1
|
Qiu S, Yao K, Sun J, Liu S, Song X. Impact of fermentation by Saccharomyces Cerevisiae on the macronutrient and in vitro digestion characteristics of Chinese noodles. Food Chem 2025; 462:140967. [PMID: 39208726 DOI: 10.1016/j.foodchem.2024.140967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
This study examined the impact of live bread yeast (Saccharomyces cerevisiae) on the nutritional characteristics of Asian dried noodles. Micronutrient analysis of fermented noodles revealed a 6.9% increase in the overall amino acid content, a 37.1% increase in the vitamin B content and a 63.0% decrease in the phytic acid level. Molecular weight analysis of starch and protein contents revealed moderate decrease in the fermented noodles. The in vitro digestion of fermented noodles showed a slightly faster initial acidification, four-fold decrease in the initial shear viscosity (from 8.85 to 1.94 Pa·s). The initial large food particle count (>2 mm diameter) was 19.5% lower in the fermented noodles. The fermented noodles contained slightly higher free sugar content (73.5 mg g-1 noodle) during the gastric digestion phase. The overall nutrition and digestion results indicate nutritional improvement and digestion-easing attributes in the fermented noodles.
Collapse
Affiliation(s)
- Shoukuan Qiu
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai 200137, China
| | - Ke Yao
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai 200137, China
| | - Jingwei Sun
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai 200137, China
| | - Shuhang Liu
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai 200137, China
| | - Xiaoyan Song
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; Institute of Rice Industry Technology Research, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
2
|
Abstract
The rates of dietary protein digestion and absorption can be significantly increased or decreased by food processing treatments such as heating, gelling and enzymatic hydrolysis, with subsequent metabolic impacts, e.g. on muscle synthesis and glucose homeostasis.This review examines in vivo evidence that industrial and domestic food processing modify the kinetics of amino acid release and absorption following a protein-rich meal. It focuses on studies that used compositionally-matched test meals processed in different ways.Food processing at extremely high temperature at alkaline pH and/or in the presence of reducing sugars can modify amino acid sidechains, leading to loss of bioavailability. Some protein-rich food ingredients are deliberately aggregated, gelled or hydrolysed during manufacture. Hydrolysis accelerates protein digestion/absorption and increases splanchnic utilisation. Aggregation and gelation may slow or accelerate proteolysis in the gut, depending on the aggregate/gel microstructure.Milk, beef and eggs are heat processed prior to consumption to eliminate pathogens and improve palatability. The temperature and time of heating affect protein digestion and absorption rates, and effects are sometimes non-linear. In light of a dietary transition away from animal proteins, more research is needed on how food processing affects digestion and absorption of non-animal proteins.Food processing modifies the microstructure of protein-rich foods, and thereby alters protein digestion and absorption kinetics in the stomach and small intestine. Exploiting this principle to optimise metabolic outcomes requires more human clinical trials in which amino acid absorption rates are measured and food microstructure is explicitly considered, measured and manipulated.
Collapse
Affiliation(s)
- Simon M Loveday
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore138673, Singapore
- Riddet Institute Centre of Research Excellence, Massey University, Private Bag 11 222, Palmerston North4442, New Zealand
| |
Collapse
|
3
|
Kar A, Olenskyj AG, Garcia Guerrero M, Graham R, Bornhorst GM. Interplay of egg white gel pH and intragastric pH: Impact on breakdown kinetics and mass transport processes. Food Res Int 2023; 173:113290. [PMID: 37803603 DOI: 10.1016/j.foodres.2023.113290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 10/08/2023]
Abstract
Egg white gels have been utilized as a model system to study protein breakdown kinetics based on physical and biochemical breakdown processes during in vitro gastric digestion. Additionally, the impact of regulating intragastric pH on the breakdown kinetic processes was investigated. The present study evaluated the impact of gel pH (based on the pH of protein dispersion prepared at pH 3, 5 and 7.5) and intragastric pH regulation (with or without adjustment to pH 2 during in vitro gastric digestion) on the effective diffusion of gastric juice components (water and HCl), gel softening kinetics during gastric digestion, microstructural analysis using micro- computed tomography and protein hydrolysis in the liquid and solid fraction of egg white gel digesta. Egg white gels were subjected to 30 s oral digestion and 15, 30, 60, 120, 180 or 240 min gastric digestion in a static in vitro gastric digestion model, with or without gastric pH adjustment to pH 2. The gel pH affected all the properties measured during gastric digestion and each gel pH represented a specific driving mechanism for protein breakdown. A lower gel pH (pH 3) demonstrated a higher diffusion of moisture and acid, resulting in faster softening (p < 0.05). An intermediate pH (pH 5) showed greater protein-protein interactions due to the proximity to the isoelectric point of egg white proteins, resulting in very slow softening during digestion (p < 0.05), and a higher pH (pH 7) resulted in higher acid diffusion, intermediate gel hardness and very slow softening kinetics (p < 0.05). The gastric pH adjustment during digestion of egg protein gels affected (p < 0.05) the equilibrium moisture and acid contents as well as protein hydrolysis. The study confirmed that there is an interplay between initial gel pH and the intragastric pH which affected the breakdown kinetics of egg white gels during the gastric digestion process.
