1
|
López AR, Ortega-Caneda E, Espada-Bellido E, Spanu D, Zava M, Monticelli D. Decoding trace element speciation in mushrooms: Analytical techniques, comprehensive data review, and health implications. Food Chem 2025; 463:141460. [PMID: 39357309 DOI: 10.1016/j.foodchem.2024.141460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
This review focuses on trace element speciation in edible mushrooms, providing information on analytical methods, available literature data, and health risk assessment. All steps of analytical procedures were presented, including extraction, separation and quantification. It compiles fragmented literature data on trace element speciation, focusing on arsenic, chromium, selenium, mercury, and antimony. Key findings include non-bioaccumulative chromium, the prevalence of Sb(V), mercury accumulation in contaminated sites, diverse arsenic and selenium speciation. Safe intake limits by agencies like USEPA indicate low risk for Cr(VI) and Sb but significant hazards from mercury and methylmercury, especially in contaminated areas: about 10 % of samples exceed safe limits for inorganic arsenic, and selenium enrichment often surpasses safety thresholds. The review underscores the need for standardized methods, speciation analyses of all toxicologically relevant species, and research on cooking impacts to improve health risk evaluations: establishing safe conditions for mushroom consumption remains a far-fetched goal.
Collapse
Affiliation(s)
- Alejandro R López
- University School for Advanced Studies IUSS Pavia, 27100 Pavia, Italy; Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy; Department of Analytical Chemistry, Faculty of Sciences, Institute for Viticulture and Agri-food Research (IVAGRO), University of Cadiz, Agri-food Campus of International Excellence (ceiA3), 11510 Puerto Real, Cadiz, Spain.
| | - Elena Ortega-Caneda
- Department of Analytical Chemistry, Faculty of Sciences, Institute for Viticulture and Agri-food Research (IVAGRO), University of Cadiz, Agri-food Campus of International Excellence (ceiA3), 11510 Puerto Real, Cadiz, Spain.
| | - Estrella Espada-Bellido
- Department of Analytical Chemistry, Faculty of Sciences, Institute for Viticulture and Agri-food Research (IVAGRO), University of Cadiz, Agri-food Campus of International Excellence (ceiA3), 11510 Puerto Real, Cadiz, Spain.
| | - Davide Spanu
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy.
| | - Martina Zava
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy.
| | - Damiano Monticelli
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy.
| |
Collapse
|
2
|
Milovanovic I, Chillon TS, Hackler J, Schomburg L, Goessler W, Lajin B. Comparative investigation of selenium-enriched Pleurotus ostreatus and Ganoderma lucidum as natural sources of selenium supplementation. Food Chem 2024; 437:137842. [PMID: 37956581 DOI: 10.1016/j.foodchem.2023.137842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023]
Abstract
Selenium (Se) is an essential trace element for human health, but its nutritional supply is insufficient in large parts of the world. Mushrooms can be enriched in selenium and can serve as alternative and natural source of selenium supplementation. In the present study, two common mushroom species (Pleurotus ostreatus and Ganoderma lucidum), were enriched with two selenium compounds (selenite and selenate) to test their suitability as natural sources of selenium supplementation. Sharp differences in the the metabolic patterns of the fortified selenium were observed. Selenium was effectively metabolized in P. ostreatus but remained in inorganic form in G. lucidum. However, mushrooms extracts were effective in enhancing selenoprotein expression in cell lines. The present study highlights the importance of employing selenium speciation analysis with an element-selective technique to examine the metabolic products following mushroom fortification for nutritional purposes due to the different toxicological profile and bioavailability of different selenium biotransformation products.
Collapse
Affiliation(s)
- Ivan Milovanovic
- Innovation Centre of the Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia.
