1
|
Cheng J, Tan L, Han Y, Hou M, Zhu Z, Zhang X, Guo Q, Zhang K, Li J, Zhang Y, Zhang C. Eco-Friendly Algicidal Potential of Zanthoxylum bungeanum Leaf Extracts: Extraction Optimization and Impact on Algal Growth. Microorganisms 2025; 13:760. [PMID: 40284597 PMCID: PMC12029162 DOI: 10.3390/microorganisms13040760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
Zanthoxylum bungeanum leaves were regarded as a waste byproduct for a long period of time, yet their functional components presented potential as novel antimicrobial agents. However, their effectiveness in controlling algal blooms remains unexplored. In this study, the inhibition effect of Z. bungeanum leaf extracts on algal blooms was firstly demonstrated, and the flavonoid profiles of the leaf extract were identified using non-targeted metabolomics analysis. Then, response surface methodology was performed for extraction to further evaluate the feasibility of industrial application. Specifically, the effects of extracts on the cell density, photosynthetic efficiency, and antioxidant activity of Tetrodesmus obliquus was investigated. The results showed that the extraction yield of flavonoids from Z. bungeanum leaves reached 6.85% under the optimized conditions of an ultrasonic power of 600 W, an LSR of 20:1 mL/g, an ethanol concentration of 77.5%, an ultrasonic duration of 18 min, and an ultrasonic temperature of 80 °C, which significantly decreased the Fv/Fm and PIabs values by 54.60% and 98.22%, respectively, after exposure of T. obliquus to 40.0 mg/L Z. bungeanum leaf extract for 66 h. Meanwhile, treatment with Z. bungeanum leaf extract at a dose of 40.0 mg/L generated T-AOC values that were 4.0 times higher than the control without the addition of Z. bungeanum leaf extracts. These results suggest that Z. bungeanum leaf extracts could be used in the development of potentially effective biological algicides. Our study provides data to support the development of algicides and realizes the resource application of Z. bungeanum leaf waste, achieving a synergistic outcome of both economic and ecological benefits.
Collapse
Affiliation(s)
- Jie Cheng
- State Key Laboratory of Macromolecular Drugs and Large-Scale Preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252000, China; (J.C.)
| | - Long Tan
- State Key Laboratory of Macromolecular Drugs and Large-Scale Preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252000, China; (J.C.)
| | - Yaxin Han
- State Key Laboratory of Macromolecular Drugs and Large-Scale Preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252000, China; (J.C.)
| | - Mengya Hou
- State Key Laboratory of Macromolecular Drugs and Large-Scale Preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252000, China; (J.C.)
| | - Zhenxia Zhu
- State Key Laboratory of Macromolecular Drugs and Large-Scale Preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252000, China; (J.C.)
| | - Xiu Zhang
- State Key Laboratory of Macromolecular Drugs and Large-Scale Preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252000, China; (J.C.)
| | - Qing Guo
- State Key Laboratory of Macromolecular Drugs and Large-Scale Preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252000, China; (J.C.)
| | - Kaidian Zhang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570100, China;
| | - Jiashun Li
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou 570100, China;
| | - Yang Zhang
- State Key Laboratory of Macromolecular Drugs and Large-Scale Preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252000, China; (J.C.)
| | - Chaobo Zhang
- State Key Laboratory of Macromolecular Drugs and Large-Scale Preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252000, China; (J.C.)
