1
|
Feng S, Liu C, Liu Y, Yi S, Li J, Zhang B, Li X. Improving the gel properties of Nemipterus virgatus myosin gel using soy protein isolate-stabilized Pickering emulsion. Food Chem 2025; 478:143610. [PMID: 40049125 DOI: 10.1016/j.foodchem.2025.143610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/23/2025] [Accepted: 02/23/2025] [Indexed: 04/06/2025]
Abstract
The study investigated the effects of incorporating varying doses (0 %-10 %) of soy protein isolate-stabilized Pickering emulsion (SPE) on the rheological behavior, gel properties, intermolecular interactions, microstructure, and digestive properties of Nemipterus virgatus myosin gels. Adding 2.5 %-7.5 % SPE significantly improved the rheological behavior of the myosin sols and the strength of the myosin gel (p < 0.05). This improvement in gel strength was attributable to covalent interactions between SPE and myosin, which resulted in the formation of a denser network structure. According to Raman spectroscopy, SPE promoted alterations in myosin's secondary structure and facilitated the transition of disulfide bonds from intramolecular to intermolecular. Additionally, SPE elevated the content of small molecular active peptides in digested gel products, thus enhancing their antioxidant activity. In summary, SPE is a promising food processing aid for enhancing myosin gel properties and developing emulsion surimi gel products of improved quality.
Collapse
Affiliation(s)
- Shouyu Feng
- College of Food Science and Technology, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou 121013, China
| | - Cikun Liu
- College of Food Science and Technology, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou 121013, China
| | - Yanwei Liu
- College of Food Science and Technology, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou 121013, China
| | - Shumin Yi
- College of Food Science and Technology, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou 121013, China
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou 121013, China
| | - Bin Zhang
- College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Xuepeng Li
- College of Food Science and Technology, Bohai University, National R&D Branch Center of Surimi and Surimi Products Processing, Jinzhou 121013, China.
| |
Collapse
|
2
|
Liu WJ, Chen WM, Wang XM, Tu ZC, Shao YH, Liu J. Comparative studies on microbial transglutaminase, complex phosphate and fructooligosaccharide interacts with myofibrillar proteins: Improvement of the quality and flavor of silver carp surimi. Int J Biol Macromol 2025; 306:141696. [PMID: 40044004 DOI: 10.1016/j.ijbiomac.2025.141696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/19/2025] [Accepted: 03/01/2025] [Indexed: 05/03/2025]
Abstract
The aim of this study was to evaluate the effect of microbial transglutaminase (MTG), complex phosphate (CP) and fructooligosaccharide (FOS) interact with myofibrillar proteins (MPs) on the quality and flavor of silver carp surimi gels. When surimi was added with 0.3 % MTG, 0.3 % CP and 4 % FOS respectively, the gel strength and texture were superior to those of the control group, and the surimi microstructure became more compact with smaller pore sizes. This was because MTG can induce the ε-(γ-glutamate) lysine bond formation in surimi MPs and promotes cross-linking of MPs. CP can increase the ionic strength, FOS can form hydrogen bonds with water and enhance MPs hydration, both of them promoted the conversion of α-helix to β-folding of MPs, and facilitate the formation of disulfide bonds. 13 volatiles were identified in control group, whereas the number of volatiles was increased to 31, 22 and 22 after addition of MTG, CP and FOS respectively, suggesting that MTG, CP and FOS promoted lipid oxidation and interacted with MPs to produce volatile compounds. Therefore, the addition of MTG, CP and FOS improved the quality and flavor of chub surimi gels, with MTG having the greatest effect on surimi.
Collapse
Affiliation(s)
- Wen-Jun Liu
- National R&D Center for Freshwater Fish Processing & Engineering Research, College of life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Wen-Mei Chen
- National R&D Center for Freshwater Fish Processing & Engineering Research, College of life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Xu-Mei Wang
- National R&D Center for Freshwater Fish Processing & Engineering Research, College of life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Zong-Cai Tu
- National R&D Center for Freshwater Fish Processing & Engineering Research, College of life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yan-Hong Shao
- National R&D Center for Freshwater Fish Processing & Engineering Research, College of life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| | - Jun Liu
- National R&D Center for Freshwater Fish Processing & Engineering Research, College of life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| |
Collapse
|
3
|
Fang T, Tu ZC, Wang H, Huang WJ, Zou GH, Shan S, Sha XM. Progressive structural changes of microbial transglutaminase modified fish gelatin during gastric digestion. Int J Biol Macromol 2025; 296:139646. [PMID: 39793842 DOI: 10.1016/j.ijbiomac.2025.139646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/25/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
This study investigated the progressive structural changes of fish gelatin in thermally reversible (TR) and irreversible (TI) states, formed through microbial transglutaminase (MTGase) cross-linking during in vitro gastric digestion. The focus was on dynamic structural changes and gastric digestion characteristics. Free amino content and SDS-PAGE analyses showed that both TR and TI groups were hydrolyzed into smaller fragments by pepsin during digestion. Surface hydrophobicity and endogenous fluorescence analyses revealed that hydrophobic groups in TR samples became embedded, whereas those in TI samples were exposed as digestion progressed. The microstructure of fish gelatin varied states and changed over digestion time. Two digestion patterns were observed: the fitted curves of TR groups exhibited initially increasing that later stabilized, whereas the TI samples followed an S-shaped curve with three distinct stages-an initial stable phase, followed by a rise, and concluding with a final stabilization. A schematic model illustrated the dynamic structural changes of fish gelatin in different states during simulated gastric digestion. This study provides a basis for the development of high-quality collagen supplement products.
