1
|
Piornos JA, Balagiannis DP, Koussissi E, Bekkers A, Vissenaekens J, Brouwer E, Parker JK. Multi-response kinetic modelling of the formation of five Strecker aldehydes during kilning of barley malt. Food Chem 2025; 464:141532. [PMID: 39413594 DOI: 10.1016/j.foodchem.2024.141532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/28/2024] [Accepted: 10/02/2024] [Indexed: 10/18/2024]
Abstract
Control of aroma formation during production of barley malt is critical to provide consistent and high-quality products for the brewing industry. Malt quality can be affected by the inherent variability of raw material and processing conditions, leading to inconsistent and/or undesirable profiles. Dried green malts were cured isothermally at 65, 78 and 90 °C for 8.4 h, and characteristic aroma compounds (Strecker aldehydes), precursors and intermediate compounds were analysed over time. By kinetic modelling of Strecker aldehydes, based on fundamental chemical pathways, we showed that degradation of Amadori rearrangement products and short-chain dicarbonyls was more sensitive to temperature change due to their higher activation energies compared to other kinetic steps. This study can help maltsters to manipulate formation of Strecker aldehydes, via raw material screening and process control, and hence optimise the organoleptic quality of malts and their products, such as non-alcoholic beers, where these aldehydes play a key role.
Collapse
Affiliation(s)
- José A Piornos
- Department of Food and Nutritional Sciences, University of Reading, RG6 6DZ, UK..
| | | | - Elisabeth Koussissi
- Heineken Supply Chain BV, Global Innovation & Research, Burgemeester Smeetsweg, 1, 2382, PH, Zoeterwoude, the Netherlands..
| | - August Bekkers
- Heineken Supply Chain BV, Global Innovation & Research, Burgemeester Smeetsweg, 1, 2382, PH, Zoeterwoude, the Netherlands..
| | | | - Eric Brouwer
- Heineken Supply Chain BV, Global Innovation & Research, Burgemeester Smeetsweg, 1, 2382, PH, Zoeterwoude, the Netherlands..
| | - Jane K Parker
- Department of Food and Nutritional Sciences, University of Reading, RG6 6DZ, UK..
| |
Collapse
|
2
|
Shi B, Guo X, Liu H, Jiang K, Liu L, Yan N, Farag MA, Liu L. Dissecting Maillard reaction production in fried foods: Formation mechanisms, sensory characteristic attribution, control strategy, and gut homeostasis regulation. Food Chem 2024; 438:137994. [PMID: 37984001 DOI: 10.1016/j.foodchem.2023.137994] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/01/2023] [Accepted: 11/12/2023] [Indexed: 11/22/2023]
Abstract
Foods rich in carbohydrates or fats undergo the Maillard reaction during frying, which promotes the color, flavor and sensory characteristics formation. In the meanwhile, Maillard reaction intermediates and advanced glycation end products (AGEs) have a negative impact on food sensory quality and gut homeostasis. This negative effect can be influenced by food composition and other processing factors. Whole grain products are rich in polyphenols, which can capture carbonyl compounds in Maillard reaction, and reduce the production of AGEs during frying. This review summarizes the Maillard reaction production intermediates and AGEs formation mechanism in fried food and analyzes the factors affecting the sensory formation of food. In the meanwhile, the effects of Maillard reaction intermediates and AGEs on gut homeostasis were summarized. Overall, the innovative processing methods about the Maillard reaction are summarized to optimize the sensory properties of fried foods while minimizing the formation of AGEs.
Collapse
Affiliation(s)
- Boshan Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Xue Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Hongyan Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Kexin Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln 68588, NE, USA.
| | - Ning Yan
- Ning Yan, Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
3
|
Wang J, Qiao L, Liu B, Wang J, Wang R, Zhang N, Sun B, Chen H, Yu Y. Characteristic aroma-active components of fried green onion (Allium fistulosum L.) through flavoromics analysis. Food Chem 2023; 429:136909. [PMID: 37516048 DOI: 10.1016/j.foodchem.2023.136909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/28/2023] [Accepted: 07/12/2023] [Indexed: 07/31/2023]
Abstract
Green onion (Allium fistulosum L.) is a perennial herb with a characteristic allium aroma. Meanwhile, fried green onion oil has a rich flavor that is popular in traditional Chinese cuisine. In this work, the key aroma components of fried green onion oil were focused via flavoromics analysis. The oil samples had a low score of a green aroma but a high score of salty, greasy aromas. Whereafter, a total of 36 aroma-active substances with flavor dilution (FD) factors ranging from 1 to 6561 were identified in fried green onion oil, while 42 were detected in fried green onion residue with FD factors ranging from 1 to 19683. Additionally, the recombination and omission tests revealed that furaneol, dimethyl trisulfide, allyl methyl trisulfide, (E,E)-2,4-decadienal, etc., were the key aroma compounds in fried green onion oil. Furthermore, the observation of the reaction of thioethers at high temperatures revealed that dimethyl disulfide undergoes polymerization to form dimethyl trisulfide. The research results can provide a theoretical basis for the standardization and industrial production of Chinese cuisine.