| | - Thilo Samson Chillon
- Institut für Experimentelle Endokrinologie, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité University Medicine Berlin, CCM, Hessische Straße 4A, 10115 Berlin, Germany
| | - Julian Hackler
- Institut für Experimentelle Endokrinologie, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité University Medicine Berlin, CCM, Hessische Straße 4A, 10115 Berlin, Germany
| | - Lutz Schomburg
- Institut für Experimentelle Endokrinologie, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité University Medicine Berlin, CCM, Hessische Straße 4A, 10115 Berlin, Germany
| | - Walter Goessler
- University of Graz, Institute of Chemistry - Analytical Chemistry for Health and Environment, Universitätsplatz 1/1, 8010 Graz, Austria
| | - Bassam Lajin
- University of Graz, Institute of Chemistry - Analytical Chemistry for Health and Environment, Universitätsplatz 1/1, 8010 Graz, Austria; University of Graz, Institute of Chemistry - ChromICP, Universitätsplatz 1/1, 8010 Graz, Austria
| |
Collapse
|
3
|
Takata N, Myburgh J, Botha A, Nomngongo PN. The importance and status of the micronutrient selenium in South Africa: a review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:3703-3723. [PMID: 34708333 DOI: 10.1007/s10653-021-01126-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Selenium (Se) is a vital micronutrient with widespread biological action but leads to toxicity when taken in excessive amounts. The biological benefits of Se are mainly derived from its presence in active sites of selenoproteins such as glutathione peroxidase (GPx). An enzyme whose role is to protect tissues against oxidative stress by catalysing the reduction of peroxidase responsible for various forms of cellular damage. The benefits of Se can be harvested when proper regulations of its intake are used. In South Africa, Se distribution in people's diets and animals are low with socio-economic factors and heterogeneous spread of Se in soil throughout the country playing a significant role. The possible causes of low Se in soils may be influenced by underlying geological material, climatic conditions, and anthropogenic activities. Sedimentary rock formations show higher Se concentrations compared to igneous and metamorphic rock formations. Higher Se concentrations in soils dominates in humid and sub-humid areas of South Africa. Furthermore, atmospheric acid deposition dramatically influences the availability of Se to plants. The studies reviewed in this article have shown that atomic absorption spectroscopy (AAS) is the most utilised analytical technique for total Se concentration determination in environmental samples and there is a lack of speciation data for Se concentrations. Shortcomings in Se studies have been identified, and the future research directions of Se in South Africa have been discussed.
Collapse
Affiliation(s)
- Nwabisa Takata
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein, 2028, South Africa
- National Metrology Institute of South Africa, CSIR Campus, Building 5, Meiring Naude Road, Brummeria, Pretoria, 0182, South Africa
| | - Jan Myburgh
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| | - Angelique Botha
- National Metrology Institute of South Africa, CSIR Campus, Building 5, Meiring Naude Road, Brummeria, Pretoria, 0182, South Africa
| | - Philiswa Nosizo Nomngongo
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Doornfontein, 2028, South Africa.
- Department of Science and Innovation (DSI)/National Research Foundation (NRF) South African Research Chair (SARChI): Nanotechnology for Water, University of Johannesburg, Doornfontein, 2028, South Africa.
| |
Collapse
|
4
|
de Oliveira AP, Naozuka J, Landero-Figueroa JA. Effects of Se(IV) or Se(VI) enrichment on proteins and protein-bound Se distribution and Se bioaccessibility in oyster mushrooms. Food Chem 2022; 383:132582. [PMID: 35255370 DOI: 10.1016/j.foodchem.2022.132582] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/17/2022] [Accepted: 02/25/2022] [Indexed: 11/04/2022]
Abstract
A successful mushroom enrichment process must produce foods that have compounds potentially absorbed by the human body. In this study, Pleurotus ostreatus and Pleurotus djamor mushrooms were grown on organic substrate supplemented with different Se(IV) and Se(VI) concentrations, and evaluated in the following features: Fruiting bodies morphology; Se uptake and accumulation; Distribution of proteins and protein-bound Se; Se species identification on enzymatic extracts; Se bioaccessibility; and Distribution of bioaccessible protein-bound Se. Pleurotus djamor grown on Se(IV)-supplemented substrate showed the greatest potential to uptake and accumulate Se. For Se species screening, selenomethionine was identified in white oyster mushroom, while selenomethionine, selenocystine, and Se-methylselenocysteine in pink oyster mushrooms. In soluble fractions from in vitro gastrointestinal digestion assays, Se showed high bioaccessibility (>94%). Lastly, bioaccessible Se species were found to be mainly associated to LMW (<17 kDa) in Pleurotus ostreatus (74%) and Pleurotus djamor (68%) grown on Se(IV)-supplemented substrates.