Collapse
Affiliation(s)
- Ting Fang
- National R&D Center for Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China
| | - Zong-Cai Tu
- National R&D Center for Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Hui Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Wu-Jun Huang
- Renhe (Group) Development Co., Ltd., Zhangshu, Jiangxi 331200, China
| | - Guo-Hui Zou
- Renhe (Group) Development Co., Ltd., Zhangshu, Jiangxi 331200, China
| | - Shan Shan
- National R&D Center for Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China.
| | - Xiao-Mei Sha
- National R&D Center for Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi, 330022, China.
| |
Collapse
|
4
|
Htwe KK, Yin Y, Duan W, Liu Y, Wei S, Xiao N, Liu S. Effect of dense phase carbon dioxide on the digestive properties of shrimp surimi gels: Insight from digestive kinetic. Food Res Int 2025; 203:115857. [PMID: 40022380 DOI: 10.1016/j.foodres.2025.115857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 03/03/2025]
Abstract
Understanding the protein digestion rate and the release of nutrients in the gastrointestinal tract is critical to designing novel food products with enhanced functionalities. The digestion characteristics of untreated shrimp surimi and surimi gels induced by water-bath heating (WB) and different dense phase carbon dioxide (DPCD) treatment (L, M, and H crosslink degree) groups were studied. With the increasing crosslink, the protein digestibility increased and the average particle size decreased. The DPCD treatment condition (25 MPa, 50 °C, 60 min) induced H crosslink showed higher digestibility (91.31 %), compared to those other groups (P < 0.05). An increase in fluorescence intensity with redshift was shown in the gastric phase, while a decrease in fluorescent intensity with blueshift was displayed in the gastrointestinal phase. The MHC and actin bands were progressively degraded and disappeared with increasing digestion, and the intensity of low molecular weight < 10 kDa became obvious in late digestion. According to the digestive kinetic results, the H group showed that free amino acids decreased (325.77 ± 1.58 μmol/L) and then increased (789.18 ± 8.13 μmol/L) in the gastric phase, reaching a maximum value (5.86 ± 0.034 mmol/L) at the end of GI digestion phase (P < 0.05). The results suggested that the proper crosslink structure would provide a sustainable release of the nutritional value of shrimp surimi gels. This study provides the underlying mechanisms of surimi protein digestion and nutrient release in the GI tract.
Collapse
Affiliation(s)
- Kyi Kyi Htwe
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang, Guangdong 524088, China
| | - Yantao Yin
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang, Guangdong 524088, China
| | - Weiwen Duan
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang, Guangdong 524088, China
| | - Yang Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang, Guangdong 524088, China
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang, Guangdong 524088, China
| | - Naiyong Xiao
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang, Guangdong 524088, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang, Guangdong 524088, China.
| |
Collapse
|
5
|
Leng J, Jiang Y, Zhou T, Zhang S, Zhu C, Wang B, Li L, Zhao W. Unveiling the slow digestion and peptide profiles of polymerised whey gel via heat and TGase crosslinking: An in vitro/vivo perspective. Food Chem 2025; 464:141829. [PMID: 39488046 DOI: 10.1016/j.foodchem.2024.141829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/23/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Polymerised whey is widely used in dairy products and can affect digestibility when its high-molecular-weight aggregates and gel structure are modified. This study investigated the digestibility, peptide profiles and satiety of modified whey protein isolate (MWPI) pre-heated with transglutaminase. Results showed that 43.06 % of MWPI was digested during the 4-h in vitro digestion, indicating a slow digestion rate. Compared with whey protein isolate (WPI), MWPI yielded 103 peptides with higher abundance following in vitro digestion, including 17 angiotensin-converting enzyme inhibitors and 1 dipeptidyl peptidase-4 inhibitor. Visual analytics indicated differential peptides located at distinct α-helix and β-sheet of β-lactoglobulin, α-lactalbumin and bovine serum albumin. MWPI gavage extended stomach retention time, decreased intestinal propulsion rate from 75.60 % (WPI group) to 33.72 % in 30 min and enhanced satiety within 120 min compared with WPI. Overall, whey polymerisation modulates protein-enzyme interactions, releasing different peptides and enhancing satiety.
