1
|
Lu Y, Xiong R, Lin X, Zhang L, Meng X, Luo Z. CsPbBr 3 NCs Confined and In Situ Grown in ZIF-8: A Stable, Sensitive, Reliable Fluorescent Sensor for Evaluating the Acid Value of Edible Oils. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42772-42782. [PMID: 39083762 DOI: 10.1021/acsami.4c10280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Rapidly and sensitively evaluating the acid value (AV) of edible oils is significant to ensuring food quality and safety. Cesium lead bromide perovskite nanocrystals (CsPbBr3 NCs) are an effective candidate for AV detection; however, their instability restricts wide applications. Herein, CsPbBr3@ZIF-8 was prepared by confining and growing CsPbBr3 NCs in situ into zeolitic imidazolate framework-8 (ZIF-8) to improve the stability, and a fluorescence sensor was established to evaluate the AV of edible oils. The results present that CsPbBr3 NCs (below 5 nm) with excellent optical properties were confined and grown in situ in micropores and mesopores of ZIF-8. Meanwhile, CsPbBr3@ZIF-8 had better long-term storage, ultraviolet-irradiation, and water-exposure stabilities, compared with CsPbBr3 NCs. Given the fact that free fatty acids (the major contributor of AV) decrease the fluorescence of CsPbBr3 NCs, the fluorescence intensities of CsPbBr3@ZIF-8 were negative-linearly related to oil AV (R2 = 0.9902) in 0.04-6.00 mg of KOH/g with a 0.06 mg of KOH/g limit of detection. Besides, the practical AV recovery was 92-101% with an average relative standard deviation of 2%. Furthermore, the detection time was 20 min. The response mechanism revealed that free fatty acids could remove surface ligands and increase surface defects to prompt the aggregation of CsPbBr3 NCs and the formation of lattice fringe dislocations, inducing a decrease in the fluorescence. Thus, a stable, sensitive, reliable sensor was established to evaluate the AV of edible oils.
Collapse
Affiliation(s)
- Yuanchao Lu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Ruixin Xiong
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xingyu Lin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Liangxiao Zhang
- Chinese Acad Agr Sci, Key Lab Biol & Genet Improvement Oil Crops, Lab Risk Assessment Oilseed Prod Wuhan, Oil Crops Res Inst, Qual Inspect & Test Ctr Oilseed, Wuhan, Hubei 430062, China
| | - Xianghe Meng
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Wu H, He Z, Yang L, Li H. Exploring the formation of a transparent fat portion in bacon after heating based on physicochemical characteristics and microstructure. Food Chem X 2023; 20:100964. [PMID: 38144753 PMCID: PMC10740067 DOI: 10.1016/j.fochx.2023.100964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/07/2023] [Accepted: 10/23/2023] [Indexed: 12/26/2023] Open
Abstract
Bacons, which possess a transparent fat tissue after heating, have high commercial value in China owing to their good sensory quality. This study was performed to explore the formation of transparent fat tissue by comparing the physicochemical characteristics and microstructures of transparent and non-transparent fat tissues. The physicochemical characteristics and microstructure of fat tissue were found to be significantly affected by drying, which increased the saturated fatty acid content and oxidation level, and decreased the moisture content and water activity (p < 0.05). Shrivelled adipocytes were observed in fat tissue after drying. Transparent and non-transparent fat tissues differed significantly in terms of moisture, fat content, texture, and fatty acid composition (p < 0.05). Multivariate statistical analysis indicated that low moisture content might be the major factor in the formation of transparent tissue, while the destruction of adipocytes also contributed to such formation.
Collapse
Affiliation(s)
- Han Wu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Zhifei He
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Li Yang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Hongjun Li
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| |
Collapse
|
3
|
Wensi Z, Chuanjin C, Chen H, Xuechao Z, Junhui D. Study on a nano-porous gold/polyamidoamine (NPG/PAMAM)-based electrochemical aptamer biosensor for the detection of ochratoxin a in the red wine. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:1059-1073. [PMID: 37526950 DOI: 10.1080/19440049.2023.2240435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/09/2023] [Accepted: 07/13/2023] [Indexed: 08/02/2023]
Abstract
In this study, a novel electrochemical aptamer sensor for detecting ochratoxin A (OTA) was constructed. First, a gold-copper alloy film was prepared via electrochemical deposition, and copper was selectively dissolved in constant potential mode for obtaining the nano-porous gold modified screen-printed carbon electrodes (NPG/SPCE). Then, 2-mercaptoethylamine was dropped on the NPG/SPCE surface and Au-S covalent bonds were formed for immobilizing the metal. Glutaraldehyde as cross-linking agent was added, which resulted in immobilization and attachment of PAMAM to the 2-mercaptoethylamine through the dehydration condensation reaction. During the preparation process, the nano-porous gold and PAMAM-modified layers were characterized by SEM, XRD, and IR spectroscopy, respectively. The characterization results showed that the nano-porous gold and PAMAM composite films were successfully modified. Finally, the OTA aptamer was cross-linked with PAMAM by glutaraldehyde to complete construction of the Apt/PAMAM/NPG/SPCE sensor. The electrochemical performance of this sensor was tested in ochratoxin A solutions with the DPV method. The results showed that the sensor's reproducibility, stability, and specificity were good. The spiked recoveries in red wine ranged from 99.65%∼101.6%, with a linear range of 0.5 ng/mL∼20 ng/mL and a minimum detection limit of 0.141 ng/mL. Thus, the novel biosensor may provide a promising tool for the trace detection of OTA.
