1
|
Gautam N, Puneet, Sharma N. Characterisation of microbial fructosyltransferase produced extracellularly from Bacillus siamensis GO6 for prebiotic production. Nat Prod Res 2025:1-5. [PMID: 40235397 DOI: 10.1080/14786419.2025.2491121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 03/15/2025] [Accepted: 04/06/2025] [Indexed: 04/17/2025]
Abstract
The present study aimed to characterise bacterial Fructosyltransferase (FTase; EC 2.4.1.9) from Bacillus siamensis GO6 isolated from Allium fistulosum. The FTase producing potential of B. siamensis is being reported for the first time in this study. Fructosyltransferase production of B. siamensis GO6 was enhanced by optimisation of growth parameters. Maximum Fructosyltransferase activity 134.75 U/ml was recorded in nutrient broth supplemented with tryptone, 60% sucrose at 72 h with an optimised pH of 6.0 at 40 °C. Partial purification of FTase was achieved at 30-60%. FTase titres after partial purification were 175 U/ml with specific activity 484.76 U/mg, and 77% recovery. Partially purified FTase was active in a temperature range 30 °C and 80 °C and in pH 5.0 to 9.0. FTase was found stable at -20 °C for 45 days. The results showed that the B. siamensis GO6 represents a hopeful source for FTase enzyme that can be efficiently utilised for prebiotic production.
Collapse
Affiliation(s)
- Neha Gautam
- Department of Food Science and Technology, Dr Y S Parmar University of Horticulture and Forestry, Solan, HP, India
| | - Puneet
- Department of Basic Sciences, Microbiology Research Laboratory, Dr Y S Parmar University of Horticulture and Forestry, Solan, HP, India
| | - Nivedita Sharma
- Department of Basic Sciences, Microbiology Research Laboratory, Dr Y S Parmar University of Horticulture and Forestry, Solan, HP, India
| |
Collapse
|
2
|
Rawat HK, Nath S, Sharma I, Kango N. Recent developments in the production of prebiotic fructooligosaccharides using fungal fructosyltransferases. Mycology 2024; 15:564-584. [PMID: 39678637 PMCID: PMC11636151 DOI: 10.1080/21501203.2024.2323713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/21/2024] [Indexed: 12/17/2024] Open
Abstract
Prebiotic nutritional ingredients have received attention due to their health-promoting potential and related uses in the food and nutraceutical industries. Recent times have witnessed an increasing interest in the use of fructooligosaccharides (FOS) as prebiotics and their generation using microbial enzymes. FOS consumption is known to confer health benefits such as protection against colon cancer, improved mineral absorption, lowering effect on serum lipid and cholesterol concentration, antioxidant properties, favourable dietary modulation of the human colonic microbiota, and immuno-modulatory effects. Comparative analysis of molecular models of various fructosyltransferases (FTases) reveals the mechanism of action and interaction of substrate with the active site. Microbial FTases carry out transfructosylation of sucrose into fructooligosaccharides (kestose, nystose, and fructofuranosylnystose), the most predominantly used prebiotic oligosaccharides. Furthermore, FOS has also been used for other purposes, such as low-calorie sweeteners, dietary fibres, and as the substrates for fermentation. This review highlights the occurrence, characteristics, immobilisation, and potential applications of FOS-generating fungal FTases. Production, heterologous expression, molecular characteristics, and modelling of fungal FTases underpinning their biotechnological prospects are also discussed.
Collapse
Affiliation(s)
- Hemant Kumar Rawat
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
| | - Suresh Nath
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
| | - Isha Sharma
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
| | - Naveen Kango
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
| |
Collapse
|
3
|
Martínez D, Sobrino A, Aguiar A, González-Bacerio J, Hernández L, Pérez ER, Monte-Martínez AD. Rational design and immobilization of a recombinant sucrose: Sucrose 1-fructosyltransferase on Sepabeads® and ReliZyme™ supports for short-chain fructooligosaccharides production. Process Biochem 2024; 137:71-84. [DOI: 10.1016/j.procbio.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
de Oliveira RL, dos Santos AFA, Cardoso BA, da Silva Santos TS, de Campos-Takaki GM, Porto TS, Porto CS. Production, Kinetic/Thermodynamic Study, and Evaluation of the Influence of Static Magnetic Field on Kinetic Parameters of β-Fructofuranosidase from Aspergillus tamarii Kita UCP 1279 Produced by Solid-State Fermentation. BIOTECH 2023; 12:biotech12010021. [PMID: 36975311 PMCID: PMC10046036 DOI: 10.3390/biotech12010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
β-fructofuranosidases (FFases) are enzymes involved in sucrose hydrolysis and can be used in the production of invert sugar and fructo-oligosaccharides (FOS). This last is an important prebiotic extensively used in the food industry. In the present study, the FFase production by Aspergillus tamarii Kita UCP 1279 was assessed by solid-state fermentation using a mixture of wheat and soy brans as substrate. The FFase presents optimum pH and temperature at 5.0–7.0 and 60 °C, respectively. According to the kinetic/thermodynamic study, the FFase was relatively stable at 50 °C, a temperature frequently used in industrial FOS synthesis, using sucrose as substrate, evidenced by the parameters half-life (115.52 min) and D-value (383.76 min) and confirmed by thermodynamic parameters evaluated. The influence of static magnetic field with a 1450 G magnetic flux density presented a positive impact on FFase kinetic parameters evidenced by an increase of affinity of enzyme by substrate after exposition, observed by a decrease of 149.70 to 81.73 mM on Km. The results obtained indicate that FFases present suitable characteristics for further use in food industry applications. Moreover, the positive influence of a magnetic field is an indicator for further developments of bioprocesses with the presence of a magnetic field.
