1
|
Hu YY, Liao JL, Qian WZ, Fan SJ, Xiao XY, Yang Y, Guo JL, Gao S. Metabolomics, E-tongue and HS-SPME-GC-MS reveal the smoking process of Prunus mume: Changes in flavor and chemical compositions. Food Chem 2025; 484:144401. [PMID: 40267671 DOI: 10.1016/j.foodchem.2025.144401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 04/03/2025] [Accepted: 04/17/2025] [Indexed: 04/25/2025]
Abstract
Smoked Prunus mume (SPM), known as Wumei, experiences remarkable alterations in flavor and chemical composition. However, no research has reported on the smoking process. In this study, the changes of flavor and chemical compositions were analyzed via E-tongue, metabolomics, and HS-SPME-GC-MS during the smoking process. Results showed that significant changes in the basic parameters and electronic sense were observed during the smoking process. 85 volatile organic compounds (VOCs) were identified, and 124 metabolites were significantly differentially regulated during the smoking process. Metabolic pathway analysis showed that 20 pathways in SPM, especially phenylpropanoid biosynthesis, are related to smoking process. A number of key substances were identified by Mantel test that may have caused the electrosensory changes in SPM. These findings revealed that the changes characterization of flavor and chemical compositions in SPM during the smoking process, which will help to better understand the formation mechanism of flavor and metabolites.
Collapse
Affiliation(s)
- Yun-Yi Hu
- Department of Forestry, Faculty of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Jia-Li Liao
- Department of Forestry, Faculty of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Wen-Zhang Qian
- Department of Forestry, Faculty of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Shao-Jun Fan
- Department of Forestry, Faculty of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao-Yi Xiao
- Department of Forestry, Faculty of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Yao Yang
- Department of Forestry, Faculty of Forestry, Sichuan Agricultural University, Chengdu 611130, China; National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Sichuan Agricultural University, Chengdu 611130, China
| | - Jin-Lin Guo
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shun Gao
- Department of Forestry, Faculty of Forestry, Sichuan Agricultural University, Chengdu 611130, China; National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
2
|
Mokh S, Lacalle-Bergeron L, Izquierdo-Sandoval D, Corell MC, Beltran J, Sancho JV, Portolés T. Identification and quantification of flavor compounds in smoked tuna fish based on GC-Orbitrap volatolomics approach. Food Chem 2024; 449:139312. [PMID: 38608606 DOI: 10.1016/j.foodchem.2024.139312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/15/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Cold smoking enhances the appeal of fish products, offering consumers a smooth texture and a delicate smoky flavor. This study aims to explore variations in the volatile profile from different exposure times during cold smoking processing (light, moderate, and full-cure) in tune samples. An innovative untargeted analytical approach, headspace solid-phase microextraction combined with gas chromatography and a hybrid quadrupole-orbitrap mass analyzer, was employed to identify 86 volatiles associated with the cold smoking process. Most of these compounds, including phenols, furan derivates, aldehydes, cyclic ketones, and different aromatic species, were found to contribute to the smoke odor. The development of a QuEChERS-based extraction and clean-up method facilitated the quantification of 25 relevant smoky markers across all smoking degrees, revealing significant concentration differences after 15 h of smoking. This research sheds light on the dynamics of cold smoking impact and its on the flavor profile and safety quality of processed fish products.
Collapse
Affiliation(s)
- Samia Mokh
- National Council for Scientific Research CNRS - Lebanese Atomic Energy Commission LAEC - Laboratory for Analysis of Organic Compound LACO, Airport Road, P.O. Box 11-8281, Beirut, Lebanon
| | - Leticia Lacalle-Bergeron
- Enviromental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), Universitat Jaume I, Av. Sos Baynat S/N, 12071 Castellón de la Plana, Spain
| | - David Izquierdo-Sandoval
- Enviromental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), Universitat Jaume I, Av. Sos Baynat S/N, 12071 Castellón de la Plana, Spain
| | - M Carmen Corell
- Sea Delight Europe, S.L, C/ Sao Paulo, 14 Planta 2ª Oficina n°3-P.I. El Sebadal, 35008 Las Palmas de Gran Canaria, Spain
| | - Joaquim Beltran
- Enviromental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), Universitat Jaume I, Av. Sos Baynat S/N, 12071 Castellón de la Plana, Spain
| | - Juan Vicente Sancho
- Enviromental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), Universitat Jaume I, Av. Sos Baynat S/N, 12071 Castellón de la Plana, Spain
| | - Tania Portolés
- Enviromental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), Universitat Jaume I, Av. Sos Baynat S/N, 12071 Castellón de la Plana, Spain..