Collapse
Affiliation(s)
- Juncai Leng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Yiming Jiang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Tingyi Zhou
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Shiqi Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Chenlu Zhu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Beibei Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Li Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Wei Zhao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| |
Collapse
|
6
|
Choi JS, Chin KB. Influence of NaCl and phosphate on gelation properties of chicken breast myofibrillar protein gels and its application to in vitro digestion model. Food Chem 2024; 460:140638. [PMID: 39182444 DOI: 10.1016/j.foodchem.2024.140638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/29/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024]
Abstract
To investigate the combination effect of sodium chloride and phosphates on chicken breast myofibrillar proteins, MP gels containing various molarity of NaCl (0.15, 0.30 and 0.45 M) and phosphate (0 and 0.05 M) were prepared, their rheological properties were characterized, and applied to an in vitro digestion model. MP mixture containing 0.45 M NaCl and 0.05 M phosphate had the highest viscosity. The gel strength and cooking yield of MP gels was improved by increasing of molarity of NaCl. As NaCl concentration in MP increased, sulfhydryl levels decreased, while disulfide levels increased. As NaCl and phosphate levels increase, MP gels become denser and porosity decreases, which may reduce protein digestibility. In SDS-PAGE, protein bands from MP gels containing low NaCl levels (≤ 0.30 M) degraded more rapidly during in vitro digestion. These results may support the need for the meat industry to develop low-salt meat products with improved digestibility. KEYWORDS: Chicken, Myofibrillar protein, NaCl, Phosphate, Rheological properties, In vitro digestion.
Collapse
Affiliation(s)
- Ji Seon Choi
- Department of Animal Science, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Koo Bok Chin
- Department of Animal Science, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
7
|
Wang K, Sun H, Cui Z, Wang J, Hou J, Lu F, Liu Y. Synergistic effects of microbial transglutaminase and apple pectin on the gelation properties of pea protein isolate and its application to probiotic encapsulation. Food Chem 2024; 439:138232. [PMID: 38118228 DOI: 10.1016/j.foodchem.2023.138232] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/02/2023] [Accepted: 12/15/2023] [Indexed: 12/22/2023]
Abstract
The low gelation capacity of pea protein isolate (PPI) limits their use in food industry. Therefore, microbial transglutaminase (MTG) and apple pectin (AP) were combined to modify PPI to enhance its gelling characteristics, and the mechanism of MTG-induced PPI-AP composite gel generation was investigated. PPI (10 wt%) could not form a gel at 40 °C, while MTG-treated PPI (10 wt%) formed a self-supporting gel at 40 °C. Subsequently, the addition of AP further promoted the crosslinking of PPI and significantly improved the water holding capacity, rheology, and strength of PPI gels, which was attributed to both hydrogen and isopeptide bonds in the composite gel. Additionally, the PPI-AP composite gel showed excellent protection ability, and the survival rate of probiotics could reach over 90%, which could be used as an effective delivery system. This study verified that MTG and AP were efficient in enhancing the functional quality of PPI gels.
Collapse
Affiliation(s)
- Kangning Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Hui Sun
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zhihan Cui
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jiahui Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jiayi Hou
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
8
|
Yi X, Pei Z, Xia G, Liu Z, Shi H, Shen X. Interaction between liposome and myofibrillar protein in surimi: Effect on gel structure and digestive characteristics. Int J Biol Macromol 2023; 253:126731. [PMID: 37678675 DOI: 10.1016/j.ijbiomac.2023.126731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/02/2023] [Accepted: 09/03/2023] [Indexed: 09/09/2023]
Abstract
This study investigated the effects of the interaction between liposomes and myofibrillar protein (MP) on tilapia surimi. The strong interaction between liposomes and MP was primarily mediated through hydrogen bonding and hydrophobic interaction. Liposomes caused the unfolding of MP structure, resulting in the decrease of α-helix content and transformation of spatial structure. Notably, the appropriate ratio of liposomes improved the gel properties of tilapia surimi. The water distribution, microstructure, and texture characteristics further confirmed that liposomes strengthened the structure of surimi gel through non-covalent bonds. However, excessive liposomes (1.0 %) weakened gel characteristics and texture. Moreover, the proper ratio of liposomes enhanced the stability of surimi gels during digestion, reducing protein digestibility from 66.0 % to 54.8 %. Curcumin-loaded liposomes in gel matrix notably delayed digestion and improved bioavailability. This delay in digestion was attributed to the ability of liposomes to decrease the interaction between MP and digestive enzymes. This study provides new insight into the application of liposomes in protein-rich food matrixes.
Collapse
Affiliation(s)
- Xiangzhou Yi
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Zhisheng Pei
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; School of Food Science and Engineering, Hainan Tropical Ocean University, Sanya 572022, China
| | - Guanghua Xia
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Zhongyuan Liu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Haohao Shi
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Xuanri Shen
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China; School of Food Science and Engineering, Hainan Tropical Ocean University, Sanya 572022, China.
| |
Collapse
|
9
|
Zhong Q, Wang Y, Tian Y, Zhuang Y, Yang H. Effects of anthocyanins and microbial transglutaminase on the physicochemical properties of silver carp surimi gel. J Texture Stud 2023; 54:541-549. [PMID: 36918727 DOI: 10.1111/jtxs.12750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023]
Abstract
The objective of this study was to investigate effects of anthocyanins (AC) and microbial transglutaminase (MTGase) on the physicochemical properties of surimi gels from silver carp. The addition of AC and MTGase significantly increased gel strength and water holding capacity (WHC) of surimi gels, but the effect of MTGase was much stronger (p < .05). There were the highest gel strength, storage modulus (G') and WHC with 0.1 g/100 g AC and 0.4 g/100 g MTGase, while they were higher than that with AC or MTGase alone. AC promoted the cross-linking mainly by covalent and non-covalent bonds in surimi gels, while MTGase did mainly through covalent bonds. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) confirmed the results of gel strength, WHC, chemical interactions and G' of surimi gel or paste with AC and MTGase. In general, AC and MTGase could synergistically improve the physicochemical properties of surimi gels and potentially enhance the quality of surimi-based product from silver carp.