Collapse
Affiliation(s)
- Rodrigo Lira de Oliveira
- School of Food Engineering, Federal University of Agreste of Pernambuco/UFAPE, Av. Bom Pastor, Boa Vista, s/n, Garanhuns 55296-901, Brazil
- Correspondence: (R.L.d.O.); (C.S.P.); Tel.: +55-87-3764-5500 (R.L.d.O.); +55-82-3551-2784 (C.S.P.)
| | | | - Bianca Alencar Cardoso
- Education Unit of Penedo, Federal University of Alagoas/UFAL, Avenida Beira Rio, s/n, Penedo 57200-000, Brazil
| | | | - Galba Maria de Campos-Takaki
- Nucleus of Research in Environmental Sciences and Biotechnology, Catholic University of Pernambuco/UNICAP, Rua do Príncipe, 526, Recife 50050-590, Brazil
| | - Tatiana Souza Porto
- Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco/UFRPE, Av. Dom Manoel de Medeiros, s/n, Recife 52171-900, Brazil
| | - Camila Souza Porto
- Education Unit of Penedo, Federal University of Alagoas/UFAL, Avenida Beira Rio, s/n, Penedo 57200-000, Brazil
- Correspondence: (R.L.d.O.); (C.S.P.); Tel.: +55-87-3764-5500 (R.L.d.O.); +55-82-3551-2784 (C.S.P.)
| |
Collapse
|
5
|
Chavan AR, Singh AK, Gupta RK, Nakhate SP, Poddar BJ, Gujar VV, Purohit HJ, Khardenavis AA. Recent trends in the biotechnology of functional non-digestible oligosaccharides with prebiotic potential. Biotechnol Genet Eng Rev 2023:1-46. [PMID: 36714949 DOI: 10.1080/02648725.2022.2152627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/13/2022] [Indexed: 01/31/2023]
Abstract
Prebiotics as a part of dietary nutrition can play a crucial role in structuring the composition and metabolic function of intestinal microbiota and can thus help in managing a clinical scenario by preventing diseases and/or improving health. Among the different prebiotics, non-digestible carbohydrates are molecules that selectively enrich a typical class of bacteria with probiotic potential. This review summarizes the current knowledge about the different aspects of prebiotics, such as its production, characterization and purification by various techniques, and its link to novel product development at an industrial scale for wide-scale use in diverse range of health management applications. Furthermore, the path to effective valorization of agricultural residues in prebiotic production has been elucidated. This review also discusses the recent developments in application of genomic tools in the area of prebiotics for providing new insights into the taxonomic characterization of gut microorganisms, and exploring their functional metabolic pathways for enzyme synthesis. However, the information regarding the cumulative effect of prebiotics with beneficial bacteria, their colonization and its direct influence through altered metabolic profile is still getting established. The future of this area lies in the designing of clinical condition specific functional foods taking into consideration the host genotypes, thus facilitating the creation of balanced and required metabolome and enabling to maintain the healthy status of the host.