| |
Collapse
|
3
|
Lin LY, Chen CW, Chen HC, Chen TL, Yang KM. Developing the procedure-enhanced model of ginger-infused sesame oil based on its flavor and functional properties. Food Chem X 2024; 21:101227. [PMID: 38420504 PMCID: PMC10900433 DOI: 10.1016/j.fochx.2024.101227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/04/2024] [Accepted: 02/11/2024] [Indexed: 03/02/2024] Open
Abstract
Ginger-infused sesame oil enriches the nutrition and provides enhanced flavor for the foods. An original processing procedure and module for evaluation were established in this study, using different raw materials (Guangdong and Chu ginger) and treatments (ginger powder, extract, and both). The quality, functionality, and flavor of the infused oils were evaluated. Ginger-infused sesame oil contained 0.58-3.22 µg/g of 6-gingerol, 0.21-0.88 µg/g of 6-shogaol. The number range of volatile compounds from 48 to 55 identified by gas chromatography-mass spectrometry varies depending on different process procedures. Agglomerative hierarchical clustering analysis revealed the flavor profiles were clustered by different varieties, while gingerol and phytosterol was by different treatments. In conclusion, sesame oil was an appropriate carrier for gingerol and phytosterol, which are characterized by higher antioxidant capacities (p < 0.05). These results show the benefits of developing infused oil products with enhanced functional and sensory properties.
Collapse
Affiliation(s)
- Li-Yun Lin
- Department of Food Science and Technology, Hung Kuang University, Taichung 433, Taiwan
| | - Chih-Wei Chen
- Bachelor Degree Program in Food Safety/Hygiene and Laboratory Science, Chang Jung Christian University, Tainan City 711, Taiwan
| | - Hsin-Chun Chen
- Department of Cosmeceutics, China Medical University, Taichung 406, Taiwan
| | - Tai-Liang Chen
- Department of Food Science and Technology, Hung Kuang University, Taichung 433, Taiwan
| | - Kai-Min Yang
- Department of Food Science, National Quemoy University, Kinmen 892, Taiwan
| |
Collapse
|
4
|
Wang Y, Zhang H, Cui J, Gao S, Bai S, You L, Ji C, Wang S. Dynamic changes in the water and volatile compounds of chicken breast during the frying process. Food Res Int 2024; 175:113715. [PMID: 38129035 DOI: 10.1016/j.foodres.2023.113715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/10/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
The influence of frying times (0, 2, 4, 6, 8, and 10 min) on the continuous changes in the water distribution and the concentrations of key volatile compounds in chicken breast during the frying process were studied. The fried chicken samples could be distinguished by PCA of E-nose and PLS-DA of GC-MS. A total of 40 volatile compounds were identified by GC-MS, and 28 compounds were verified to be the key compounds after further screening by OAVs. The T22 was increased first and then decreased, while the M22 and M23 in fried chicken were considerably decreased and increased with increasing frying time, respectively. The content of the water and the total peak area of LF-NMR in fried chicken samples during the frying process significantly decreased, and the water was transferred from high to low degrees of freedom. In addition, water content, T21, T22, M22 and L* value were positively correlated with most alcohols and aldehydes, and were negatively correlated with pyrazines, while a*, b*, M23 and all amino acids were positively correlated with pyrazines and were negatively correlated with most alcohols and aldehydes. The results may guide the production processes of fried chicken and help produce high-quality chicken products.