Collapse
Affiliation(s)
- Zhang Wensi
- College of Electrical Engineering, North China University of Science and Technology, Tangshan, P.R. China
| | - Cui Chuanjin
- College of Electrical Engineering, North China University of Science and Technology, Tangshan, P.R. China
| | - Hongshuo Chen
- College of Electrical Engineering, North China University of Science and Technology, Tangshan, P.R. China
| | - Zhang Xuechao
- School of Data Science, TongRen University, TongRen, P.R. China
| | - Du Junhui
- College of Electrical Engineering, North China University of Science and Technology, Tangshan, P.R. China
| |
Collapse
|
4
|
Wasilewska A, Bielicka M, Klekotka U, Kalska-Szostko B. Nanoparticle applications in food - a review. Food Funct 2023; 14:2544-2567. [PMID: 36799219 DOI: 10.1039/d2fo02180c] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The use of nanotechnology in the food industry raises uncertainty in many respects. For years, achievements of nanotechnology have been applied mainly in biomedicine and computer science, but recently it has also been used in the food industry. Due to the extremely small (nano) scale, the properties and behavior of nanomaterials may differ from their macroscopic counterparts. They can be used as biosensors to detect reagents or microorganisms, monitor bacterial growth conditions, increase food durability e.g. when placed in food packaging, reducing the amount of certain ingredients without changing the consistency of the product (research on fat substitutes is underway), improve the taste of food, make some nutrients get better absorbed by the body, etc. There are companies on the market that are already introducing nanoparticles into the economy to improve their functionality, e.g. baby feeding bottles. This review focuses on the use of nanoparticles in the food industry, both organic (chitosan, cellulose, proteins) and inorganic (silver, iron, zinc oxide, titanium oxide, etc.). The use of nanomaterials in food production requires compliance with all legal requirements regarding the safety and quantity of nano-processed food products described in this review. In the future, new methods of testing nanoparticles should be developed that would ensure the effectiveness of compounds subjected to, for example, nano-encapsulation, i.e. whether the encapsulation process had a positive impact on the specific properties of these compounds. Nanotechnology has revolutionized our approach towards food engineering (from production to processing), food storage and the creation of new materials and products, and the search for new product applications.
Collapse
Affiliation(s)
- A Wasilewska
- University of Bialystok, Faculty of Chemistry, Str. Ciolkowskiego 1K, 15-245, Bialystok, Poland.
- Doctoral School of Exact and Natural Sciences, University of Bialystok, Str. Ciolkowskiego 1K, 15-245 Bialystok, Poland
| | - M Bielicka
- University of Bialystok, Faculty of Chemistry, Str. Ciolkowskiego 1K, 15-245, Bialystok, Poland.
- Doctoral School of Exact and Natural Sciences, University of Bialystok, Str. Ciolkowskiego 1K, 15-245 Bialystok, Poland
| | - U Klekotka
- University of Bialystok, Faculty of Chemistry, Str. Ciolkowskiego 1K, 15-245, Bialystok, Poland.
| | - B Kalska-Szostko
- University of Bialystok, Faculty of Chemistry, Str. Ciolkowskiego 1K, 15-245, Bialystok, Poland.