Collapse
Affiliation(s)
| | | | | | | | - Gail M Bornhorst
- University of California, Davis, USA; Riddet Institute, Palmerston North, New Zealand.
| |
Collapse
|
4
|
Nadia J, Singh H, Bornhorst GM. Evaluation of the performance of the human gastric simulator using durum wheat-based foods of contrasting food structure. Food Funct 2023. [PMID: 37427445 DOI: 10.1039/d3fo00740e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The selection of gastric digestion parameters in food digestion studies using in vitro models is critical to properly represent structural changes in the stomach. This study aimed to evaluate the performance of digestion in the human gastric simulator (HGS) using generalized in vitro gastric digestion parameters (secretion rate of 4.1 mL min-1, gastric emptying rate of 5.68 g min-1) that were derived from a previous in vivo study using six starch-rich foods. Two of the six foods used in the in vivo study (cooked durum wheat porridge/semolina and pasta) were digested in the HGS for up to 240 min, then the properties of the emptied and remaining digesta were measured. The properties of the in vitro remaining digesta were compared to those measured in vivo (growing pig stomach). The trends in the gastric breakdown rate and mechanisms, dry matter emptying kinetics, and starch hydrolysis of pasta and semolina were similar to those of in vivo. Gastric breakdown and dilution kinetics in vitro and in vivo were well-related but did not have a 1 : 1 correlation, whereas gastric acidification kinetics in the HGS deviated from that observed in vivo. The results suggest that generalized digestion parameters could be used to predict the effect of food structure on in vivo gastric breakdown and emptying, but care should be taken in interpretation of results, as the gastric acidification process was different from what was observed in vivo. This information will help refine in vitro digestion model parameters to provide more physiologically-relevant data in future studies.
Collapse
Affiliation(s)
- Joanna Nadia
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, New Zealand.
| | - Harjinder Singh
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, New Zealand.
| | - Gail M Bornhorst
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, New Zealand.
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95618, USA
| |
Collapse
|
5
|
Effect of radiofrequency processing on the structural and bio-functional properties of egg white proteins. Food Chem 2023; 404:134533. [DOI: 10.1016/j.foodchem.2022.134533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/18/2022] [Accepted: 10/03/2022] [Indexed: 11/22/2022]
|
6
|
Spatial-temporal mapping of the intra-gastric pepsin concentration and proteolysis in pigs fed egg white gels. Food Chem 2022; 389:133132. [PMID: 35526282 DOI: 10.1016/j.foodchem.2022.133132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/07/2022] [Accepted: 04/29/2022] [Indexed: 11/21/2022]
Abstract
While there is a consensus that food structure affects food digestion, the underlying mechanisms remain poorly understood. A previous experiment in pigs fed egg white gels of same composition but different structures evidenced such effect on food gastric disintegration. In this study, we detailed the consequences on intra-gastric pH, pepsin concentration and proteolysis by sampling throughout the stomach over 6 h digestion. Subsequent amino acid absorption was investigated as well by blood sampling. While acidification was almost homogeneous after 6 h digestion regardless of the gel, pepsin distribution never became uniform. Pepsin started to accumulate in the pylorus/antrum region before concentrating in the body stomach beyond 4 h, time from which proteolysis really started. Interestingly, the more acidic and soft gel resulted in a soon (60 min) increase in proteolysis, an earlier and more intense peak of plasmatic amino acids, and a final pepsin concentration three times higher than with the other gels.