Collapse
Affiliation(s)
- Yongrui Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Heyu Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Jiarui Cui
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Shuang Gao
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Shuang Bai
- College of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| | - Liqin You
- College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Chen Ji
- College of Agricultural Sciences, Xichang University, XiChang 615000, China
| | - Songlei Wang
- College of Food Science and Engineering, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
5
|
Wang Y, Zhang H, Li K, Luo R, Wang S, Chen F, Sun Y. Dynamic changes in the water distribution and key aroma compounds of roasted chicken during roasting. Food Res Int 2023; 172:113146. [PMID: 37689908 DOI: 10.1016/j.foodres.2023.113146] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 09/11/2023]
Abstract
The effects of roasting times (0, 2, 4, 6, 8, 10, 12, and 14 min) on the dynamic changes of the water distribution and key aroma compounds in roasted chicken during the electric roasting process were studied. In total, 36 volatile compounds were further determined by GC-MS and 11 compounds, including 1-octen-3-ol, 1-heptanol, hexanal, decanal, (E)-2-octenal, acetic acid hexyl ester, nonanal, 2-pentylfuran, heptanal, (E, E)-2,4-decadienal and octanal, were confirmed as key aroma compounds. The relaxation time of T22 and T23 was increased first and then decreased, while the M22 and M23 in roasted chicken were decreased and increased with increasing roasting time, respectively. The fluidity of the water in the chicken during the roasting process was decreased, and the water with a high degree of freedom migrated to the water with a low degree of freedom. In addition, the L*, a*, b*, M23 and all amino acids were positively correlated with all the key aroma compounds, while T22, M22 and moisture content were negatively correlated with all the key aroma compounds.
Collapse
Affiliation(s)
- Yongrui Wang
- College of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Heyu Zhang
- College of Agriculture, Ningxia University, Yinchuan 750021, China
| | - KenKen Li
- College of Food and Wine, Ningxia University, Yinchuan 750021, China
| | - Ruiming Luo
- College of Food and Wine, Ningxia University, Yinchuan 750021, China
| | - Songlei Wang
- College of Food and Wine, Ningxia University, Yinchuan 750021, China.
| | - Fang Chen
- School of Primary Education, Chongqing Normal University, Chongqing 400700, China
| | - Ye Sun
- Quality Control Office, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
6
|
Qiao L, Jiao Y, Li X, Zhang Y, Lu L, Zhang X, Liu X. Herbal smoke fumigation for controlling Penicillium crustosum in fresh walnuts. Food Res Int 2023; 167:112709. [PMID: 37087271 DOI: 10.1016/j.foodres.2023.112709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023]
Abstract
Fresh walnuts have a high water content and are susceptible to decay, and controlling fungal contamination during storage is vital to walnut marketing. In this research, the dominant pathogenic fungus of fresh walnuts was first identified as Penicillium crustosum by morphological and molecular methods. The antifungal effect of herbal smoke fumigation was tested in vitro and in vivo, including Myristica fragrans Houtt., Aucklandia lappa Decne., Eugenia caryophyllata Thunb., Atractylodes lancea (Thunb.) DC., Shiraia bambusicola Henn., Artemisia argyi Lévl. et Vant. The results demonstrated that smoke from all six herbs successfully inhibited P. crustosum growth, and A. argyi smoke produced the best antifungal effect, which contained higher contents of phenol (17.1%), eugenol (13.7%), hexacosane, tetracontane, heneicosane, linolenic acid and other antimicrobial components by gas chromatography-mass spectrometry. Interestingly, optical transmittance data were found to correlate with antifungal capacity, revealing that a formed physical barrier combined with the above antimicrobial compositions, to participate in mold controlling together. Finally, fumigation with A. argyi smoke was tested in a real storage situation at proper dose, which not only dramatically controlled fungal contamination (>70%), but also maintained better odor and taste without oxidative rancidity or other adverse effects. This is the first report in which herbal smoke fumigation was adopted to preserve fresh walnut, providing a new way to reduce mold contamination and maintain quality of fresh walnuts in a natural and safe manner. More research on the application of herbal smoke fumigation to agricultural products in post-harvest storage is needed to explore the conditions and products for which it can be used successfully.