Collapse
Affiliation(s)
- Aline Pereira de Oliveira
- University of Cincinnati, Cincinnati, OH, United States; Universidade Federal de São Paulo, Diadema, Sao Paulo, Brazil
| | - Juliana Naozuka
- Universidade Federal de São Paulo, Diadema, Sao Paulo, Brazil.
| | | |
Collapse
|
5
|
Song F, Su D, Keyhani NO, Wang C, Shen L, Qiu J. Influence of selenium on the mycelia of the shaggy bracket fungus, Inonotus hispidus. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3762-3770. [PMID: 34921405 DOI: 10.1002/jsfa.11724] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/07/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Selenium (Se) is a needed trace element for animals and humans. Many fungi have effective mechanisms to acquire, transform and accumulate Se in organic form. In this study, the effects of inorganic Se (sodium selenite) on the medicinal fungus Inonotus hispidus was investigated. RESULTS Inonotus hispidus was capable of tolerating up to 3.85 mmol L-1 selenite, at which ~85% growth inhibition was seen, with 50% growth inhibition occurring at ~1 mmol L-1 selenite. Growth in 0.29 mmol L-1 Se resulted in I. hispidus mycelium with 115 times higher Se levels compared to growth in standard media, and an organic Se content of 86% to total Se content. The influence of Se accumulation on morphological features of I. hispidus were examined by microscopic and scanning electron microscopic observation. These data revealed significant shrinkage and deformations of I. hispidus hyphae with decreased branching and collapse of clamp connections under higher Se stress. However, conidial production in I. hispidus increased dramatically. The influence of Se on mycelial growth could be recovered by reinoculation in standard media. Se accumulation had only minimal impacts on the yield of the potential selenocompounds such as amino acids, proteins and polysaccharides. By contrast, Se-enriched I. hispidus mycelium was of higher quality due to reduction in crude fat and total ash contents. CONCLUSIONS These data provide basic and applied information on the feasibility of producing selenized I. hispidus as an enriched and better quality product. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Feifei Song
- Department of Health and Food, Fujian Vocational College of Bioengineering, Fuzhou, China
| | - Dewei Su
- China National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Nemat O Keyhani
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Cui Wang
- Department of Health and Food, Fujian Vocational College of Bioengineering, Fuzhou, China
| | - Ligong Shen
- Department of Health and Food, Fujian Vocational College of Bioengineering, Fuzhou, China
| | - Junzhi Qiu
- College of Life Sciences, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
6
|
Borovička J, Braeuer S, Walenta M, Hršelová H, Leonhardt T, Sácký J, Kaňa A, Goessler W. A new mushroom hyperaccumulator: Cadmium and arsenic in the ectomycorrhizal basidiomycete Thelephora penicillata. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154227. [PMID: 35240185 DOI: 10.1016/j.scitotenv.2022.154227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Fruit-bodies of six Thelephora species (Fungi, Basidiomycota, Thelephoraceae) were analyzed for their trace element concentrations. In Thelephora penicillata, extremely high concentrations of Cd and As were found, followed by highly elevated concentrations of Cu and Zn. The highest accumulation ability was found for Cd with a mean concentration of 1.17 ± 0.37 g kg-1 (dry mass) in fruit-bodies collected from 20 unpolluted sites; the mean As concentration was 0.878 ± 0.242 g kg-1. Furthermore, striking accumulation of Se (923 ± 28 mg kg-1) was found in one sample of T. vialis and elevated concentrations of S were detected in T. palmata (19.6 ± 5.9 g kg-1). The analyzed Thelephora species were sequenced and, based on the Maximum Likelihood phylogenetic analysis (ITS rDNA) of the genus, possible other Thelephora (hyper)accumulators were predicted on the basis of their phylogenetic relationship with the discovered (hyper)accumulators. The striking ability of T. penicillata to accumulate simultaneously Cd, As, Cu, and Zn has no parallel in the Fungal Kingdom and raises the question of a biological importance of metal(loid) hyperaccumulation in mushrooms.
Collapse
Affiliation(s)
- Jan Borovička
- Institute of Geology of the Czech Academy of Sciences, Rozvojová 269, 16500 Prague 6, Czech Republic; Nuclear Physics Institute of the Czech Academy of Sciences, Hlavní 130, 25068 Husinec-Řež, Czech Republic.