Collapse
|
7
|
Nadia J, Bronlund JE, Singh H, Singh RP, Bornhorst GM. Contribution of the proximal and distal gastric phases to the breakdown of cooked starch-rich solid foods during static in vitro gastric digestion. Food Res Int 2022; 157:111270. [DOI: 10.1016/j.foodres.2022.111270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 02/07/2023]
|
8
|
Influence of food macrostructure on the kinetics of acidification in the pig stomach after the consumption of rice- and wheat-based foods: implications for starch hydrolysis and starch emptying rate. Food Chem 2022; 394:133410. [DOI: 10.1016/j.foodchem.2022.133410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 05/30/2022] [Accepted: 06/04/2022] [Indexed: 11/18/2022]
|
9
|
Gallego M, Barat JM, Grau R, Talens P. Compositional, structural design and nutritional aspects of texture-modified foods for the elderly. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Salelles L, Floury J, Le Feunteun S. Pepsin activity as a function of pH and digestion time on caseins and egg white proteins under static in vitro conditions. Food Funct 2021; 12:12468-12478. [PMID: 34788782 DOI: 10.1039/d1fo02453a] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The activity of pepsin, the gastric protease, is generally considered to be negligible for pH ≥ 4, based on the results obtained with a few purified globular proteins. The present study aimed at studying the activity of porcine pepsin on egg white proteins (EWP) and casein micelle micro-aggregates (CA) over a broad range of pH (from 1 to 7) for short (3 min) and long (2 h) digestion times. For a short time, the results confirmed a tendency for a higher rate of hydrolysis with decreasing pH, but with different pH activity profiles for both the substrates. More remarkably, the degree of hydrolysis of CA after 2 h of digestion was constant from pH 1 to pH 5, and was only reduced by half at pH 6. This finding demonstrates that pepsin can hydrolyse caseins from the very beginning of gastric digestion. Interestingly, the trend of the reaction kinetics over 2 h appeared to be rather characteristic of the type of the substrate and was largely independent in terms of pH. Most hydrolysis profiles could be accurately fitted by a power law, an empirical model that was then successfully applied to the static in vitro gastric proteolysis of 6 other food matrices. Overall, our results support the idea that pepsin activity under weakly acidic conditions (pH ≥ 4) should not always be neglected, in particular, for milk caseins, and that pepsin reaction kinetics during static in vitro gastric digestion seems to evolve proportionally to the power of the digestion time.
Collapse
Affiliation(s)
- Léa Salelles
- STLO, INRAE, Institut Agro, 65 rue de Saint-Brieuc, 35042 Rennes, France.
| | - Juliane Floury
- STLO, INRAE, Institut Agro, 65 rue de Saint-Brieuc, 35042 Rennes, France.
| | - Steven Le Feunteun
- STLO, INRAE, Institut Agro, 65 rue de Saint-Brieuc, 35042 Rennes, France.
| |
Collapse
|
11
|
Suwareh O, Causeur D, Jardin J, Briard-Bion V, Le Feunteun S, Pezennec S, Nau F. Statistical modeling of in vitro pepsin specificity. Food Chem 2021; 362:130098. [PMID: 34090041 DOI: 10.1016/j.foodchem.2021.130098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/13/2021] [Accepted: 05/11/2021] [Indexed: 11/30/2022]
Abstract
The specificity of pepsin, the major protease of gastric digestion, has been previously investigated, but only regarding the primary sequence of the protein substrates. The present study aimed to consider in addition physicochemical and structural characteristics, at the molecular and sub-molecular scales. For six different proteins submitted to in vitro gastric digestion, the peptide bonds cleaved were determined from the peptides released and identified by LC-MS/MS. An original statistical approach, based on propensity scores calculated for each amino acid residue on both sides of the peptide bonds, concluded that preferential cleavage occurred after Leu and Phe, and before Ile. Moreover, reliable statistical models developed for predicting peptide bond cleavage, highlighted the predominant role of the amino acid residues at the N-terminal side of the peptide bonds, up to the seventh position (P7 and P7'). The significant influence of hydrophobicity, charge and structural constraints around the peptide bonds was also evidenced.