Collapse
|
7
|
Wu R, Yang C, Xi L, Wang T, Zhang J, Kou L, Ding W. Evaluation of the Influence of Flavor Characteristics of Cooked Bacon with Different Sterilization Methods by GC-IMS Combined with HS-SPME-GC-MS and Electronic Nose. Foods 2022; 11:foods11223547. [PMID: 36429139 PMCID: PMC9689316 DOI: 10.3390/foods11223547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/26/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
This study investigated the impact of high pressure and temperature (HTHP) and electron-beam irradiations (3, 5, 7, and 9 kGy) using differences in two sterilization methods on the volatile compounds and sensory characteristics of cooked bacon. It showed that 7 and 9 kGy of irradiation caused a significant reduction in species of volatile compounds and sensory features, but the concentration of total ketones, alcohols, aldehydes, acids and aromatic hydrocarbons significantly increased at 9 kGy. Samples treated with a dose of less than 5 kGy did not change volatile compounds and sensory properties. High-temperature-high-pressure conditions could greatly impact the concentrations of volatile compound species and sensory traits. The electronic nose effectively detected the flavor difference in different sterilization methods. Fingerprinting showed that HTHP and 9-kGy-treated groups were significantly different from other treatments. This study inferred that 5 kGy might be optimal for maintaining the original flavor and sensory properties of cooked bacon.
Collapse
|
8
|
Wang Y, Luo R, Wang S. Study on key aroma compounds in the electric roasting process of Tan mutton. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Yongrui Wang
- College of Agriculture Ningxia University 750021 Yinchuan China
| | - Ruiming Luo
- College of Food and Wine Ningxia University 750021 Yinchuan China
| | - Songlei Wang
- College of Food and Wine Ningxia University 750021 Yinchuan China
| |
Collapse
|
9
|
Liu H, Hui T, Fang F, Li S, Wang Z, Zhang D. The formation of key aroma compounds in roasted mutton during the traditional charcoal process. Meat Sci 2021; 184:108689. [PMID: 34653802 DOI: 10.1016/j.meatsci.2021.108689] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 01/29/2023]
Abstract
The formation of key aroma compounds in roasted mutton during the traditional charcoal process were investigated. The results indicated that the samples roasted for 0-15 min could be discriminated using a flash GC E-nose and GC-O-MS combined with multivariate data analysis. A total of 37 odorants were identified, among which 15 odorants were confirmed as key aroma compounds by aroma recombination experiments. Significant increases in key aroma compositions and concentrations in samples were observed during the roasting process, in which hexanal had the highest concentration. The odour activity values (OAVs) of 15 key aroma compounds were maintained at high levels in the samples after roasting for 10 min. The roasted mutton had typical aromas of meaty, fatty, roasty, grassy, and sweet odours. The multivariate linear modeling indicated that a lower specific heat capacity and lower water activity could contribute to the formation of aroma compounds of samples.