Collapse
Affiliation(s)
- Qian Zhong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yudong Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yuxin Tian
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yang Zhuang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Hong Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, Hubei, 430070, China
- National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan, Hubei, 430070, China
- Aquatic Product Engineering and Technology Research Center of Hubei Province, Wuhan, Hubei, 430070, China
| |
Collapse
|
10
|
Wang C, Su K, Sun W, Huang T, Lou Q, Zhan S. Comparative investigations of various modification methods on the gelling, rheological properties and mechanism of fish gelatin. Food Chem 2023; 426:136632. [PMID: 37336099 DOI: 10.1016/j.foodchem.2023.136632] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
In this study, κ-carrageenan(κC) and Transglutaminase (TG) were used to modify fish gelatin (FG). Three types of modified gelatin groups FG-κC, FG-TG and FG-κC-TG were prepared. The results showed that the gel strength and textural properties of FG gels were greatly enhanced by κC modification and κC-TG complex modification, whilst pure TG modification weakened the gelling properties. And the pure 0.1 % κC modified FG had the highest gel strength and hardness, respectively. Rheological behavior showed that the complex modified FG samples had the highest viscosity, gelling points, melting points and G'∞. Fourier infrared spectra and LF-NMR analysis showed that κC and κC-TG modification respectively improved the contents of hydrogen and isopeptide that decreased the water mobility but stabilized the helical structure of gelatin gels. Fluorescence intensity showed that three types of modification decreased fluorescence intensity. While, the formation of aggregates and denser gel networks decreased in vitro digestibility of FG.
Collapse
Affiliation(s)
- Chengcheng Wang
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo, Zhejiang, China
| | - Kaiyuan Su
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo, Zhejiang, China
| | - Wanyi Sun
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo, Zhejiang, China
| | - Tao Huang
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China.
| | - Qiaoming Lou
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Shengnan Zhan
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China.
| |
Collapse
|
11
|
Liu J, Chai J, Yuan Y, Wu X, Gong L, Yu P, Liu P, Zhang T, Shang X. Designation and characterization of cold-set egg white protein/dextran sulfate hydrogel for curcumin entrapment. Food Chem 2023; 419:136038. [PMID: 37004368 DOI: 10.1016/j.foodchem.2023.136038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/14/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
This study aimed to design a cold-set hydrogel of egg white protein (EWP) with good mechanical properties for encapsulating curcumin. Dextran sulfate (DS) and transglutaminase (TGase) were used to control the aggregation and gelation behavior of EWP at preheating step and gelation step, respectively. The optimum soluble protein aggregate size was obtained in the EWP/DS mixture at a mass ratio of 10 under 85 °C preheated (HED10). The presence of TGase further enhanced the cross-linking degree between protein aggregates during the gelation step. The highest gel hardness was found in HED10 hydrogel with TGase, which is almost 10 times the pure EWP gel. Besides, the HED hydrogels effectively slowed down the release rate of curcumin in gastrointestinal digestion. This work provides a theoretical basis for the development of cold-set EWP hydrogel with good mechanical strength by sulfated polysaccharide addition and TGase cross-linking as encapsulation delivery systems.
Collapse
|
12
|
Zhang N, Yang N, Yu W, Jin Z, Jiang P, Yu C, Dong X. Effects of microbial transglutaminase on textural, water distribution, and microstructure of frozen-stored longtail southern cod (Patagonotothen ramsayi) fish mince gel. J Texture Stud 2022; 53:844-853. [PMID: 34921420 DOI: 10.1111/jtxs.12657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/30/2022]
Abstract
Frozen-stored fish mince tend to have poor gelling ability due to significant myosin denaturation caused by freezing. In this study, microbial transglutaminase (MTGase) was used to improve the quality of fish mince gel products made from frozen-stored longtail southern cod (LSC). The gel strength of the gel product increased with the addition of MTGase and reached a plateau value of ~19 N mm beyond 300 U/kg of MTGase, at the same condition, T22 was reduced from 57.22 to 49.77 ms, T23 was reduced from 1,273.88 to 1,072.27 ms. As the MTGase addition increased from 0 to 400 U/kg, the hardness of the fish surimi gel increased from 14.52 to 21.36 N, and the microstructure changed from loose to dense, respectively. This study showed that MTGase could promote gelation to improve the quality of frozen-stored LSC fish mince gel, especially at 300 U/kg, which potentially can be utilized to produce good surimi gel products out of frozen-stored fish.