Collapse
Affiliation(s)
- Ousmane Suwareh
- STLO, INRAE, Institut Agro, 65 rue de Saint-Brieuc, 35042 Rennes, France.
| | - David Causeur
- IRMAR UMR6625, CNRS, Institut Agro, 65 rue de Saint-Brieuc, 35042 Rennes, France.
| | - Julien Jardin
- STLO, INRAE, Institut Agro, 65 rue de Saint-Brieuc, 35042 Rennes, France.
| | | | - Steven Le Feunteun
- STLO, INRAE, Institut Agro, 65 rue de Saint-Brieuc, 35042 Rennes, France.
| | - Stéphane Pezennec
- STLO, INRAE, Institut Agro, 65 rue de Saint-Brieuc, 35042 Rennes, France.
| | - Françoise Nau
- STLO, INRAE, Institut Agro, 65 rue de Saint-Brieuc, 35042 Rennes, France.
| |
Collapse
|
12
|
Nadia J, Olenskyj AG, Stroebinger N, Hodgkinson SM, Estevez TG, Subramanian P, Singh H, Singh RP, Bornhorst GM. Tracking physical breakdown of rice- and wheat-based foods with varying structures during gastric digestion and its influence on gastric emptying in a growing pig model. Food Funct 2021; 12:4349-4372. [PMID: 33884384 DOI: 10.1039/d0fo02917c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There is currently a limited understanding of the effect of food structure on physical breakdown and gastric emptying of solid starch-based foods during gastric digestion. Moisture uptake, pH, particle size, rheological, and textural properties of six solid starch-based diets from different sources (Durum wheat and high amylose white rice) and of different macrostructures (porridge, native grain, agglomerate/couscous, and noodle) were monitored during 240 min of gastric digestion in a growing pig model. Changes in the physical properties of the gastric digesta were attributed to the influence of gastric secretions and gastric emptying, which were both dependent on the buffering capacity and initial macrostructure of the diets. Differences between the proximal and distal stomach regions were found in the intragastric pH and texture of the gastric digesta. For example, rice couscous, which had the smallest particle size and highest buffering capacity among the rice-based diets, had the shortest gastric emptying half-time and no significant differences between proximal and distal stomach digesta physical properties. Additionally, a relationship between gastric breakdown rate, expressed as gastric softening half-time from texture analysis, and gastric emptying half-time of dry matter was also observed. These findings provide new insights into the breakdown processes of starch-based solid foods in the stomach, which can be beneficial for the development of food structures with controlled rates of breakdown and gastric emptying during digestion.
Collapse
Affiliation(s)
- Joanna Nadia
- School of Food and Advanced Technology, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Nadia J, Bronlund J, Singh RP, Singh H, Bornhorst GM. Structural breakdown of starch-based foods during gastric digestion and its link to glycemic response: In vivo and in vitro considerations. Compr Rev Food Sci Food Saf 2021; 20:2660-2698. [PMID: 33884751 DOI: 10.1111/1541-4337.12749] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/19/2021] [Accepted: 03/08/2021] [Indexed: 01/10/2023]
Abstract
The digestion of starch-based foods in the small intestine as well as factors affecting their digestibility have been previously investigated and reviewed in detail. Starch digestibility has been studied both in vivo and in vitro, with increasing interest in the use of in vitro models. Although previous in vivo studies have indicated the effect of mastication and gastric digestion on the digestibility of solid starch-based foods, the physical breakdown of starch-based foods prior to small intestinal digestion is often less considered. Moreover, gastric digestion has received little attention in the attempt to understand the digestion of solid starch-based foods in the digestive tract. In this review, the physical breakdown of starch-based foods in the mouth and stomach, the quantification of these breakdown processes, and their links to physiological outcomes, such as gastric emptying and glycemic response, are discussed. In addition, the physical breakdown aspects related to gastric digestion that need to be considered when developing in vitro-in vivo correlation in starch digestion studies are discussed. The discussion demonstrates that physical breakdown prior to small intestinal digestion, especially during gastric digestion, should not be neglected in understanding the digestion of solid starch-based foods.