| |
Collapse
|
2
|
Chen S, Wu W, Mao S, Li K, Zhang H. Optimization of a novel vacuum sublimation-rehydration thawing process. J Food Sci 2023; 88:259-272. [PMID: 36477835 DOI: 10.1111/1750-3841.16407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 08/30/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022]
Abstract
To better guarantee the quality of the thawed meat, maximize the thawing rate, and minimize the system energy consumption, the multiparameter and multi-objective coupling optimizations for the newly proposed vacuum sublimation-rehydration thawing (VSRT) process was conducted. The polynomial nonlinear regression equations of single and comprehensive objectives were established by the central composite rotatable design, and the corresponding test of fitting degree and the analysis of influencing factors order were carried out. Furthermore, the interaction effects of influencing factors were investigated through the response surface methodology and were experimentally validated to obtain the optimal process parameters. The results showed that the established regression equations were in good agreement with the experimental values. For the different objectives, there were great differences in the influence order and interaction of factors. In the sublimation and rehydration stages, there existed an optimal region in the response surface to achieve a better value for the single and comprehensive objectives. When the sublimation time was 19 min, the heating plate temperature was 26°C, the rehydration water volume was 1634 ml, the rehydration water temperature was 29°C, the thawing time was relatively short (1.00 h), and the thawing loss (1.19%), the total color difference (1.02), and the system-specific energy consumption (0.026 kW h/kg) were relatively low. The comprehensive performance of the VSRT system reached the best state. PRACTICAL APPLICATION: The purpose of this work is to make the novel vacuum sublimation-rehydration thawing method not only better guarantee the quality of thawed meat but also maximize the thawing rate and minimize the energy consumption of the system, which can provide a new idea and reference for the development of new high-efficiency thawing equipment.
Collapse
Affiliation(s)
- Shanshan Chen
- Institute of Refrigeration and Cryogenics Engineering, University of Shanghai for Science and Technology, Shanghai, P. R. China.,Vehicle Energy and Safety Laboratory, Department of Mechanical Engineering, Ningbo University of Technology, Ningbo, P. R. China
| | - Weidong Wu
- Institute of Refrigeration and Cryogenics Engineering, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Shijie Mao
- Institute of Refrigeration and Cryogenics Engineering, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Kun Li
- Institute of Refrigeration and Cryogenics Engineering, University of Shanghai for Science and Technology, Shanghai, P. R. China
| | - Hua Zhang
- Institute of Refrigeration and Cryogenics Engineering, University of Shanghai for Science and Technology, Shanghai, P. R. China
| |
Collapse
|
3
|
Coelho TLS, Silva DSN, Dos Santos Junior JM, Dantas C, Nogueira ARDA, Lopes Júnior CA, Vieira EC. Multivariate optimization and comparison between conventional extraction (CE) and ultrasonic-assisted extraction (UAE) of carotenoid extraction from cashew apple. ULTRASONICS SONOCHEMISTRY 2022; 84:105980. [PMID: 35288329 PMCID: PMC8921489 DOI: 10.1016/j.ultsonch.2022.105980] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/23/2022] [Accepted: 03/08/2022] [Indexed: 05/05/2023]
Abstract
Carotenoids are an essential component of cashew and can be used in pharmaceuticals, cosmetics, natural pigment, food additives, among other applications. The present work focuses on optimizing and comparing conventional and ultrasound-assisted extraction methods. Every optimization step took place with a 1:1 (w:w) mixture of yellow and red cashew apples lyophilized and ground in a cryogenic mill. A Simplex-centroid design was applied for both methods, and the solvents acetone, methanol, ethanol, and petroleum ether were evaluated. After choosing the extractor solvent, a central composite design was applied to optimize the sample mass (59-201 mg) and extraction time (6-34 min). The optimum conditions for the extractor solvent were 38% acetone, 30% ethanol, and 32% petroleum ether for CE and a mixture of 44% acetone and 56% methanol for UAE. The best experimental conditions for UAE were a sonication time of 19 min and a sample mass of 153 mg, while the CE was 23 min and 136 mg. Comparing red and yellow cashews, red cashews showed a higher carotenoid content in both methodologies. The UAE methodology was ca. 21% faster, presented a more straightforward composition of extracting solution, showed an average yield of superior carotenoid content in all samples compared to CE. Therefore, UAE has demonstrated a simple, efficient, fast, low-cost adjustment methodology and a reliable alternative for other applications involving these bioactive compounds in the studied or similar matrix.