| | - Simone Braeuer
- University of Graz, Institute of Chemistry, Universitätsplatz 1, 8010 Graz, Austria
| | - Martin Walenta
- University of Graz, Institute of Chemistry, Universitätsplatz 1, 8010 Graz, Austria
| | - Hana Hršelová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Praha 4, Czech Republic
| | - Tereza Leonhardt
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague, Czech Republic
| | - Jan Sácký
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, 166 28 Prague, Czech Republic
| | - Antonín Kaňa
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Walter Goessler
- University of Graz, Institute of Chemistry, Universitätsplatz 1, 8010 Graz, Austria
| |
Collapse
|
7
|
Hu J, Wang Z, Zhang L, Peng J, Huang T, Yang X, Jeong BR, Yang Q. Seleno-Amino Acids in Vegetables: A Review of Their Forms and Metabolism. FRONTIERS IN PLANT SCIENCE 2022; 13:804368. [PMID: 35185982 PMCID: PMC8847180 DOI: 10.3389/fpls.2022.804368] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Seleno-amino acids are safe, health-promoting compounds for humans. Numerous studies have focused on the forms and metabolism of seleno-amino acids in vegetables. Based on research progress on seleno-amino acids, we provide insights into the production of selenium-enriched vegetables with high seleno-amino acids contents. To ensure safe and effective intake of selenium, several issues need to be addressed, including (1) how to improve the accumulation of seleno-amino acids and (2) how to control the total selenium and seleno-amino acids contents in vegetables. The combined use of plant factories with artificial lighting and multiple analytical technologies may help to resolve these issues. Moreover, we propose a Precise Control of Selenium Content production system, which has the potential to produce vegetables with specified amounts of selenium and high proportions of seleno-amino acids.
Collapse
Affiliation(s)
- Jiangtao Hu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Zheng Wang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Li Zhang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Jie Peng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Tao Huang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Xiao Yang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Byoung Ryong Jeong
- Division of Applied Life Science (BK21 Four), Department of Horticulture, Graduate School of Gyeongsang National University, Jinju, South Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, South Korea
- Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Qichang Yang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| |
Collapse
|
8
|
Ye M, Li J, Yu R, Cong X, Huang D, Li Y, Chen S, Zhu S. Selenium Speciation in Selenium-Enriched Plant Foods. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-021-02208-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
9
|
Fekry T, Salem M, Abd-Elaziz A, Muawia S, Naguib Y, Khalil H. Anticancer Properties of Selenium-Enriched Mushroom, Pleurotus ostreatus, in Colon Cancer In-Vitro. Int J Med Mushrooms 2022; 24:1-20. [DOI: 10.1615/intjmedmushrooms.2022045181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
|
11
|
Karaś K, Zioła-Frankowska A, Frankowski M. New Method for Simultaneous Arsenic and Selenium Speciation Analysis in Seafood and Onion Samples. Molecules 2021; 26:6223. [PMID: 34684804 PMCID: PMC8539270 DOI: 10.3390/molecules26206223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/22/2022] Open
Abstract
This paper presents a new method for the simultaneous speciation analysis of arsenic (As(III)-arsenite, As(V)-arsenate, DMA-dimethylarsinic acid, MMA-methylarsonic acid, and AsB-arsenobetaine) and selenium (Se(IV)-selenite, Se(VI)-selenate, Se-Methionine, and Se-Cystine), which was applied to a variety of seafood and onion samples. The determination of the forms of arsenic and selenium was undertaken using the High-Performance Liquid Chromatography Inductively Coupled Plasma Mass Spectrometry (HPLC-ICP-MS) analytical technique. The separation of both organic and inorganic forms of arsenic and selenium was performed using two analytical columns: an anion exchange column, Dionex IonPac AS22, containing an alkanol quaternary ammonium ion, and a double bed cation-anion exchange guard column, Dionex Ion Pac CG5A, containing, as a first layer, fully sulfonated latex for cation exchange and a fully aminated layer for anion exchange as the second layer. The ammonium nitrate, at pH = 9.0, was used as a mobile phase. The method presented here allowed us to separate the As and Se species within 10 min with a suitable resolution. The applicability was presented with different sample matrix types: seafood and onion.