Collapse
Affiliation(s)
- Nana Zhang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China.,National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian, China
| | - Ning Yang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China.,National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian, China
| | - Wanying Yu
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China.,National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian, China
| | - Zheng Jin
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China.,National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian, China
| | - Pengfei Jiang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China.,National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian, China
| | - Chenxu Yu
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa, USA
| | - Xiuping Dong
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China.,National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian, China
| |
Collapse
|
13
|
Wang Z, Niu Y, Zhao S, Tian Y, Yu K, Yamashita T, Youling X, Yuan C. Thermal stability of actin of silver carp (
Hypophthalmichthys molitrix
) harvested in summer and winter as affected by myosin complexation. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Zhuolin Wang
- United Graduate School of Agricultural Sciences Iwate University, Ueda 3‐18‐8, Morioka Iwate Japan
| | - Yabin Niu
- United Graduate School of Agricultural Sciences Iwate University, Ueda 3‐18‐8, Morioka Iwate Japan
| | | | - Yuanyong Tian
- College of Food Science and Technology Dalian Ocean University Dalian China
| | - Kefeng Yu
- Faculty of Agriculture Iwate University Iwate Japan
| | | | - Xiong Youling
- Department of Animal and Food Sciences University of Kentucky Lexington KY United States
| | - Chunhong Yuan
- Faculty of Agriculture Iwate University Iwate Japan
- Agri ‐ Innovation Center Iwate University Iwate Japan
| |
Collapse
|
14
|
Pu Y, Guo J, Yang H, Zhong L, Tian H, Deng H, Duan X, Liu S, Chen D. Environmentally relevant concentrations of mercury inhibit the growth of juvenile silver carp (Hypophthalmichthys molitrix): Oxidative stress and GH/IGF axis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113484. [PMID: 35421826 DOI: 10.1016/j.ecoenv.2022.113484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Mercury (Hg) is a global environmental contaminant, and excessive mercury levels in water can adversely affect the growth of fish. Silver carp (Hypophthalmichthys molitrix) is one of the important freshwater aquaculture fish in China, and its natural resources have been critically declining. However, the effects of Hg2+ exposure on the growth hormone/insulin-like growth factor (GH/IGF) axis and its toxic mechanism are still unclear. In this study, we systematically evaluated the bioaccumulation, histomorphology, antioxidant status, hormone levels, and GH/IGF axis toxicity of juvenile silver carp after exposure to environmental-related concentrations of Hg2+ (0, 0.05, 0.5, 5, and 50 µg/L) for 28 days. Results showed that the Hg2+ bioaccumulation in the liver increased with a rise in Hg2+ concentration and time of exposure. The body length (BL), body weight (BW), weight growth rate (WGR) and specific growth rate (SGR) all decreased after Hg2+ exposure. The serum levels of growth hormones (GH and IGF) and thyroid hormones (T3 and T4) were significantly decreased, and the expressions of GH/IGF axis-related genes were significantly downregulated after 7, 14, and 28 days of Hg2+ exposure. Correlations between the growth parameters and growth hormones or expression of genes in GH/IGF axis further suggested that environmentally relevant concentrations of Hg2+ could have adverse effects on growth. In addition, with increasing Hg2+ exposure, superoxide activities of dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST)and levels of reduced glutathione (GSH) and malondialdehyde (MDA) were significantly increased, whereas the activity of glutathione peroxidase (GPx) significantly decreased and oxidative stress-related gene significantly changed. Liver lesions were mainly characterized by inflammatory cell infiltration, hepatocyte necrosis and fat vacuolation after exposure to Hg2+. Taken together, the results indicate that Hg2+ exposure leads to growth inhibition and oxidative stress in juvenile silver.
Collapse
Affiliation(s)
- Yan Pu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China; Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China
| | - Jie Guo
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Hao Yang
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China; Fisheries and Aquaculture Biotechnology Laboratory, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Liqiao Zhong
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China
| | - Huiwu Tian
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China
| | - Huatang Deng
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China
| | - Xinbin Duan
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China
| | - Shaoping Liu
- Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China
| | - Daqing Chen
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China; Fishery Resources and Environmental Science Experimental Station of The Upper-Middle Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan 430223, China.
| |
Collapse
|
15
|
Ye T, Chen X, Zhu Y, Chen Z, Wang Y, Lin L, Zheng Z, Lu J. Freeze-Thawing Treatment as a Simple Way to Tune the Gel Property and Digestibility of Minced Meat from Red Swamp Crayfish (Procambarus clarkiix). Foods 2022; 11:foods11060837. [PMID: 35327260 PMCID: PMC8950141 DOI: 10.3390/foods11060837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 01/20/2023] Open
Abstract
The effects of freezing methods, including rapid freezing (RF) or slow freezing (SF), combined with thawing methods, e.g., water immersing thawing (WT) or cold thawing (CT), on the meat yield, drip loss, gel properties, and digestive properties of meat detached from red swamp crayfish were investigated. RF greatly reduced the freezing time compared to SF, and the thawing time of frozen crayfish was obviously shortened by WT in comparison to CT. RF and CT improved the meat yield but increased the drip loss, probably as a result of the greater protein denaturation or degradation. A soft and flexible gel was obtained by SF-CT, while a hard one was achieved by RF-WT. An SEM analysis showed that SF resulted in rough and irregular microstructures with larger pore sizes. Freeze-thawing led to an increase in the β-sheet content at the expense of α-helix and variations in the microenvironment of tyrosine and tryptophan residues in protein molecules of the gels, which was more pronounced in the SF-CT group. Moreover, freeze-thawing could cause enhanced protein digestibility but reduce the antioxidant activity of gels. These findings underline the promise of the freezing-thawing treatment in tuning the gel-based meat products of crayfish.