Collapse
Affiliation(s)
- Joanna Nadia
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - John Bronlund
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Rajinder Paul Singh
- Riddet Institute, Massey University, Palmerston North, New Zealand.,Department of Biological and Agricultural Engineering, University of California, Davis, Davis, California, USA
| | - Harjinder Singh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Gail M Bornhorst
- Riddet Institute, Massey University, Palmerston North, New Zealand.,Department of Biological and Agricultural Engineering, University of California, Davis, Davis, California, USA
| |
Collapse
|
14
|
Farjami T, Babaei J, Nau F, Dupont D, Madadlou A. Effects of thermal, non-thermal and emulsification processes on the gastrointestinal digestibility of egg white proteins. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.11.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
In Vivo Digestion of Egg Products Enriched with DHA: Effect of the Food Matrix on DHA Bioavailability. Foods 2020; 10:foods10010006. [PMID: 33375011 PMCID: PMC7822025 DOI: 10.3390/foods10010006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/30/2022] Open
Abstract
The aim of the present study was to determine to what extent the food matrix could affect the release of docosahexaenoic acid (DHA) during digestion and its incorporation into systemic circulation. In this aim, three DHA-enriched egg products having the same composition but different structure were developed: omelet, hard-boiled egg, and mousse. Then, nine pigs fitted with T-shape cannulas at duodenal level and a jugular venous catheter were fed with the DHA-enriched egg products, and duodenal effluents and plasma were collected throughout the postprandial period. Results highlighted an undeniable effect of the food matrix on digestion parameters and DHA bioavailability. The transit of DHA and protein through the duodenum was faster after the ingestion of the mousse than after the ingestion of the omelet and hard-boiled egg. While most of the DHA and protein ingested under the form of mousse had already passed through the duodenum 4.5 h after its ingestion, significantly higher quantities were still present in the case of the omelet and hard-boiled egg. In terms of bioavailability, the omelet was the most efficient vector for delivering DHA into systemic circulation. It supplied 56% and 120% more DHA than the hard-boiled egg and the mousse, respectively.
Collapse
|
16
|
Somaratne G, Ye A, Nau F, Ferrua MJ, Dupont D, Paul Singh R, Singh J. Egg white gel structure determines biochemical digestion with consequences on softening and mechanical disintegration during in vitro gastric digestion. Food Res Int 2020; 138:109782. [PMID: 33288168 DOI: 10.1016/j.foodres.2020.109782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/09/2020] [Accepted: 10/04/2020] [Indexed: 11/16/2022]
Abstract
The aim of this work was to investigate the role of biochemical digestion on softening and disintegration kinetics of pH 5 and pH 9 egg white gel (EWGs) during in vitro gastric digestion. EWG samples (5 mm length cubes) underwent in vitro digestion by incubation in simulated gastric fluid at different time intervals for up to 240 min. The hardness was measured using a Texture Analyser; softening kinetics was fit to the Weibull model. Results revealed that pH 9 EWG had the highest softening halftime (458 ± 86 min), indicating the slowest softening, whereas pH 5 EWG had the lowest softening halftime (197 ± 12 min), indicating the quickest softening. The digested samples were immediately exposed to mechanical forces generated by the human gastric simulator (HGS) for 10 min to investigate the influence of gastric juice on the breakdown behaviour of EWG cubes. The breakdown behaviour of the disintegrated samples was characterized by fitting the cumulative distributions of particle surface areas to a mixed Weibull function (R2 > 0.99). The weight of fine particles (α) showed that regardless of gastric juice diffusion, the pH 5 EWG (α = 0.22 ± 0.03) disintegrated into more fine particles than those resulting from pH 9 EWG disintegration (α = 0.07 ± 0.02). As expected, the diffusion of gastric juice enhanced erosion of the EWG particles into fine particles. Result obtained from the particle surface area distribution is in good agreement with the softening kinetics of EWGs during simulated in vitro gastric phase.