Collapse
Affiliation(s)
- Tiago Linus Silva Coelho
- Grupo de Instrumentação Analítica e Preparo de Amostra (GRIAPA), Department of Chemistry, Federal University of Piauí - UFPI, 64049-550 Teresina, Piauí, Brazil
| | - Darlisson Slag Neri Silva
- Grupo de Instrumentação Analítica e Preparo de Amostra (GRIAPA), Department of Chemistry, Federal University of Piauí - UFPI, 64049-550 Teresina, Piauí, Brazil
| | - Jedaias Marreiros Dos Santos Junior
- Grupo de Instrumentação Analítica e Preparo de Amostra (GRIAPA), Department of Chemistry, Federal University of Piauí - UFPI, 64049-550 Teresina, Piauí, Brazil
| | - Clecio Dantas
- Laboratório de Química Computacional Inorgânica e Quimiometria - (LQCINMETRIA), State University of Maranhão - UEMA, 65604-380 Caxias, Maranhão, Brazil
| | | | - Cícero Alves Lopes Júnior
- Institute for Chemistry, TESLA - Analytical Chemistry, University of Graz, Universitätsplatz 1/I, 8010 Graz, Austria; Grupo de Estudo em Bioanalítica (GEBIO), Department of Chemistry, Federal University of Piauí - UFPI, 64049-550 Teresina, Piauí, Brazil.
| | - Edivan Carvalho Vieira
- Grupo de Instrumentação Analítica e Preparo de Amostra (GRIAPA), Department of Chemistry, Federal University of Piauí - UFPI, 64049-550 Teresina, Piauí, Brazil.
| |
Collapse
|
4
|
Saraiva BR, Anjo FA, Vital ACP, Matumoto‐Pintro PT. Soluble protein isolate from brewing by‐product (trub) using the Box‐Behnken design. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Bianka Rocha Saraiva
- Programa de Pós‐Graduação em Ciência de Alimentos Universidade Estadual de Maringá Maringá Brazil
| | - Fernando Antônio Anjo
- Programa de Pós‐Graduação em Ciência de Alimentos Universidade Estadual de Maringá Maringá Brazil
| | | | - Paula Toshimi Matumoto‐Pintro
- Programa de Pós‐Graduação em Ciência de Alimentos Universidade Estadual de Maringá Maringá Brazil
- Programa de Pós‐Graduação em Zootecnia Universidade Estadual de Maringá Maringá Brazil
- Departamento de Agronomia Universidade Estadual de Maringá Maringá Brazil
| |
Collapse
|
5
|
Multivariate optimization of a goat meat alkaline solubilization procedure using tetramethylammonium hydroxide for metals determination using FAAS. Food Chem 2021; 362:130176. [PMID: 34111692 DOI: 10.1016/j.foodchem.2021.130176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 11/23/2022]
Abstract
In the present work, multivariate designs were used to optimize an alkaline dissolution, assisted by ultrasound energy, procedure of goat meat using tetramethylammonium hydroxide (TMAH) aiming to determine Ca, Cu, Fe, K, Mg, Na and Zn by flame atomic absorption (FAAS) and emission (FAES) spectrometry. The optimal conditions found for the dissolution were in the following ranges: 0.4-0.5 g for the sample mass, 12-15 min of sonication and using 700-1000 µL of 25% TMAH at a temperature of 50 °C. The obtained limits of quantification varied between 0.221 (Mg) and 7.60 (Ca) μg g-1. Accuracy was assessed by comparing the results obtained by applying the proposed method with the digestion in an acid medium using a digesting block and by analyzing bovine liver certified reference material. The application of a t-test revealed that, at a 95% confidence level, there were no significant differences between the values obtained.