Collapse
Affiliation(s)
- Tao Ye
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (T.Y.); (Y.Z.); (L.L.); (Z.Z.)
- School of Bioengineering, Huainan Normal University, Huainan 232038, China; (Z.C.); (Y.W.)
| | - Xing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Yajun Zhu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (T.Y.); (Y.Z.); (L.L.); (Z.Z.)
| | - Zhina Chen
- School of Bioengineering, Huainan Normal University, Huainan 232038, China; (Z.C.); (Y.W.)
| | - Yun Wang
- School of Bioengineering, Huainan Normal University, Huainan 232038, China; (Z.C.); (Y.W.)
| | - Lin Lin
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (T.Y.); (Y.Z.); (L.L.); (Z.Z.)
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - Zhi Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (T.Y.); (Y.Z.); (L.L.); (Z.Z.)
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - Jianfeng Lu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (T.Y.); (Y.Z.); (L.L.); (Z.Z.)
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
- Correspondence:
| |
Collapse
|
16
|
Independent and combined effects of ultrasound and transglutaminase on the gel properties and in vitro digestion characteristics of bay scallop (Argopecten irradians) adductormuscle. Curr Res Food Sci 2022; 5:1185-1194. [PMID: 35965656 PMCID: PMC9364047 DOI: 10.1016/j.crfs.2022.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/23/2022] [Accepted: 07/17/2022] [Indexed: 12/01/2022] Open
Abstract
The effects of transglutaminase (TGase) addition (0.4–1.2 g/100g), ultrasound (120–720 W, 20 min), and their combination on the gel properties and in vitro digestion characteristics of bay scallop adductor muscle were studied. The gel strength of the gel sample with TGase content of 0.8 g/100g (TG-0.8) was 58.2% higher than that of the control sample (CON). The gel sample treated with ultrasound at 480 W (UT-480) had the highest gel strength. The strength of the gel prepared by combination of 0.8 g/100g TGase and 360 W ultrasound (UT-TG) was 82.3% higher than that of CON. The whiteness and water holding capacity of the gel increased regardless of the addition of TGase or ultrasound treatment. SDS-PAGE patterns showed that the myosin heavy chain of the treated samples became thinner, and the changes of actin and tropomyosin were not significant. The scanning electron microscopy results of gel samples prepared by ultrasound combined with TGase showed a denser structure, which was related to the lowest total sulfhydryl content and TCA-soluble peptide content. The results of dynamic rheology show that the UT-TG sample had the highest G′ value, followed by TG-0.8. The in vitro digestion characteristics of the selected gel samples were also discussed. The degree of protein hydrolysis and the content of free amino acids in TG-0.8 samples were the lowest, which improved after ultrasound treatment. Overall, the combination of appropriate ultrasound treatment and TGase addition provides an effective means for improving gel properties and digestibility of scallop surimi product. Ultrasound and TGase enhanced gel properties of bay scallop adductor muscle (BSM). Ultrasound-assisted treatment promoted the cross-linking of BSM myosin by TGase. A denser gel network structure was formed when ultrasound combined with TGase. Ultrasound combined with TGase can improve the digestibility of the gel in vitro.
Collapse
|
17
|
Yu W, Wang Z, Pan Y, Jiang P, Pan J, Yu C, Dong X. Effect of κ-carrageenan on quality improvement of 3D printed Hypophthalmichthys molitrix-sea cucumber compound surimi product. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112279] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
18
|
Liu K, Chen YY, Zha XQ, Li QM, Pan LH, Luo JP. Research progress on polysaccharide/protein hydrogels: Preparation method, functional property and application as delivery systems for bioactive ingredients. Food Res Int 2021; 147:110542. [PMID: 34399519 DOI: 10.1016/j.foodres.2021.110542] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/27/2021] [Accepted: 06/15/2021] [Indexed: 01/12/2023]
Abstract
Some bioactive ingredients in foods are unstable and easily degraded during processing, storage, transportation and digestion. To enhance the stability and bioavailability, some food hydrogels have been developed to encapsulate these unstable compounds. In this paper, the preparation methods, formation mechanisms, physicochemical and functional properties of some protein hydrogels, polysaccharide hydrogels and protein-polysaccharide composite hydrogels were comprehensively summarized. Since the hydrogels have the ability to control the release and enhance the bioavailability of bioactive ingredients, the encapsulation and release mechanisms of polyphenols, flavonoids, carotenoids, vitamins and probiotics by hydrogels were further discussed. This review will provide a comprehensive reference for the deep application of polysaccharide/protein hydrogels in food industry.