Collapse
Affiliation(s)
- Jing Wang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China.
| | - Lina Qiao
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China.
| | - Bing Liu
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China.
| | - Junyi Wang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China.
| | - Ruifang Wang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China.
| | - Ning Zhang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China; Beijing Laboratory of Food Quality and Safety, Beijing Technology & Business University, Beijing 100048, China.
| | - Baoguo Sun
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China; Beijing Laboratory of Food Quality and Safety, Beijing Technology & Business University, Beijing 100048, China.
| | - Haitao Chen
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China.
| | - Yang Yu
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China.
| |
Collapse
|
4
|
Göncüoğlu Taş N, Kocadağlı T, Balagiannis DP, Gökmen V, Parker JK. Effect of salts on the formation of acrylamide, 5-hydroxymethylfurfural and flavour compounds in a crust-like glucose/wheat flour dough system during heating. Food Chem 2023; 410:135358. [PMID: 36608554 DOI: 10.1016/j.foodchem.2022.135358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/10/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
Among many strategies known to mitigate acrylamide formation, addition of cations, particularly calcium, is effective and can be used in bakery products. In this study, the effects of NaCl, KCl, CaCl2, MgCl2, sodium lactate, calcium lactate, and magnesium lactate on aroma and acrylamide formation were investigated in glucose/wheat flour dough systems during heating. Addition of salts inhibited Maillard reaction in favour of caramelisation, with divalent cations found to be most effective. The impact of salts on acrylamide reduction became less effective with increasing temperature. Most Strecker aldehydes and pyrazines decreased in the presence of salts, however CaCl2 and calcium lactate increased the concentration of furans, furfurals, and diketones. Calcium lactate also increased some ethyl-substituted pyrazines at high temperatures. Reduction of acrylamide with salts is associated with higher amounts of furan derivatives and decreased amounts of Strecker aldehydes and pyrazines. The mechanisms behind these changes are discussed.
Collapse
Affiliation(s)
- Neslihan Göncüoğlu Taş
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, Beytepe, Ankara 06800, Turkey
| | - Tolgahan Kocadağlı
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, Beytepe, Ankara 06800, Turkey
| | - Dimitrios P Balagiannis
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6DZ, United Kingdom
| | - Vural Gökmen
- Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, Beytepe, Ankara 06800, Turkey
| | - Jane K Parker
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6DZ, United Kingdom.
| |
Collapse
|
5
|
Qiu C, He W, Li Y, Jiang F, Pan Y, Zhang M, Lin D, Zhang K, Yang Y, Wang W, Hua P. Formation of halogenated disinfection byproducts in chlorinated real water during making hot beverage: Effect of sugar addition. CHEMOSPHERE 2022; 305:135417. [PMID: 35750228 DOI: 10.1016/j.chemosphere.2022.135417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/06/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Chlorine disinfection is widely applied in drinking water treatment plant to inactivate pathogens in drinking water, but it unintentionally reacts with organic matter present in source waters and generates halogenated disinfection byproducts (DBPs). Sugar is one of the most commonly used seasoning in our diet. The addition of sugar could significantly improve the taste of the beverages; however, the effects of sugar on DBP formation and transformation remain unknown. In this study, the effects of sugar type and dose on the halogenated DBP formation in chlorinated boiled real tap water were evaluated during making hot beverages. We found that sugar can react with chlorine residual in tap water and generate halogenated DBPs. As the most commonly used table sugar, the addition of sucrose in the water sample at 100 or 500 mg/L as C could increase the level of total organic halogen (TOX) by ∼35%, when compared with the boiled tap water sample without sugar addition. In addition, fifteen reported and new polar brominated and chlorinated DBPs were detected and proposed from the reaction between chlorine and sucrose; accordingly, the corresponding transformation pathways were also proposed. Moreover, the DBP formation in the chlorinated boiled real tap water samples with the addition of xylose, glucose, sucrose, maltose and lactose were also investigated. By comparing with the TOX levels in the water samples with different sugar addition and their calculated TOX risk indexes, it was suggested that applying xylose as a sweetener in beverages could not only obtain a relatively high sweetness but also minimize the adverse effect inducing by halogenated DBPs during making hot beverages.