| |
Collapse
|
5
|
Fernandes T, Daniel-da-Silva AL, Trindade T. Metal-dendrimer hybrid nanomaterials for sensing applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Li P, Yang W, Cong F, Zhang A, Zhang S, Wang Y, Su Y, Liu D, Liu H, Li T. A Microchemical Analysis of Acid Values in Stored Wheats. Cereal Chem 2022. [DOI: 10.1002/cche.10538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ping Li
- Tianjin Key Laboratory of Aqua‐ecology and Aquaculture, Tianjin Chemical Experiment Teaching Demonstration Center, College of Basic Science Tianjin Agriculture University Tianjin 300392 PR China
| | - Wei Yang
- Tianjin Key Laboratory of Aqua‐ecology and Aquaculture, Tianjin Chemical Experiment Teaching Demonstration Center, College of Basic Science Tianjin Agriculture University Tianjin 300392 PR China
- Agricultural analysis Experimental Teaching Center, College of food science and Bioengineering Tianjin Agriculture University Tianjin 300392 PR China
| | - Fangdi Cong
- Tianjin Key Laboratory of Aqua‐ecology and Aquaculture, Tianjin Chemical Experiment Teaching Demonstration Center, College of Basic Science Tianjin Agriculture University Tianjin 300392 PR China
- Agricultural analysis Experimental Teaching Center, College of food science and Bioengineering Tianjin Agriculture University Tianjin 300392 PR China
- Biccamin (Tianjin) Biotechnology R & D Stock Co., Ltd Tianjin 300393 PR China
| | - Ailin Zhang
- Agricultural analysis Experimental Teaching Center, College of food science and Bioengineering Tianjin Agriculture University Tianjin 300392 PR China
| | - Shulin Zhang
- Tianjin Key Laboratory of Aqua‐ecology and Aquaculture, Tianjin Chemical Experiment Teaching Demonstration Center, College of Basic Science Tianjin Agriculture University Tianjin 300392 PR China
| | - Yingchao Wang
- Tianjin Key Laboratory of Aqua‐ecology and Aquaculture, Tianjin Chemical Experiment Teaching Demonstration Center, College of Basic Science Tianjin Agriculture University Tianjin 300392 PR China
- Agricultural analysis Experimental Teaching Center, College of food science and Bioengineering Tianjin Agriculture University Tianjin 300392 PR China
| | - Yongpeng Su
- Biccamin (Tianjin) Biotechnology R & D Stock Co., Ltd Tianjin 300393 PR China
| | - Daying Liu
- Tianjin Key Laboratory of Aqua‐ecology and Aquaculture, Tianjin Chemical Experiment Teaching Demonstration Center, College of Basic Science Tianjin Agriculture University Tianjin 300392 PR China
| | - Haixue Liu
- Agricultural analysis Experimental Teaching Center, College of food science and Bioengineering Tianjin Agriculture University Tianjin 300392 PR China
| | - Tao Li
- School of Life Science and Technology Xinxiang Medical University Xinxiang 453003 P.R. China
| |
Collapse
|
7
|
Fan L, Xian C, Tang S, Ding W, Xu CH, Wang XC. Effect of frozen storage temperature on lipid stability of hepatopancreas of Eriocheir sinensis. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Zhang F, Liu Y, Yang B, Guan P, Chai J, Wen G, Liu B. Tunable NIR AIE-active optical materials for lipid droplet imaging in typical model organisms and photodynamic therapy. J Mater Chem B 2021; 9:2417-2427. [PMID: 33623937 DOI: 10.1039/d0tb02801k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Near infrared (NIR) luminescent materials with aggregation-induced emission (AIE) features have attracted enormous attention in the areas of medical imaging and diagnostic therapeutics because of their low background fluorescence and strong tissue penetration. This study reports a series of easily synthesized AIEgen molecules that feature NIR emission. These molecules have a donor-donor-π-acceptor (D1-D2-π-A) structure with intramolecular charge transfer (ICT) character. The nature of charge transfer transition can be modified by different structures of D2, i.e. phenyl, thiophene, and furan ring. These AIEgens have high selectivity towards lipid droplets (LDs) in vitro and in vivo, such as zebrafish, Caenorhabditis elegans, and oil crop tissue. In addition, the effect of photodynamic therapy (PDT) on SMMC-7721 cells was investigated, and the results indicate that these AIEgens have potential application for PDT on cancer cells with white light illumination. This study reveals that these triphenylamine (TPA)-based AIEgens have great potential for biological imaging and preclinical applications of PDT.
Collapse
Affiliation(s)
- Fei Zhang
- Institute of Molecular Science, Engineering Research Center for Sewage Treatment of Shanxi Province, Shanxi University, Taiyuan, 030006, China.
| | - Yaoming Liu
- Scientific Instrument Center of Shanxi University, Taiyuan, China
| | - Binsheng Yang
- Institute of Molecular Science, Engineering Research Center for Sewage Treatment of Shanxi Province, Shanxi University, Taiyuan, 030006, China.
| | - Pengli Guan
- Institute of Molecular Science, Engineering Research Center for Sewage Treatment of Shanxi Province, Shanxi University, Taiyuan, 030006, China.