Collapse
Affiliation(s)
- Geeshani Somaratne
- Riddet Institute and Massey Institute of Food Science and Technology, Massey University, Palmerston North, New Zealand; Department of Food Science and Technology, Faculty of Agriculture, University of Peradeniya, 20450, Sri Lanka
| | - Aiqian Ye
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | | | - Maria J Ferrua
- Riddet Institute, Massey University, Palmerston North, New Zealand; Fonterra Research and Development Centre, Palmerston North, New Zealand
| | | | - R Paul Singh
- Riddet Institute, Massey University, Palmerston North, New Zealand; Department of Biological and Agricultural Engineering, University of California, Davis, CA, USA
| | - Jaspreet Singh
- Riddet Institute and Massey Institute of Food Science and Technology, Massey University, Palmerston North, New Zealand.
| |
Collapse
|
17
|
Guo Q, Ye A, Singh H, Rousseau D. Destructuring and restructuring of foods during gastric digestion. Compr Rev Food Sci Food Saf 2020; 19:1658-1679. [PMID: 33337100 DOI: 10.1111/1541-4337.12558] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/11/2020] [Accepted: 03/29/2020] [Indexed: 12/15/2022]
Abstract
All foods harbor unique length scale-dependent structural features that can influence the release, transport, and utilization of macro- or micronutrients in the human gastrointestinal tract. In this regard, food destructuring and restructuring processes during gastric passage significantly influence downstream nutrient assimilation and feelings of satiety. This review begins with a synopsis of the effects of oral processing on food structure. Then, stomach-centric factors that contribute to the efficacy of gastric digestion are discussed, and exemplified by comparing the intragastric de- and restructuring of a number of common foods. The mechanisms of how intragastric structuring influences gastric emptying and its relationship to human satiety are then discussed. Finally, recently developed, non-destructive instrumental approaches used to quantitively and qualitatively characterize food behavior during gastric destructuring and restructuring are described.
Collapse
Affiliation(s)
- Qing Guo
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruits and Vegetables Processing, China Agricultural University, Beijing, 100083, China.,Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua, Jiangsu, 225700, China
| | - Aiqian Ye
- Riddet Institute, Massey University, Palmerston North, 4442, New Zealand
| | - Harjinder Singh
- Riddet Institute, Massey University, Palmerston North, 4442, New Zealand
| | - Dérick Rousseau
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, M5B 2K3, Canada
| |
Collapse
|
18
|
Buffière C, Hiolle M, Peyron MA, Richard R, Meunier N, Batisse C, Rémond D, Dupont D, Nau F, Pereira B, Savary-Auzeloux I. Food matrix structure (from Biscuit to Custard) has an impact on folate bioavailability in healthy volunteers. Eur J Nutr 2020; 60:411-423. [PMID: 32363446 DOI: 10.1007/s00394-020-02258-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/22/2020] [Indexed: 11/28/2022]
Abstract
PURPOSE We examined the impact of matrix food structure on post-prandial folate bioavailability (and other macronutrients) in human volunteers using a randomized, controlled, crossover experimental design. METHODS Twelve healthy male volunteers (22.6 ± 0.4 years old) were offered four food models (differing in matrix structure: Custard, Pudding, Sponge cake and Biscuit) to which 1 mg of folic acid was added, according to a randomized, controlled, crossover experimental design. Plasma folates, glucose, insulin, alpha amino nitrogen and triglycerides were measured over the post-prandial period (from T0 to T480 min). RESULTS Food matrix structure was capable of altering folate plasma availability. The highest folate availability was observed for pudding and to a lesser extent Sponge cake whereas the lowest was for the two matrices presenting extreme rheological properties: Custard (liquid) (P < 0.05 total AUC) and to a lesser extent Biscuit (hard solid) (P < 0.05, AUC 180 min). The analysis of plasma kinetics of appearance of other nutrients/metabolites helps to understand/explain the lower bioavailability of folates in Custard and Biscuit. CONCLUSION A least overall efficient bio-accessibility of all macronutrients and folic acid is observed in the gut lumen for Biscuit (delayed/incomplete destructuration of biscuit along the digestive tract). On the contrary, the lower folic acid absorption observed with custard does not fit with the rapid plasma appearance of other nutrients and should require further investigation.