Collapse
|
6
|
Alexandre LS, Braga FMS, de Oliveira PK, Coelho TLS, Fonseca MG, de Sousa RWR, Dittz D, de Castro E Sousa JM, Ferreira PMP, Dantas C, Barbosa HDS, Chaves MH, Lopes Júnior CA, Vieira Júnior GM. Proteins from Rhinella jimi parotoid gland secretion: A comprehensive analytical approach. Toxicon 2021; 192:32-39. [PMID: 33465357 DOI: 10.1016/j.toxicon.2021.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/28/2020] [Accepted: 01/10/2021] [Indexed: 10/22/2022]
Abstract
Toad skin secretions are sources of complex mixtures of bioactive compounds, such as proteins and peptides. Rhinella jimi species is a common toad in the Brazilian northeast, considered by only a few known studies. The experimental design was applied to optimize the protein extraction method from R. jimi parotoid gland secretions. The optimum condition was using 100 mmol L-1 Tris-HCl buffer pH 7.2 under vortexing for 5 min. The FTIR analysis combined with PCA revealed high-protein purity of the extracts, confirming the success of the proposed extraction method. The total protein concentration by the Bradford method was 102.4 and 66.5 mg g-1 on toad poisons from Teresina and Picos, respectively. The comparative proteomic analysis using HPLC-SEC-DAD and 1D SDS-PAGE revealed significant differences in protein abundance. HMW biomolecules showed greater abundance in toads from Teresina, while LMW protein species were more abundant in toads from Picos. The significant difference in amphibian proteome can be attributed to the edaphoclimatic conditions of their habitat. The cytotoxicity of the protein extract from Teresina was higher on the tumor cell lines 4T1 and CT26.WT. These new findings are fundamental for future studies the on identity and biological activity of biomolecules from this noble sample.
Collapse
Affiliation(s)
- Leonardo Santos Alexandre
- Laboratório de Produtos Naturais - LPN, Department of Chemistry, Federal University of Piauí, 64049-550, Teresina, Piauí, Brazil
| | - Francislene Machado Silva Braga
- Grupo de Estudos em Bioanalítica - GEBIO, Department of Chemistry, Federal University of Piauí, 64049-550, Teresina, Piauí, Brazil
| | - Patrícia Kelly de Oliveira
- Grupo de Estudos em Bioanalítica - GEBIO, Department of Chemistry, Federal University of Piauí, 64049-550, Teresina, Piauí, Brazil
| | - Tiago Linus Silva Coelho
- Grupo de Estudos em Bioanalítica - GEBIO, Department of Chemistry, Federal University of Piauí, 64049-550, Teresina, Piauí, Brazil
| | - Mariluce Gonçalves Fonseca
- Federal University of Piauí, Department of Biology, Campus Senador Helvídio Nunes de Barros, Picos, Piauí, Brazil
| | - Rayran Walter Ramos de Sousa
- Laboratory of Experimental Cancerology, Department of Biophysics and Physiology, Federal University of Piauí, 64049-550, Teresina, Piauí, Brazil
| | - Dalton Dittz
- Federal University of Piauí, Department of Biochemistry and Pharmacology, Teresina, Piauí, Brazil
| | - João Marcelo de Castro E Sousa
- Laboratory of Experimental Cancerology, Department of Biophysics and Physiology, Federal University of Piauí, 64049-550, Teresina, Piauí, Brazil
| | - Paulo Michel Pinheiro Ferreira
- Laboratory of Experimental Cancerology, Department of Biophysics and Physiology, Federal University of Piauí, 64049-550, Teresina, Piauí, Brazil
| | - Clecio Dantas
- Laboratório de Química Computacional Inorgânica e Quimiometria - LQCINMETRIA, State University of Maranhão - UEMA, Campus Caxias, 65604-380, Caxias, MA, Brazil
| | - Herbert de Sousa Barbosa
- Grupo de Estudos em Bioanalítica - GEBIO, Department of Chemistry, Federal University of Piauí, 64049-550, Teresina, Piauí, Brazil
| | - Mariana Helena Chaves
- Laboratório de Produtos Naturais - LPN, Department of Chemistry, Federal University of Piauí, 64049-550, Teresina, Piauí, Brazil
| | - Cícero Alves Lopes Júnior
- Grupo de Estudos em Bioanalítica - GEBIO, Department of Chemistry, Federal University of Piauí, 64049-550, Teresina, Piauí, Brazil.