Collapse
Affiliation(s)
- Chuyin Qiu
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Weiting He
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Yu Li
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China.
| | - Feng Jiang
- School of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Meihui Zhang
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Daying Lin
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Kaili Zhang
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Yanduo Yang
- School of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wen Wang
- School of Environmental Science & Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Pei Hua
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|
6
|
Yao X, Zheng X, Zhao R, Li Z, Shen H, Li T, Gu Z, Zhou Y, Xu N, Shi A, Wang Q, Lu S. Quality Formation of Adzuki Bean Baked: From Acrylamide to Volatiles under Microwave Heating and Drum Roasting. Foods 2021; 10:foods10112762. [PMID: 34829041 PMCID: PMC8621577 DOI: 10.3390/foods10112762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
Baked adzuki beans are rich in tantalizing odor and nutritional components, such as protein, dietary fiber, vitamin B, and minerals. To analyze the final quality of baked beans, the acrylamide and volatile formation of adzuki beans were investigated under the conditions of microwave baking and drum roasting. The results indicate that the acrylamide formation in baked adzuki beans obeys the exponential growth function during the baking process, where a rapid increase in acrylamide content occurs at a critical temperature and low moisture content. The critical temperature that leads to a sudden increase in acrylamide content is 116.5 °C for the moisture content of 5.6% (w.b.) in microwave baking and 91.6 °C for the moisture content of 6.1% (w.b.) in drum roasting. The microwave-baked adzuki beans had a higher formation of the kinetics of acrylamide than that of drum-roasted beans due to the microwave volumetric heating mode. The acrylamide content in baked adzuki beans had a significant correlation with their color due to the Maillard reaction. A color difference of 11.1 and 3.6 may be introduced to evaluate the starting point of the increase in acrylamide content under microwave baking and drum roasting, respectively. Heating processes, including microwave baking and drum roasting, for adzuki beans generate characteristic volatile compounds such as furan, pyrazine, ketone, alcohols, aldehydes, esters, pyrroles, sulfocompound, phenols, and pyridine. Regarding flavor formation, beans baked via drum roasting showed better flavor quality than microwave-baked beans.
Collapse
Affiliation(s)
- Xinmiao Yao
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (X.Y.); (R.Z.); (Z.L.); (H.S.); (Y.Z.); (N.X.)
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (A.S.); (Q.W.)
| | - Xianzhe Zheng
- China School of Engineering, Northeast Agricultural University, Harbin 150030, China;
| | - Rui Zhao
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (X.Y.); (R.Z.); (Z.L.); (H.S.); (Y.Z.); (N.X.)
| | - Zhebin Li
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (X.Y.); (R.Z.); (Z.L.); (H.S.); (Y.Z.); (N.X.)
| | - Huifang Shen
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (X.Y.); (R.Z.); (Z.L.); (H.S.); (Y.Z.); (N.X.)
| | - Tie Li
- Crop Resources Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China;
| | - Zhiyong Gu
- Gansu United Testing Standards Technical Service Co., Ltd., Lanzhou 730030, China;
| | - Ye Zhou
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (X.Y.); (R.Z.); (Z.L.); (H.S.); (Y.Z.); (N.X.)
| | - Na Xu
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (X.Y.); (R.Z.); (Z.L.); (H.S.); (Y.Z.); (N.X.)
| | - Aimin Shi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (A.S.); (Q.W.)
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (A.S.); (Q.W.)
| | - Shuwen Lu
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (X.Y.); (R.Z.); (Z.L.); (H.S.); (Y.Z.); (N.X.)
- Correspondence:
| |
Collapse
|
7
|
Use of egg yolk phospholipids to boost the generation of the key odorants as well as maintain a lower level of acrylamide for vacuum fried French fries. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107592] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Perera DN, Hewavitharana GG, Navaratne SB. Comprehensive Study on the Acrylamide Content of High Thermally Processed Foods. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6258508. [PMID: 33681355 PMCID: PMC7925045 DOI: 10.1155/2021/6258508] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 02/10/2021] [Accepted: 02/13/2021] [Indexed: 11/17/2022]
Abstract
Acrylamide (AA) formation in starch-based processed foods at elevated temperatures is a serious health issue as it is a toxic and carcinogenic substance. However, the formation of more AA entangles with modern-day fast food industries, and a considerable amount of this ingredient is being consumed by fast food eaters inadvertently throughout the world. This article reviews the factors responsible for AA formation pathways, investigation techniques of AA, toxicity, and health-related issues followed by mitigation methods that have been studied in the past few decades comprehensively. Predominantly, AA and hydroxymethylfurfural (HMF) are produced via the Maillard reaction and can be highlighted as the major heat-induced toxins formulated in bread and bakery products. Epidemiological studies have shown that there is a strong relationship between AA accumulation in the body and the increased risk of cancers. The scientific community is still in a dearth of technology in producing AA-free starch-protein-fat-based thermally processed food products. Therefore, this paper may facilitate the food scientists to their endeavor in developing mitigation techniques pertaining to the formation of AA and HMF in baked foods in the future.