Collapse
Affiliation(s)
- Katarzyna Karaś
- Department of Analytical and Environmental Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland;
| | - Anetta Zioła-Frankowska
- Department of Analytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland;
| | - Marcin Frankowski
- Department of Analytical and Environmental Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland;
| |
Collapse
|
12
|
Anti-Hyperlipidemia and Gut Microbiota Community Regulation Effects of Selenium-Rich Cordyceps militaris Polysaccharides on the High-Fat Diet-Fed Mice Model. Foods 2021; 10:foods10102252. [PMID: 34681302 PMCID: PMC8534605 DOI: 10.3390/foods10102252] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022] Open
Abstract
Supplementation of polysaccharides is a promising gut microbiota-targeted therapeutic method for obesity and metabolic diseases. Biological activities of Cordyceps militaris polysaccharides have been well reported, but the effect of selenium (Se)-rich C. militaris polysaccharides (SeCMP) on obesity and associated metabolic disorder and gut microbiota composition has been rarely studied. This study aimed to investigate the anti-obesity and gut microbiota modulatory effect of crude polysaccharides separated from Se-rich C. militaris on a high-fat diet (HFD)-fed C57BL/6J mice model. Mice were treated with a normal diet (CHOW), HFD alone, HFD plus C. militaris polysaccharides (CMP), or low/medium/high dosage of SeCMP for 8 weeks. Body weight, fat content, serum lipid, appetite hormone, lipid gene expression, inflammation cytokines, thermogenic protein, short-chain fatty acids (SCFAs), and gut microbiota structure of the mice were determined. Compared with HFD-fed mice, the serum triglyceride and low-density lipoprotein cholesterol (LDL-C) in the SeCMP-200 group were decreased by 51.5% and 44.1%, respectively. Furthermore, serum lipopolysaccharide-binding proteins (LBP), adiponectin level, and pro-inflammation gene expression in the colon and subcutaneous fat were inhibited, whereas anti-inflammation gene expression was improved, reflecting SeCMP-200 might mitigate obese-induced inflammation. Meanwhile, SeCMP-200 promoted satiety and thermogenesis of obese mice. It also significantly decreased gut bacteria, such as Dorea, Lactobacillus, Clostridium, Ruminococcus, that negatively correlated with obesity traits and increased mucosal beneficial bacteria Akkermansia. There was no significant difference between CMP and SeCMP-100 groups. Our results revealed a high dose of SeCMP could prevent HFD-induced dyslipidemia and gut microbiota dysbiosis and was potential to be used as functional foods.
Collapse
|
13
|
Lajin B, Braeuer S, Goessler W. Parallel and Comparative Non-Targeted Metabolomic Speciation Analysis of Metalloids and Their Non-Metal Analogues by HPLC-ICPMS/MS in Mushrooms. Metallomics 2021; 13:6327568. [PMID: 34302346 DOI: 10.1093/mtomcs/mfab047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/20/2021] [Indexed: 11/12/2022]
Abstract
With the introduction of tandem mass spectrometry to inductively coupled plasma mass spectrometry (ICPMS/MS), the potential for non-targeted elemental metabolomic analysis has been expanded to many non-metals of pivotal biological importance. Arsenic and selenium are trace elements that share chemical similarity with the non-metals phosphorus and sulfur, respectively, and this similarity can be exploited to gain more insight into the incompletely understood biological significance of these metalloids and the evolution of their biochemical pathways. As a proof of concept, we show the applicability of HPLC-ICPMS/MS for non-targeted and parallel speciation analysis of arsenic, selenium, phosphorus, and sulfur in mushrooms-metabolically diverse organisms. Incredibly contrasting levels of diversity were found in the metabolomic profiles of the four investigated elements among the various species along with sharp discrepancies among related elements (e.g. phosphorous vs. arsenic) in certain mushroom species. The present work shows that ICPMS/MS offers a new dimension in non-targeted metabolomic analysis and enables a unique comparative approach in investigating and tracking the biochemistry of related elements in moderately complex organisms.
Collapse
Affiliation(s)
- Bassam Lajin
- Institute of Chemistry, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria
| | - Simone Braeuer
- Institute of Chemistry, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria.,Atomic & Mass Spectrometry Research Unit, Department of Chemistry, Ghent University, Krijgslaan 281-S12, 9000 Ghent, Belgium
| | - Walter Goessler
- Institute of Chemistry, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria
| |
Collapse
|
14
|
Xiao Z, Wang J, Guo J, Suo D, Wang S, Tian J, Guo L, Fan X. Quantitative selenium speciation in feed by enzymatic probe sonication and ion chromatography-inductively coupled plasma mass spectrometry. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:268-279. [PMID: 33405994 DOI: 10.1080/19440049.2020.1849820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A rapid, sensitive and species preservative analytical method for the simultaneous determination of six selenium (Se) species has been developed. Enzymatic probe sonication (EPS) was investigated as a novel and alternative technology for the extraction of Se species from feed matrices and the results were compared with the conventional hot water extraction, enzymatic hydrolysis and sequential extraction. The critical parameters of EPS such as enzyme types, extraction time, temperature, ultrasonic power and sample/enzyme ratio were varied with control. The Se species were separated and quantitatively determined by ion chromatography-inductively coupled plasma mass spectrometry (IC-ICP-MS). Under current optimised conditions, six inorganic and organic Se species were completely separated within 15 min in a single chromatographic run. The spectral interferences from the argon plasma 40Ar2, 40Ar37Cl or 1H79Br were effectively removed by employing the kinetic energy discrimination (KED) mode. Quantitative extraction for total Se (>94.8%) and more than 89.0% for the sum of different Se chemical forms without species transformation were obtained in only 60 s by applying the EPS treatment using aqueous protease XIV. The limits of detection (LODs) and quantification (LOQs) for Se species were in the ranges of 0.21-0.56 µg kg-1 and 0.69-1.87 µg kg-1, respectively. The proposed method was successfully applied to the speciation of Se in several reference materials and feed samples collected from the markets and local farms.
