1
|
Yuan X, Li D, Shi P, Wu J, Dai Z, Dong X, Lu Y. Effect of sous vide cooking technology on the quality, protein structure, microstructure, and flavor of yellowfin tuna (Thunnus albacares). Food Chem 2025; 484:144423. [PMID: 40267688 DOI: 10.1016/j.foodchem.2025.144423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/25/2025]
Abstract
The study investigated the comparative effects of sous vide cooking and traditional high-temperature cooking on the quality characteristics, protein structure, microstructure, and volatile flavor compounds of yellowfin tuna (Thunnus albacares). The sous vide treatment groups (55 °C, 60 °C, 65 °C) exhibited a reduction in cooking loss, hardness, and chewiness of the fish while significantly preserving its original elasticity, cohesiveness, and color. In contrast, traditional high-temperature cooking alters the degradation of secondary and tertiary protein structures, resulting in muscle fiber contraction, damage to tissue integrity, and loss of internal moisture. Gas chromatography-mass spectrometry analysis revealed that the concentration of primary odor compounds at a sous vide temperature of 55 °C was minimized. This reduction contributes to decreased formation of undesirable odor substances while positively influencing flavor profiles. These findings suggest that sous vide cooking technology can effectively enhance both the texture and flavor profile of yellowfin tuna.
Collapse
Affiliation(s)
- Xuan Yuan
- National R&D Center for Marine Fish Processing, Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Dongcheng Li
- National R&D Center for Marine Fish Processing, Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Peiying Shi
- Zhejiang Ocean Family Co., Ltd., Youpinyuan Road No.1, Zhoushan 316000, China
| | - Jiajia Wu
- National R&D Center for Marine Fish Processing, Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Zhiyuan Dai
- National R&D Center for Marine Fish Processing, Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xiuping Dong
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yanbin Lu
- National R&D Center for Marine Fish Processing, Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310018, China; SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
2
|
Meng F, He M, Yang M, Liu J, Guo S, Liu S. Effect of high hydrostatic pressure on the multi-scale structure and digestive properties of Lonicera caerulea berry polyphenol-wheat starch complex. Int J Biol Macromol 2025; 308:142776. [PMID: 40180065 DOI: 10.1016/j.ijbiomac.2025.142776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/23/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
Polyphenols increase resistant starch (RS) content and stabilize postprandial blood glucose levels. This study examined the effects of high hydrostatic pressure (HHP) technology on the multi-scale structure and digestibility of the Lonicera caerulea berry polyphenol-wheat starch (LPWS) complex in vitro and in vivo. The results showed that 200, 400, and 600 MPa HHP treatments promoted starch gelatinization, destroyed the grain structure of wheat starch (WS), significantly increased the particle size (P < 0.05), significantly increased the RS content by 1.60, 2.33, and 2.60 times (P < 0.05), and decreased the crystallinity and molecular weight. Under HHP, Lonicera caerulea berry polyphenols (LCBP) and WS formed A + V complex and the two interacted with each other through hydrogen bonding, leading to a further reduction in the gelatinization enthalpy (ΔH). The amount of glucose released by internal digestion in mice decreased significantly from 10.28 mmol/L to 8.87 mmol/L at 180 min (P < 0.05). Complex digestives appeared dense, which reduced WS digestion. This study provides a theoretical basis for the research and development of functional starch with stable postprandial blood glucose levels, and its use as a functional food ingredient.
Collapse
Affiliation(s)
- Fanna Meng
- Engineering Research Center of Chestnut Industry Technology of the Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Mingyu He
- Engineering Research Center of Chestnut Industry Technology of the Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Mingxi Yang
- Engineering Research Center of Chestnut Industry Technology of the Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Jinjie Liu
- Engineering Research Center of Chestnut Industry Technology of the Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Shuo Guo
- Engineering Research Center of Chestnut Industry Technology of the Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Suwen Liu
- Engineering Research Center of Chestnut Industry Technology of the Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China; Hebei Yanshan Special Industrial Technology Research Institute, Qinhuangdao, Hebei 066004, China.