| | - Jie Chai
- Department of Chemistry, Jinzhong University, Taiyuan, 030619, China
| | - Guangming Wen
- Department of Chemistry, Jinzhong University, Taiyuan, 030619, China
| | - Bin Liu
- Institute of Molecular Science, Engineering Research Center for Sewage Treatment of Shanxi Province, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
9
|
Luo Z, Zhou L, Zhu Y, Zhou C. Effects of different drying methods on the physicochemical property and edible quality of fermented
Pyracantha fortuneana
fruit powder. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhencen Luo
- College of Food Science Southwest University Chongqing400715China
| | - Lingguo Zhou
- Chongqing Food Technology Institute Chongqing400042China
| | - Yiwei Zhu
- Chongqing Food Technology Institute Chongqing400042China
| | - Caiqiong Zhou
- College of Food Science Southwest University Chongqing400715China
- Engineering & Technology Research Centre of Characteristic Food Chongqing400715China
| |
Collapse
|
10
|
Jiang H, Liu T, He P, Ding Y, Chen Q. Rapid measurement of fatty acid content during flour storage using a color-sensitive gas sensor array: Comparing the effects of swarm intelligence optimization algorithms on sensor features. Food Chem 2020; 338:127828. [PMID: 32822904 DOI: 10.1016/j.foodchem.2020.127828] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 01/09/2023]
Abstract
The fatty acid content of flour is an important indicator for determining the deterioration of flour. We propose a novel rapid measurement method for fatty acid content during flour storage based on a self-designed color-sensitive gas sensor array. First, a color-sensitive gas sensor array was prepared to capture the odor changes during flour storage. The sensor features were then optimized using genetic algorithm (GA), ant colony optimization (ACO) and particle swarm optimization (PSO). Finally, back propagation neural network (BPNN) models were established to measure the fatty acid content during flour storage. Experimental results showed that the optimization effects of the three algorithms improved in the following order: GA < ACO < PSO, for the sensor features optimization. In the validation set, the determination coefficient of the best PSO-BPNN model was 0.9837. The overall results demonstrate that the models established on the optimized features can realize rapid measurements of fatty acid content during flour storage.
Collapse
Affiliation(s)
- Hui Jiang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Tong Liu
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Peihuan He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yuhan Ding
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
11
|
Dong Y, Shi S, Li Q, Zhang L, Yu X. An indirect analytical approach based on ATR-FTIR spectroscopy for determining the FFA content in vegetable oils. RSC Adv 2020; 10:24073-24078. [PMID: 35517334 PMCID: PMC9055113 DOI: 10.1039/d0ra03668d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/31/2020] [Indexed: 11/21/2022] Open
Abstract
In this study, we developed a novel approach for determining a free fatty acid (FFA) in vegetable oils using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. FFA was converted to carboxylate species by a reaction with phthalimide potassium salt, and the linear relationship between FFA content and ATR-FTIR peak areas at 1541–1616 cm−1 (1595 cm−1 as baseline) was established. Results showed that the R2 values obtained during calibration and validation were more than 0.99. The calibration method concurred to within ±0.035% over the range of 0.4% to 4.0% (quantitative determination of the percentage of FFA in oils, expressed as the percentage of oleic acid). In the calibration model, the root mean square error of prediction was 0.0104, the relative error was less than 0.246% and the relative average deviation was 0.386%, respectively. These indexes demonstrated that the calibration model has great accuracy, high precision and good stability. The indirect method established using ATR-FTIR has the advantages of excellent reproducibility, high exactitude, independent of oil type, simple operation and easy cleaning of the instrument surface. The slope of the verification equation between FFA prediction values and American Oil Chemists' Society's (AOCS) titration method was close to 1, R2 value was more than 0.99. These indicators suggested that the proposed method and the AOCS method have a good correlation through AOCS titration and ATR–FTIR spectroscopy to determine validation samples parallel. In addition, for comparison, when the AOCS titration and ATR-FTIR spectroscopy methods were used for sample validation, the results indicated that the latter method is more reproducible, highly sensitive and has strong anti-disturbance. Therefore, the ATR-FTIR technique can be applied as a simple, highly sensitive, convenient and timely method for the analysis of FFAs in oils. In this study, we developed a novel approach for determining a free fatty acid (FFA) in vegetable oils using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy.![]()
Collapse
Affiliation(s)
- Yaoyao Dong
- College of Food Science and Engineering, Northwest A&F University 22 Xinong Road Yangling 712100 Shaanxi P. R. China +86-29-87092486 +86-29-87092275
| | - Shaoxia Shi
- College of Food Science and Engineering, Northwest A&F University 22 Xinong Road Yangling 712100 Shaanxi P. R. China +86-29-87092486 +86-29-87092275
| | - Qi Li
- College of Food Science and Engineering, Northwest A&F University 22 Xinong Road Yangling 712100 Shaanxi P. R. China +86-29-87092486 +86-29-87092275
| | - Lingyan Zhang
- College of Food Science and Engineering, Northwest A&F University 22 Xinong Road Yangling 712100 Shaanxi P. R. China +86-29-87092486 +86-29-87092275
| | - Xiuzhu Yu
- College of Food Science and Engineering, Northwest A&F University 22 Xinong Road Yangling 712100 Shaanxi P. R. China +86-29-87092486 +86-29-87092275
| |
Collapse
|