Collapse
Affiliation(s)
- Zhiming Xiao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences , Beijing, China
| | - Jitong Wang
- Beijing Institute of Feed Control , Beijing, China
| | - Jiangpeng Guo
- Beijing General Station of Animal Husbandry , Beijing, China
| | - Decheng Suo
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences , Beijing, China
| | - Shi Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences , Beijing, China
| | - Jing Tian
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences , Beijing, China
| | - Lili Guo
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences , Beijing, China
| | - Xia Fan
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences , Beijing, China
| |
Collapse
|
15
|
Ren YY, Sun PP, Li HR, Zhu ZY. Effects of Na2SeO3 on growth, metabolism, antioxidase and enzymes involved in polysaccharide synthesis of Cordyceps militaris. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Pyrzynska K, Sentkowska A. Selenium in plant foods: speciation analysis, bioavailability, and factors affecting composition. Crit Rev Food Sci Nutr 2020; 61:1340-1352. [PMID: 32363893 DOI: 10.1080/10408398.2020.1758027] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Interest in selenium has been increasing over the past few decades with growing knowledge of its importance to overall health. The ability of several plants to accumulate and transform inorganic selenium forms into its bioactive organic compounds has important implications for human nutrition and health. In this review, we present the studies carried out during the last decade to characterize selenium species produced by different plant foods. Attention is also paid to the effect of selenium treatment on chemical composition and antioxidant properties of plants.
Collapse
|
17
|
Lajin B, Goessler W. HPLC-ICPMS/MS shows a significant advantage over HPLC-ICPMS for the determination of perchlorate in ground, tap, and river water. Anal Chim Acta 2020; 1094:11-17. [DOI: 10.1016/j.aca.2019.09.070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/19/2019] [Accepted: 09/26/2019] [Indexed: 10/25/2022]
|
18
|
Exploring the sulfur species in wine by HPLC-ICPMS/MS. Anal Chim Acta 2019; 1092:1-8. [DOI: 10.1016/j.aca.2019.09.074] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 09/20/2019] [Accepted: 09/26/2019] [Indexed: 01/02/2023]
|
19
|
Rodrigues Barbosa J, Dos Santos Freitas MM, da Silva Martins LH, de Carvalho RN. Polysaccharides of mushroom Pleurotus spp.: New extraction techniques, biological activities and development of new technologies. Carbohydr Polym 2019; 229:115550. [PMID: 31826512 DOI: 10.1016/j.carbpol.2019.115550] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/22/2019] [Accepted: 10/27/2019] [Indexed: 02/07/2023]
Abstract
The biodiversity of mushrooms Pleurotus spp. is impressive due to its complexity and diversity related to the composition of chemical structures such as polysaccharides, glycoproteins and secondary metabolites such as alkaloids, flavonoids and betalains. Recent studies of polysaccharides and their structural elucidation have helped to direct research and development of technologies related to pharmacological action, production of bioactive foods and application of new, more sophisticated extraction tools. The diversity of bioactivities related to these biopolymers, their mechanisms and routes of action are constant focus of researches. The elucidation of bioactivities has helped to formulate new vaccines and targeted drugs. In this context, in terms of polysaccharides and the diversity of mushrooms Pleurotus spp., this review seeks to revisit the genus, making an updated approach on the recent discoveries of polysaccharides, new extraction techniques and bioactivities, emphasising on their mechanisms and routes in order to update the reader on the recent technologies related to these polymers.
Collapse
Affiliation(s)
- Jhonatas Rodrigues Barbosa
- LABEX/FEA (Extraction Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| | - Maurício Madson Dos Santos Freitas
- LAPOA/FEA (Laboratory of Products of Animal Origin/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| | - Luiza Helena da Silva Martins
- LABIOTEC/FEA (Biotechnological Process Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| | - Raul Nunes de Carvalho
- LABEX/FEA (Extraction Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| |
Collapse
|