Collapse
Affiliation(s)
- Dilini N. Perera
- Department of Food Science and Technology, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Geeth G. Hewavitharana
- Department of Food Science and Technology, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - S. B. Navaratne
- Department of Food Science and Technology, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| |
Collapse
|
9
|
Lai B, Cui G, Wang H, Song Y, Tan M. Identification of fluorescent nanoparticles from roasted sweet potato (Ipomoea batatas) during normal cooking procedures. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Effects of pulsed electric field pretreatment on frying quality of fresh-cut lotus root slices. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109873] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
11
|
Xu Z, Leong SY, Farid M, Silcock P, Bremer P, Oey I. Understanding the Frying Process of Plant-Based Foods Pretreated with Pulsed Electric Fields Using Frying Models. Foods 2020; 9:foods9070949. [PMID: 32709057 PMCID: PMC7404407 DOI: 10.3390/foods9070949] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 11/20/2022] Open
Abstract
Deep-fried foods (e.g., French fries, potato/veggie crisps) are popular among consumers. Recently, there has been an increased interest in the application of Pulsed Electric Fields (PEF) technology as a pretreatment of plant-based foods prior to deep-frying to improve quality (e.g., lower browning tendency and oil uptake) and reduce production costs (e.g., better water and energy efficiencies). However, the influence of a PEF pretreatment on the frying process and related chemical reactions for food materials is still not fully understood. PEF treatment of plant tissue causes structural modifications, which are likely to influence heat, mass and momentum transfers, as well as altering the rate of chemical reactions, during the frying process. Detailed insights into the frying process in terms of heat, mass (water and oil) and momentum transfers are outlined, in conjunction with the development of Maillard reaction and starch gelatinisation during frying. These changes occur during frying and consequently will impact on oil uptake, moisture content, colour, texture and the amount of contaminants in the fried foods, as well as the fried oil, and hence, the effects of PEF pretreatment on these quality properties of a variety of fried plant-based foods are summarised. Different mathematical models to potentially describe the influence of PEF on the frying process of plant-based foods and to predict the quality parameters of fried foods produced from PEF-treated plant materials are addressed.
Collapse
Affiliation(s)
- Zihan Xu
- Department of Food Science, University of Otago, PO Box 56, 9054 Dunedin, New Zealand; (Z.X.); (S.Y.L.); (P.S.); (P.B.)
| | - Sze Ying Leong
- Department of Food Science, University of Otago, PO Box 56, 9054 Dunedin, New Zealand; (Z.X.); (S.Y.L.); (P.S.); (P.B.)
- Riddet Institute, Private Bag 11 222, 4442 Palmerston North, New Zealand
| | - Mohammed Farid
- Department of Chemical and Materials Engineering, University of Auckland, Private Bag 92019, 1142 Auckland, New Zealand;
| | - Patrick Silcock
- Department of Food Science, University of Otago, PO Box 56, 9054 Dunedin, New Zealand; (Z.X.); (S.Y.L.); (P.S.); (P.B.)
| | - Phil Bremer
- Department of Food Science, University of Otago, PO Box 56, 9054 Dunedin, New Zealand; (Z.X.); (S.Y.L.); (P.S.); (P.B.)
| | - Indrawati Oey
- Department of Food Science, University of Otago, PO Box 56, 9054 Dunedin, New Zealand; (Z.X.); (S.Y.L.); (P.S.); (P.B.)
- Riddet Institute, Private Bag 11 222, 4442 Palmerston North, New Zealand
- Correspondence:
| |
Collapse
|
12
|
Reduction of acrylamide formation in potato chips during deep-frying in sunflower oil using pomegranate peel nanoparticles extract. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00252-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
13
|
Dourado C, Pinto C, Barba FJ, Lorenzo JM, Delgadillo I, Saraiva JA. Innovative non-thermal technologies affecting potato tuber and fried potato quality. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.03.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|