| | - Gerardo Magela Vieira Júnior
- Laboratório de Produtos Naturais - LPN, Department of Chemistry, Federal University of Piauí, 64049-550, Teresina, Piauí, Brazil.
| |
Collapse
|
7
|
Facchi DP, Souza PR, Almeida VC, Bonafé EG, Martins AF. Optimizing the Ecovio® and Ecovio®/zein solution parameters to achieve electrospinnability and provide thin fibers. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
|
9
|
Zhang Y, Han L, Zou L, Zhang M, Chi R. Development of an SVR model for microwave-assisted aqueous two-phase extraction of isoflavonoids from Radix Puerariae. CHEM ENG COMMUN 2020. [DOI: 10.1080/00986445.2020.1734578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Yuefei Zhang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Lei Han
- School of Electronic Information, Wuhan University, Wuhan, China
| | - Lian Zou
- School of Electronic Information, Wuhan University, Wuhan, China
| | - Mei Zhang
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Ruan Chi
- Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, China
| |
Collapse
|
10
|
Alipanahpour Dil E, Ghaedi M, Asfaram A, Tayebi L, Mehrabi F. A ferrofluidic hydrophobic deep eutectic solvent for the extraction of doxycycline from urine, blood plasma and milk samples prior to its determination by high-performance liquid chromatography-ultraviolet. J Chromatogr A 2020; 1613:460695. [DOI: 10.1016/j.chroma.2019.460695] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/18/2022]
|
11
|
Screening of Deletion Variants within the Goat PRDM6 Gene and Its Effects on Growth Traits. Animals (Basel) 2020; 10:ani10020208. [PMID: 32012655 PMCID: PMC7071098 DOI: 10.3390/ani10020208] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Genome-wide association studies found that the PR/SET Domain 6 (PRDM6) gene mutation was associated with bone development, bone density, and body mass index. This study found a 12 bp deletion variation within the PRDM6 gene in Shaanbei white cashmere goats in a large sample size (n = 1044). This variation polymorphism was associated with multiple goat growth traits in the yearling period, including heart girth (p = 0.027), cannon circumference (p = 0.008), chest depth (p = 2.10 × 10−5), chest width (p = 0.004), body height (p = 0.032), body length (p = 0.044), and hip-width (p = 0.014). The effects of the 12 bp variation were found to make no difference on adult goat growth traits. Taken together, these results demonstrate that the 12 bp deletion variant plays an important role in the early growth and development of goats and could be considered as a useful and effective molecular marker for goat breeding selection in the growth stage. Abstract By genome-wide association studies, the PRDM6 gene has been shown to affect multiple, apparently unrelated inherited traits, including bone density and body mass index. Therefore, it is considered a potentially pleiotropic gene. In this study, we identified a 12 bp deletion variant (NC_030814.1:rs651603667, g: 79985625-79985636delTTGACTGATCCA) within the PRDM6 gene in a large sample (SBWC goats; n = 1044). All goat samples were collected in Shaanxi province in July 2018. The frequency of the wt allele was higher than the frequency of the del allele, and this mutation polymorphism confirmed to be consistent with the Hardy–Weinberg equilibrium (p > 0.05). Further results showed that in a group of goats in the yearling period (18 months old, n = 567), this deletion variant of the PRDM6 gene was associated with heart girth (p = 0.027), cannon circumference (p = 0.008), chest depth (p = 2.10 × 10−5), chest width (p = 0.004), body height (p = 0.032), body length (p = 0.044) and hip-width (p = 0.014). For adult SBWC goats (36 months old, n = 477), the effects of the 12 bp variation on growth-related traits were found to make no difference. These findings show that the 12 bp deletion within the goat PRDM6 gene plays an important role in the early growth and development of goats. Using the 12 bp mutation, breeders can quickly and effectively select excellent individual goats at an early stage.