| |
Collapse
|
3
|
Liu J, Xu Y, Yan J, Bai L, Hua J, Luo S. Polymethoxylated flavones from the leaves of Vitex negundo have fungal-promoting and antibacterial activities during the production of broad bean koji. Front Microbiol 2024; 15:1401436. [PMID: 38751721 PMCID: PMC11094617 DOI: 10.3389/fmicb.2024.1401436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Broad bean paste is a popular condiment in Asian countries. Leaves of Vitex negundo Linn. were used extensively in China during the koji-making of broad bean paste. Spreading V. negundo leaves on raw broad beans during fermentation was able to facilitate the rapid growth of fungi to form mature koji. We isolated two strains of fungi from mature koji, and four strains of bacteria from the rotten broad beans resulting from a failed attempt. According to microbial activity assays, two polymethoxylated flavones, 5-hydroxy-3,6,7,8,3',4'-hexamethoxy flavone (HJ-1) and 5,4'-dihydroxy-3,6,7,8,3'-pentamethoxy flavone (HJ-2) were isolated from V. negundo leaves, and the fungal growth promotion and inhibition of bacterial growth of these two compounds were found to improve the production of broad bean koji. This study reveals the compounds present in V. negundo leaves with bioactivity against important microbes in koji manufacture, and provides a theoretical basis for the application of V. negundo in broad bean paste production.
Collapse
Affiliation(s)
| | | | | | | | - Juan Hua
- Research Center of Protection and Utilization of Plant Resources, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Shihong Luo
- Research Center of Protection and Utilization of Plant Resources, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
4
|
Zhang J, You Y, Li C, Ban X, Gu Z, Li Z. The modulatory roles and regulatory strategy of starch in the textural and rehydration attributes of dried noodle products. Crit Rev Food Sci Nutr 2022; 64:5551-5567. [PMID: 36524398 DOI: 10.1080/10408398.2022.2155797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Noodles are popular staple foods globally, and dried noodle products (DNPs) have gained increasing attention due to recent changes in consumer diet behavior. Rapid rehydration and excellent texture quality are the two major demands consumers make of dried noodle products. Unfortunately, these two qualities conflict with each other: the rapid rehydration of DNPs generally requires a loose structure, which is disadvantageous for good texture qualities. This contradiction limits further development of the noodle industry, and overcoming this limitation remains challenging. Starch is the major component of noodles, and it has two main roles in DNPs. It serves as a skeleton for the noodle in gel networks form or acts as a noodle network filler in granule form. In this review, we comprehensively investigate the different roles of starch in DNPs, and propose strategies for balancing the conflicts between texture and rehydration qualities of DNPs by regulating the gel network and granule structure of starch. Current strategies in regulating the gel network mainly focused on the hydrogen bond strength, the orientation degree, and the porosity; while regulating granule structure was generally performed by adjusting the integrity and the gelatinization degree of starch. This review assists in the production of instant dried noodle products with desired qualities, and provides insights into promising enhancements in the quality of starch-based products by manipulating starch structure.
Collapse
Affiliation(s)
- Jiayan Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Yuxian You
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Caiming Li
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, People's Republic of China
| | - Xiaofeng Ban
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, People's Republic of China
| | - Zhengbiao Gu
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, People's Republic of China
| | - Zhaofeng Li
- School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
5
|
Sun X, Sun Z, Guo Y, Zhao J, Zhao J, Ge X, Shen H, Zhang Q, Yan W. Effect of twin-xuscrew extrusion combined with cold plasma on multi-scale structure, physicochemical properties, and digestibility of potato starches. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102855] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Bian S, Xu E, Fu X, Jin Z, Jiao A. Comparison of different thermal treatments on the physicochemical properties of Apios fortunei used for yellow wine fermentation. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Lu Y, Yang L, Yang G, Chi Y, Sun Q, He Q. Insight into the Fermentation of Chinese Horse Bean-chili-paste. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1717525] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yunhao Lu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, P. R. China
| | - Linzi Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, P. R. China
| | - Guohua Yang
- Sichuan Dandan Pixian-douban Co.; Ltd., Chengdu, P. R. China
| | - Yuanlong Chi
- College of Biomass Science and Engineering, Sichuan University, Chengdu, P. R. China
| | - Qun Sun
- College of Life Sciences, Sichuan University, Chengdu, P. R. China
| | - Qiang He
- College of Biomass Science and Engineering, Sichuan University, Chengdu, P. R. China
| |
Collapse
|