Collapse
Affiliation(s)
- Atul Rajkumar Chavan
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ashish Kumar Singh
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rakesh Kumar Gupta
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Suraj Prabhakarrao Nakhate
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Bhagyashri Jagdishprasad Poddar
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vaibhav Vilasrao Gujar
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
- JoVE, Mumbai, India
| | - Hemant J Purohit
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
| | - Anshuman Arun Khardenavis
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nagpur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
6
|
Veljković M, Stepanović R, Banjanac K, Ćorović M, Milivojević A, Simović M, Milivojević M, Bezbradica D. Continuous production of fructo-oligosaccharides using selectively immobilized fructosyltransferase from Aspergillus aculeatus onto Purolite® A109. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2022.09.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Araújo VPB, Araújo TKD, Sousa KMND, Albuquerque WWC, Nascimento AKCD, Cardoso KBB, Nascimento TP, Batista JMDS, Cavalcanti MTH, Porto ALF, Costa RMPB. A novel β-fructofuranosidase produced by Penicillium citreonigrum URM 4459: purification and biochemical features. Prep Biochem Biotechnol 2022; 53:906-913. [PMID: 36579491 DOI: 10.1080/10826068.2022.2158472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fructooligosaccharides (FOS) are prebiotics of interest to the food industry. These compounds can be produced through the transfructosylation reaction by the enzyme fructofuranosidase. This enzyme is widely produced by fungi in a medium rich in sugar. Therefore, in this work, the main objectives were production, purification, biochemical characterization of a novel fructofuranosidase enzyme by Penicillium citreonigrum URM 4459 and synthesize and evaluate the antibacterial potential of fructooligosaccharides. With respect to sucrose hydrolysis, the optimal pH was 5.5, the apparent Km for purified FFase was 3.8 mM, the molecular mass was 43.0 kDa, estimated by gel filtration on Superdex increase G75 controlled by AKTA Avant 25 and confirmed by 10% SDS-PAGE under denaturing condition. Also, the isoelectric point was 4.9. The fractions obtained with enzymatic activities, both stable at acidic pH and high temperatures, as well as being able to produce FOS. Regarding antibacterial activity, the FOS produced in this study showed better results than commercial FOS and other carbon sources. Thus, this work presents relevant data for the use of P. citreonigum to produce fructofuranosidase and consequently FOS and can be used in the food and pharmaceutical industry.
Collapse
Affiliation(s)
| | - Thayza Kássia de Araújo
- Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco, Recife, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Choukade R, Kango N. Purification of Aspergillus tamarii mycelial fructosyltransferase (m-FTase), optimized FOS production, and evaluation of its anticancer potential. J Food Sci 2022; 87:3294-3306. [PMID: 35638324 DOI: 10.1111/1750-3841.16173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/01/2022] [Accepted: 04/13/2022] [Indexed: 11/29/2022]
Abstract
In the present study, generation of prebiotic fructooligosaccharides (FOS) using Aspergillus tamarii FTase was optimized by applying response surface methodology. Optimal FOS (251 g L-1 ) was generated at 28.4°C, pH 7.0 and 50% (w/v) sucrose leading to 1.97-fold yield enhancement. The m-FTase was purified using ultrafiltration followed by HiTrap Q HP anion exchange chromatography resulting in 2.15-fold purified FTase with 12.76 U mg-1 specific activity. Purified FTase (75 kDa) had Km and Vmax values of 1049.717 mM and 2.094 µmol min-1 mg-1 , respectively. FOS incorporation led to upregulation of caspase 3, caspase 9, and Bax genes suggesting mitochondrial apoptosis activation in cancer cells. The study describes characteristics of purified FTase from A. tamarii, production optimization of FOS and unravels the role of FOS in anticancer activity against HT-29 cells. PRACTICAL APPLICATION: This study provides detailed insights of kinetic and thermodynamic characteristics of purified FTase, a prebiotic FOS-generating enzyme. Moreover, the role of the apoptotic genes involved in anticancer activity, and the prebiotic potential of FOS is also investigated. These findings are important in the context of FOS applications, and the optimized production strategies make it useful for industrial application.
Collapse
Affiliation(s)
- Ritumbhara Choukade
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| | - Naveen Kango
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| |
Collapse
|
9
|
Nath S, Kango N. Recent Developments in Industrial Mycozymes: A Current Appraisal. Mycology 2022; 13:81-105. [PMID: 35711326 PMCID: PMC9196846 DOI: 10.1080/21501203.2021.1974111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fungi, being natural decomposers, are the most potent, ubiquitous and versatile sources of industrial enzymes. About 60% of market share of industrial enzymes is sourced from filamentous fungi and yeasts. Mycozymes (myco-fungus; zymes-enzymes) are playing a pivotal role in several industrial applications and a number of potential applications are in the offing. The field of mycozyme production, while maintaining the old traditional methods, has also witnessed a sea change due to advents in recombinant DNA technology, optimisation protocols, fermentation technology and systems biology. Consolidated bioprocessing of abundant lignocellulosic biomass and complex polysaccharides is being explored at an unprecedented pace and a number of mycozymes of diverse fungal origins are being explored using suitable platforms. The present review attempts to revisit the current status of various mycozymes, screening and production strategies and applications thereof.