Collapse
Affiliation(s)
- Huan Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Teng Hui
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Fei Fang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Shaobo Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Zhenyu Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
10
|
Collaborative analysis on differences in volatile compounds of Harbin red sausages smoked with different types of woodchips based on gas chromatography–mass spectrometry combined with electronic nose. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111144] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Zhang L, Hu Y, Wang Y, Kong B, Chen Q. Evaluation of the flavour properties of cooked chicken drumsticks as affected by sugar smoking times using an electronic nose, electronic tongue, and HS-SPME/GC-MS. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110764] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Liu YJ, Gong X, Jing W, Lin LJ, Zhou W, He JN, Li JH. Fast discrimination of avocado oil for different extracted methods using headspace-gas chromatography-ion mobility spectroscopy with PCA based on volatile organic compounds. OPEN CHEM 2021. [DOI: 10.1515/chem-2020-0125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
To establish a method for fast discrimination of avocado oil for different extracted methods, the headspace-gas chromatography-ion mobility spectroscopy (HS-GC-IMS) combined with principal component analysis (PCA) was used to analyze non-target volatile organic compounds (VOCs). The results showed that 40 VOCs were identified, and the VOCs of the extraction method had a significant difference and had been well distinguished in PCA. The species and content of avocado oil obtained by squeeze method were more than the aqueous methods and supercritical carbon dioxide extraction methods (SC CO2). In addition, the different avocado oil had their characteristic compounds: the 2-acetylthiazole and ethyl propionate were the unique compounds in the avocado oil obtained by SC CO2. A rapid method for the determination of avocado oil obtained by different extraction methods based on HS-GC-IMS had been established, and the method was fast and simple and had a good application prospect in the prediction of avocado oil processing methods.
Collapse
Affiliation(s)
- Yi-Jun Liu
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences , Zhanjiang 524001 , China
- Hainan Key Laboratory of Storage & processing of fruits and vegetables , Zhanjiang 524001 , China
- School of Light Industry and Engineering, South China University of Technology , Guangzhou 510641 , China
| | - Xiao Gong
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences , Zhanjiang 524001 , China
- Hainan Key Laboratory of Storage & processing of fruits and vegetables , Zhanjiang 524001 , China
| | - Wei Jing
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences , Zhanjiang 524001 , China
- Hainan Key Laboratory of Storage & processing of fruits and vegetables , Zhanjiang 524001 , China
| | - Li-Jing Lin
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences , Zhanjiang 524001 , China
- Hainan Key Laboratory of Storage & processing of fruits and vegetables , Zhanjiang 524001 , China
| | - Wei Zhou
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences , Zhanjiang 524001 , China
- Hainan Key Laboratory of Storage & processing of fruits and vegetables , Zhanjiang 524001 , China
| | - Jin-Na He
- Shandong Hanon Instruments Co., Ltd. , Dezhou 251500 , China
| | - Ji-Hua Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences , Zhanjiang 524001 , China
- Hainan Key Laboratory of Storage & processing of fruits and vegetables , Zhanjiang 524001 , China
| |
Collapse
|
13
|
Liu Y, Bu M, Gong X, He J, Zhan Y. Characterization of the volatile organic compounds produced from avocado during ripening by gas chromatography ion mobility spectrometry. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:666-672. [PMID: 32696460 DOI: 10.1002/jsfa.10679] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 05/28/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The volatile organic compounds (VOCs) produced from avocados during storage may be distinct at different periods, and this difference may be related to their degree of maturity, for which no relevant research has been conducted yet. RESULTS A total of 30 typical target compounds were identified by gas chromatography-ion mobility spectrometry (GC-IMS) combined with principal component analysis (PCA) for the VOCs produced during the post-harvesting process of avocado. With an increase in storage time, the VOCs content produced by avocado due to ripening continued to increase, and the uptrend was particularly obvious on day 13. The storage time of avocado could be distinguished according to the PC1 and PC2 values in the PCA chart. CONCLUSION GC-IMS detection combined with PCA was used to establish the fingerprints of VOCs in avocado for the first time. The maturity of avocados was determined by identifying the signal strength of characteristic VOCs, and this method could be of great potential to predict the maturity of fruits in the future. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yijun Liu
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
- Hainan Key Laboratory of Storage & Processing of Fruits and Vegetables, Zhanjiang, China
| | - Mengting Bu
- College of Tropical Crops Institute, Yunnan Agricultural University, Kunming, China
| | - Xiao Gong
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
- Hainan Key Laboratory of Storage & Processing of Fruits and Vegetables, Zhanjiang, China
| | - Jinna He
- Shandong Hanon Instruments Co Ltd, Dezhou, China
| | - Yu Zhan
- Shandong Hanon Instruments Co Ltd, Dezhou, China
| |
Collapse
|