Collapse
|
12
|
Zhong G, Vaezi M, Mei X, Liu P, Yang S. Strategy for Controlling the Properties of Bioactive Poly-Ether-Ether-Ketone/Hydroxyapatite Composites for Bone Tissue Engineering Scaffolds. ACS OMEGA 2019; 4:19238-19245. [PMID: 31763547 PMCID: PMC6868901 DOI: 10.1021/acsomega.9b02572] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
A strategy for the preparation of bioactive poly-ether-ether-ketone/hydroxyapatite (PEEK/HA) composites was proposed in this study with the aim of controlling the biological and mechanical properties of different parts of the composites. The strategy integrated solvent-based extrusion freeforming 3D printing technology in order to print high-resolution HA scaffolds and compression molding processes for the production of bioactive PEEK/HA composites. To this end, an optimized model, established using response surface methodology, was employed to optimize the extrusion process parameters on the basis of accurate characterization of the extrusion pressure, and the effects of the filament/pore sizes on the PEEK infiltration depth into the HA scaffold were investigated. The results of scanning electron microscopy and computed tomography analyses revealed that the PEEK/HA composites exhibited a uniform microstructure and a good interface between the HA filaments and the PEEK matrix following the optimization of the process parameters. The HA scaffolds were fully infiltrated by PEEK in both vertical and lateral directions with an infiltration depth of 3 mm while maintaining the HA network structure and uniformity. The biological and mechanical performance test results validated that the PEEK/HA composites possessed excellent biocompatibility as well as yields and compressive strengths within the range of human cortical bone suitable for load-bearing applications.
Collapse
Affiliation(s)
- Gaoyan Zhong
- College
of Engineering, Nanjing Agricultural University, Nanjing 210031, Jiangsu, China
- Faculty
of Engineering and the Environment, University
of Southampton, Southampton SO17 1BJ, Hampshire, U.K.
- State
Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Mohammad Vaezi
- Faculty
of Engineering and the Environment, University
of Southampton, Southampton SO17 1BJ, Hampshire, U.K.
- Department
of Mechanical Engineering and Marine Technology, University of Rostock, Rostock 18059, Germany
- Department
of Mechanical Engineering, Babol Noshirvani
University of Technology, Babol 4714871167, Mazandaran, Iran
| | - Xinliang Mei
- College
of Engineering, Nanjing Agricultural University, Nanjing 210031, Jiangsu, China
| | - Ping Liu
- College
of Engineering, Nanjing Agricultural University, Nanjing 210031, Jiangsu, China
| | - Shoufeng Yang
- College
of Engineering, Nanjing Agricultural University, Nanjing 210031, Jiangsu, China
- Faculty
of Engineering and the Environment, University
of Southampton, Southampton SO17 1BJ, Hampshire, U.K.
| |
Collapse
|
13
|
Design and Optimization of Flexible Polypyrrole/Bacterial Cellulose Conductive Nanocomposites Using Response Surface Methodology. Polymers (Basel) 2019; 11:polym11060960. [PMID: 31159509 PMCID: PMC6630341 DOI: 10.3390/polym11060960] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/14/2019] [Accepted: 05/21/2019] [Indexed: 01/20/2023] Open
Abstract
Flexible conductive materials have greatly promoted the rapid development of intelligent and wearable textiles. This article reports the design of flexible polypyrrole/bacterial cellulose (PPy/BC) conductive nanocomposites by in situ chemical polymerization. Box-Behnken response surface methodology has been applied to optimize the process. The effects of the pyrrole amount, the molar ratio of HCl to pyrrole and polymerization time on conductivity were investigated. A flexible PPy/BC nanocomposite was obtained with an outstanding electrical conductivity as high as 7.34 S cm−1. Morphological, thermal stability and electrochemical properties of the nanocomposite were also studied. The flexible PPy/BC composite with a core-sheath structure exhibited higher thermal stability than pure cellulose, possessed a high areal capacitance of 1001.26 mF cm−2 at the discharge current density of 1 mA cm−2, but its cycling stability could be further improved. The findings of this research demonstrate that the response surface methodology is one of the most effective approaches for optimizing the conditions of synthesis. It also indicates that the PPy/BC composite is a promising material for applications in intelligent and wearable textiles.
Collapse
|