reduced plasma GA and CML levels, but it did not significantly reduce plasma glucose level. Furthermore, renal RAGE gene expression was lower in the diabetic rat group treated with this active fraction compared to the untreated group. CONCLUSIONS This study successfully identified an active fraction of Kappaphycus alvarezii with antiglycation activity to reduce plasma GA and CML levels as well as renal RAGE gene expression. Therefore, this fraction could be developed as a potential candidate for treating diabetes.
Collapse
Affiliation(s)
- Evy Yulianti
- Department of Biology Education, Faculty of Mathematics and Science, Universitas Negeri Yogyakarta, Yogyakarta, Indonesia
- Doctoral Candidate at Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Sunarti
- Department of Biochemistry, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Mae Sri Hartati Wahyuningsih
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Herbal Medical Center, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
12
|
Zhang H, Liu YZ, Xu WC, Chen WJ, Wu S, Huang YY. Metabolite and Microbiome Profilings of Pickled Tea Elucidate the Role of Anaerobic Fermentation in Promoting High Levels of Gallic Acid Accumulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13751-13759. [PMID: 33164532 DOI: 10.1021/acs.jafc.0c06187] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Gallic acid (GA) is an important active ingredient for its pharmacological activities. High levels of GA in tea can be obtained by anaerobic fermentation, but its mechanism is still unclear. Here, the profiles of metabolites and microbiomes in pickled tea were analyzed. The results showed that GA of pickled tea increased to 24.26 mg/g at 18 d after anaerobic fermentation, which was accompanied by the reducing levels of epicatechin gallate (ECG), epiafzelechin-3-O-gallate (EAG), and 7-galloylcatechin (7-GC) and the increasing relative abundances of Bacillus and other six bacterial genera. However, epigallocatechin gallate (EGCG) was basically stable during the whole fermentation process. These results suggested that EGCG contributes little to the GA formation during anaerobic fermentation, but ECG, EAG, and 7-GC should be the key precursors to form GA; moreover, bacteria, especially Bacillus, may be responsible for their bioconversion. It will establish an effective way to increase GA in tea production.
Collapse
Affiliation(s)
- Huan Zhang
- Ministry of Education Key Laboratory of Horticultural Plant Biology, and Tea Science Department of Horticulture and Forestry Science College, Huazhong Agricultural University, Wuhan City 430070, China
| | - Yong-Zhong Liu
- Ministry of Education Key Laboratory of Horticultural Plant Biology, and Fruit Science Department of Horticulture and Forestry Science College, Huazhong Agricultural University, Wuhan City 430070, China
| | - Wen-Can Xu
- Ministry of Education Key Laboratory of Horticultural Plant Biology, and Tea Science Department of Horticulture and Forestry Science College, Huazhong Agricultural University, Wuhan City 430070, China
| | - Wen-Jun Chen
- Ministry of Education Key Laboratory of Horticultural Plant Biology, and Tea Science Department of Horticulture and Forestry Science College, Huazhong Agricultural University, Wuhan City 430070, China
| | - Shuang Wu
- Ministry of Education Key Laboratory of Horticultural Plant Biology, and Tea Science Department of Horticulture and Forestry Science College, Huazhong Agricultural University, Wuhan City 430070, China
| | - You-Yi Huang
- Ministry of Education Key Laboratory of Horticultural Plant Biology, and Tea Science Department of Horticulture and Forestry Science College, Huazhong Agricultural University, Wuhan City 430070, China
| |
Collapse
|
13
|
Li W, Zhao F, Pan J, Qu H. Influence of ethanol concentration of extraction solvent on metabolite profiling for Salviae Miltiorrhizae Radix et Rhizoma extract by 1H NMR spectroscopy and multivariate data analysis. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|