Collapse
Affiliation(s)
- Kang Liu
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Ying-Ying Chen
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Xue-Qiang Zha
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China.
| | - Qiang-Ming Li
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Li-Hua Pan
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China
| | - Jian-Ping Luo
- Engineering Research Centre of Bioprocess of Ministry of Education, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No 193 Tunxi Road, Hefei 230009, People's Republic of China.
| |
Collapse
|
19
|
Fang M, Luo X, Xiong S, Yin T, Hu Y, Liu R, Du H, Liu Y, You J. In vitro trypsin digestion and identification of possible cross-linking sites induced by transglutaminase (TGase) of silver carp (Hypophthalmichthys molitrix) surimi gels with different degrees of cross-linking. Food Chem 2021; 364:130443. [PMID: 34237618 DOI: 10.1016/j.foodchem.2021.130443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 06/14/2021] [Accepted: 06/19/2021] [Indexed: 11/29/2022]
Abstract
Surimi gels with different cross-linking degrees (18.52%, 34.67%, 62.87% and 79.11%) were prepared to identify the numbers and locations of lysine residues involved in TGase-induced cross-linking, and to reveal the quantity and location relationships among cross-linking degrees, cross-linking sites and digestion sites by using trypsin digestion, SDS-PAGE and LC-MS/MS methods. The results showed that with the increase in cross-linking degree from 18.52% to 79.11%, 1) the quantity of cross-linking sites gradually increased from 25 sites to 47 sites, 2) the main possible cross-linking domain moved from myosin head to rod, 3) the numbers of digestion sites first decreased from 1262 sites to 1194 sites, and then increased to 1302 sites, 4) the changes in the values of digestion sites were mainly concentrated in myosin rod and it was also the main region of digestion. This study can help exploring the relationship between enzymatic cross-linking and nutritional properties of food.
Collapse
Affiliation(s)
- Mengxue Fang
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China; Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xiaoying Luo
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China; Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shanbai Xiong
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China; Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, PR China
| | - Tao Yin
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China; Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yang Hu
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China; Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ru Liu
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China; Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, PR China
| | - Hongying Du
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China; Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, PR China
| | - Youming Liu
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China; Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, PR China
| | - Juan You
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China.
| |
Collapse
|
20
|
Liu Y, Yu J, Zhu J, Peng W, Chen Y, Luo X, Chen C, Li L. Effects of salt‐induced changes in protein network structure on the properties of surimi gels: computer simulation and digestion study. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Yujia Liu
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry School of Chemical Engineering and Energy Technology Dongguan University of Technology Dongguan 523808 China
| | - Jiamei Yu
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry School of Chemical Engineering and Energy Technology Dongguan University of Technology Dongguan 523808 China
| | - Jie Zhu
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry School of Chemical Engineering and Energy Technology Dongguan University of Technology Dongguan 523808 China
| | - Weiyu Peng
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry School of Chemical Engineering and Energy Technology Dongguan University of Technology Dongguan 523808 China
| | - Yuquan Chen
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry School of Chemical Engineering and Energy Technology Dongguan University of Technology Dongguan 523808 China
| | - Xinyi Luo
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry School of Chemical Engineering and Energy Technology Dongguan University of Technology Dongguan 523808 China
| | - Canhao Chen
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry School of Chemical Engineering and Energy Technology Dongguan University of Technology Dongguan 523808 China
| | - Lin Li
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry School of Chemical Engineering and Energy Technology Dongguan University of Technology Dongguan 523808 China
| |
Collapse
|
21
|
Yang X, Jiang S, Li L. The gel properties and gastric digestion kinetics of a novel lactic acid bacteria fermented tofu: Focusing on the effects of transglutaminase. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Lv Y, Feng X, Yang R, Qian S, Liu Y, Xu X, Zhou G, Ullah N, Zhu B, Chen L. Dual role (promotion and inhibition) of transglutaminase in mediating myofibrillar protein gelation under malondialdehyde-induced oxidative stress. Food Chem 2021; 353:129453. [PMID: 33765599 DOI: 10.1016/j.foodchem.2021.129453] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/05/2021] [Accepted: 02/20/2021] [Indexed: 11/16/2022]
Abstract
This study investigated the effects of transglutaminase (TGase) on the properties of myofibrillar protein (MP) and its heat-induced gels under malondialdehyde (MDA)-induced oxidation. The physicochemical characteristics, protein aggregation and rheological properties of MP were assessed. The gelling behaviours of MP were analysed with measurements of gel strength, cooking loss, microstructure and secondary structure. Under varying degrees of MDA oxidation, the addition of TGase always led to changes in the tertiary structure, loss of free amine and thiol groups, crosslinking of the myosin heavy chain, and decreasing solubility. However, the effect of TGase on MP gel quality differed. At 6 mmol/L MDA, the addition of TGase reduced the quality of MP gels by increasing cooking loss. However, at 12 mmol/L MDA, TGase reduced both the cooking loss and gel strength.