Collapse
Affiliation(s)
- Caroline Buffière
- University Clermont Auvergne, INRAE, Unité de Nutrition Humaine, UMR1019, 63000, Clermont-Ferrand, France
| | - Manon Hiolle
- Science et Technologie du Lait et de l'Oeuf, INRAE, AGROCAMPUS OUEST, 35042, Rennes, France
| | - Marie-Agnès Peyron
- University Clermont Auvergne, INRAE, Unité de Nutrition Humaine, UMR1019, 63000, Clermont-Ferrand, France
| | - Ruddy Richard
- CHU Clermont-Ferrand, Centre De Recherche En Nutrition Humaine Auvergne, 58 rue Montalembert, 63000, Clermont-Ferrand, France
| | - Nathalie Meunier
- CHU Clermont-Ferrand, Centre De Recherche En Nutrition Humaine Auvergne, 58 rue Montalembert, 63000, Clermont-Ferrand, France
| | - Cindy Batisse
- Dental Faculty, University Clermont Auvergne, CROC EA4847, 63000, Clermont-Ferrand, France.,Dental service, CHU Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Didier Rémond
- University Clermont Auvergne, INRAE, Unité de Nutrition Humaine, UMR1019, 63000, Clermont-Ferrand, France
| | - Didier Dupont
- Science et Technologie du Lait et de l'Oeuf, INRAE, AGROCAMPUS OUEST, 35042, Rennes, France
| | - Françoise Nau
- Science et Technologie du Lait et de l'Oeuf, INRAE, AGROCAMPUS OUEST, 35042, Rennes, France
| | - Bruno Pereira
- Biostatistics Unit (DRCI), University Clermont Auvergne Hospital Clermont-Ferrand, 58 rue Montalembert, 63000, Clermont-Ferrand, France
| | - Isabelle Savary-Auzeloux
- University Clermont Auvergne, INRAE, Unité de Nutrition Humaine, UMR1019, 63000, Clermont-Ferrand, France.
| |
Collapse
|
19
|
Temporal changes in postprandial intragastric pH: Comparing measurement methods, food structure effects, and kinetic modelling. Food Res Int 2020; 128:108784. [DOI: 10.1016/j.foodres.2019.108784] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/25/2019] [Accepted: 10/26/2019] [Indexed: 11/18/2022]
|
20
|
Somaratne G, Ferrua MJ, Ye A, Nau F, Floury J, Dupont D, Singh J. Food material properties as determining factors in nutrient release during human gastric digestion: a review. Crit Rev Food Sci Nutr 2020; 60:3753-3769. [PMID: 31957483 DOI: 10.1080/10408398.2019.1707770] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The fundamental mechanisms of nutrient release from solid foods during gastric digestion consists of multiple elementary processes. These include the diffusion of gastric juice into the food matrix and its simultaneous enzymatic degradation and mechanical breakdown by the peristaltic activity of the stomach. Understanding the relative role of these key processes, in association with the composition and structure of foods, is of paramount importance for the design and manufacture of novel foods possessing specific target behavior within the body. This review covers the past and current literature with respect to the in-stomach processes leading to physical and biochemical disintegration of solid foods and release of nutrients. The review outlines recent progress in experimental and modeling methods used for studying food disintegration mechanisms and concludes with a discussion on potential future research directions in this field. Information from pharmaceutical science-based modeling approaches describing nutrient release kinetics as a result of food disintegration in the gastric environment is also reviewed. Future research aimed at understanding gastric digestion is important not only for setting design principles for novel food design but also for understanding mechanisms underpinning dietary guidelines to consume wholesome foods.
Collapse
Affiliation(s)
- Geeshani Somaratne
- Riddet Institute, Massey University, Palmerston North, New Zealand.,School of food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Maria J Ferrua
- Riddet Institute, Massey University, Palmerston North, New Zealand.,Fonterra Research and Development Centre, Palmerston North, New Zealand
| | - Aiqian Ye
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | | | | | | | - Jaspreet Singh
- Riddet Institute, Massey University, Palmerston North, New Zealand.,School of food and Advanced Technology, Massey University, Palmerston North, New Zealand
| |
Collapse
|
21
|
In-situ disintegration of egg white gels by pepsin and kinetics of nutrient release followed by time-lapse confocal microscopy. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105228] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|