Collapse
Affiliation(s)
- Yuanqi Lv
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Xianchao Feng
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Rong Yang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Shan Qian
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Yaping Liu
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Xinglian Xu
- Lab of Meat Processing and Quality Control of EDU, College of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Guanghong Zhou
- Lab of Meat Processing and Quality Control of EDU, College of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Niamat Ullah
- Department of Human Nutrition, The University of Agriculture Peshawar, Khyber Pakhtunkhwa 25000, Pakistan
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Lin Chen
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China.
| |
Collapse
|
23
|
Yang X, Ke C, Li L. Physicochemical, rheological and digestive characteristics of soy protein isolate gel induced by lactic acid bacteria. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110243] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Wangtueai S, Phimolsiripol Y, Vichasilp C, Regenstein JM, Schöenlechner R. Optimization of gluten-free functional noodles formulation enriched with fish gelatin hydrolysates. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109977] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Temperature-dependent in vitro digestion properties of isoelectric solubilization/precipitation (ISP)-isolated PSE-like chicken protein. Food Chem 2020; 343:128501. [PMID: 33158684 DOI: 10.1016/j.foodchem.2020.128501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/10/2020] [Accepted: 10/26/2020] [Indexed: 11/23/2022]
Abstract
The effects of various heating strategies (72 °C-20 min, 100 °C-60 min) on the digestibility of isoelectric solubilization/precipitation (ISP)-isolated pale, soft, exudative (PSE)-like chicken protein in an in vitro simulated gastrointestinal model were studied. Untreated PSE-like meat protein was used as the control. The hydrophobic groups were much more exposed in ISP-isolated protein than in the control protein, and the difference diminished after heating. The results of SDS-PAGE analyses and digestion kinetic parameters show the ISP isolates had higher digestibility than the control group when heated at 72 °C for 20 min (P < 0.05), but there was no significant difference between the 100 °C heated groups (P > 0.05). Additionally, all ISP-isolated groups showed higher peptide abundance than the control groups. In summary, heating at 72 °C for 20 min is beneficial to increase the digestion properties of ISP-isolated PSE-like chicken protein, but its gel properties are weaker than those of protein heated at 100 °C for 60 min.
Collapse
|
26
|
Fang M, Xiong S, Jiang Y, Yin T, Hu Y, Liu R, You J. In Vitro Pepsin Digestion Characteristics of Silver Carp ( Hypophthalmichthys molitrix) Surimi Gels with Different Degrees of Cross-Linking Induced by Setting Time and Microbial Transglutaminase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8413-8430. [PMID: 32663001 DOI: 10.1021/acs.jafc.0c03014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Surimi gels are favored for their abundant proteins and unique taste. In this study, the pepsin digestion behaviors of surimi gels with different degrees of cross-linking induced by microbial transglutaminase (MTGase) and different setting times were investigated. For gels without (CK group) and with (TG group) MTGase, the slowest digestion rate (tM/2 = 20.13 and 79.19 min for CK and TG group, respectively), the least amino acid concentration (5.32 and 3.73 μmol/mL for CK and TG group, respectively), and the peptide amounts (1355 and 1788 for CK and TG group, respectively) were obtained at a moderate setting time (1-4 h) with the finest microstructure. However, the excessive setting time (8-12 h) formed an inhomogenous network, which accelerated the hydrolysis of gel proteins (tM/2 = 9.40 and 52.33 min for CK and TG group, respectively) and produced more amino acids (6.63 and 5.15 μmol/mL for CK and TG group, respectively) and peptide amounts (1644 and 2143 for CK and TG group, respectively). The above results also demonstrated that the presence of MTGase strengthened the compactness of gels as well as slowed down the digestion process with the release of less amino acids but more peptides. A large proportion of unique peptides were from the tail domain of myosin heavy chain. The discrepancy in bioactive peptides between different gels might be reduced in the subsequent intestinal digestion according to the in silico methods, demonstrating the diminished difference in the gastrointestinal digestion process in the aspect of releasing functional peptides. This study provides the theoretical basis and guideline in the field of gelation food digestion and surimi food industry to produce healthier surimi-based food.
Collapse
Affiliation(s)
- Mengxue Fang
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, Hubei Province 430070, P. R. China
| | - Shanbai Xiong
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, Hubei Province 430070, P. R. China
| | - Yue Jiang
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, Hubei Province 430070, P. R. China
| | - Tao Yin
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, Hubei Province 430070, P. R. China
| | - Yang Hu
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, Hubei Province 430070, P. R. China
| | - Ru Liu
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, Hubei Province 430070, P. R. China
| | - Juan You
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, Hubei Province 430070, P. R. China
| |
Collapse
|
27
|
Yang N, Fan X, Yu W, Huang Y, Yu C, Konno K, Dong X. Effects of microbial transglutaminase on gel formation of frozen-stored longtail southern cod (Patagonotothen ramsayi) mince. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Zhou X, Lin H, Zhu S, Xu X, Lyu F, Ding Y. Textural, rheological and chemical properties of surimi nutritionally-enhanced with lecithin. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108984] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|