Collapse
Affiliation(s)
- Suresh Nath
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP, India
| | - Naveen Kango
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP, India
| |
Collapse
|
10
|
Liang X, Li C, Cao W, Cao W, Shen F, Wan Y. Fermentative Production of Fructo-Oligosaccharides Using Aureobasidium pullulans: Effect of Dissolved Oxygen Concentration and Fermentation Mode. Molecules 2021; 26:molecules26133867. [PMID: 34202788 PMCID: PMC8270319 DOI: 10.3390/molecules26133867] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 11/16/2022] Open
Abstract
Fructo-oligosaccharides (FOS) are prebiotics with numerous health benefits. So far, the dissolved oxygen (DO) concentration control strategy for fermentative production of FOS is still unknown. In order to improve FOS production, the effects of DO concentration and fermentation mode on FOS using Aureobasidium pullulans were investigated in this study. The greatest FOS production (123.2 ± 6.2 g/L), with a yield of 61.6% ± 3.0% (g FOS/g sucrose), was obtained in batch culture under high DO concentration. Furthermore, repeated-batch culture revealed that enzyme production and FOS production were not closely associated with cell growth. By keeping the DO concentration above 5% in the repeated-batch culture, a maximum FOS concentration of 548.3 ± 37.4 g/L and yield of 68.6% ± 2.6% (g FOS/g sucrose) were obtained, which were 3.45% and 11.4% times higher than those obtained in the batch culture without DO control, respectively. Additionally, the ratios of 1-fructofuranosyl nystose (GF4) and 1,1,1,1-kestohexose (GF5) were 33.8% and 23.2%, respectively, in the product of repeated-batch culture, but these compounds were not detected in batch culture. Thus, it can be concluded that the DO concentration affects not only the yield of FOS but also the composition of FOS with different degrees of polymerization, which is the key factor in the fermentative production of FOS with a high polymerization degree.
Collapse
Affiliation(s)
- Xinquan Liang
- Department of Sugar Engineering, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (X.L.); (C.L.)
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (W.C.); (F.S.); (Y.W.)
| | - Chenglin Li
- Department of Sugar Engineering, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (X.L.); (C.L.)
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (W.C.); (F.S.); (Y.W.)
| | - Weifeng Cao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (W.C.); (F.S.); (Y.W.)
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel./Fax: +86-10-62650673
| | - Weilei Cao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (W.C.); (F.S.); (Y.W.)
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Shen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (W.C.); (F.S.); (Y.W.)
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (W.C.); (F.S.); (Y.W.)
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Choukade R, Kango N. Production, properties, and applications of fructosyltransferase: a current appraisal. Crit Rev Biotechnol 2021; 41:1178-1193. [PMID: 34015988 DOI: 10.1080/07388551.2021.1922352] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Fructosyltransferases (FTases) are drawing increasing attention due to their application in prebiotic fructooligosaccharide (FOS) generation. FTases have been reported to occur in a variety of microorganisms but are predominantly found in filamentous fungi. These are employed at the industrial scale for generating FOS which make the key ingredient in functional food supplements and nutraceuticals due to their bifidogenic and various other health-promoting properties. SCOPE AND APPROACH This review is aimed to discuss recent developments made in the area of FTase production, characterization, and application in order to present a comprehensive account of their present status to the reader. Structural features, catalytic mechanisms, and FTase improvement strategies have also been discussed in order to provide insight into these aspects. KEY FINDINGS AND CONCLUSIONS Although FTases occur in several plants and microorganisms, fungal FTases are being exploited commercially for industrial-scale FOS generation. Several fungal FTases have been characterized and heterologously expressed. However, considerable scope exists for improved production and application of FTases for cost-effective production of prebiotic FOS.HIGHLIGHTSFructosyltrasferase (FTase) is a key enzyme in fructo-oligosaccharide (FOS) generationDevelopments in the production, properties, and functional aspects of FTasesMolecular modification and immobilization strategies for improved FOS generationFructosyltransferases are innovation hotspots in the food and nutraceutical industries.
Collapse
Affiliation(s)
- Ritumbhara Choukade
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| | - Naveen Kango
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| |
Collapse
|
12
|
Wang Y, Shang X, Cao F, Yang H. Research Progress and Prospects for Fructosyltransferases. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202000011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yitian Wang
- Yangzhou University Clinical Medical College 225009 Yangzhou China
- Northern Jiangsu People's Hospital 225001 Yangzhou China
- Jiangnan University School of Biotechnology 214122 Wuxi China
| | - Xiujie Shang
- Yangzhou University Clinical Medical College 225009 Yangzhou China
- Qingdao Dengta Flavoring and Food Co. Ltd 266399 Qingdao China
| | - Fan Cao
- Vanderbilt University Department of Biochemistry 37235 Nashville TN USA
| | - Haiquan Yang
- Jiangnan University School of Biotechnology 214122 Wuxi China
- Jiangnan University The Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education 214122 Wuxi China
| |
Collapse
|
13
|
Continuous production of fructooligosaccharides by recycling of the thermal-stable β-fructofuranosidase produced by Aspergillus niger. Biotechnol Lett 2021; 43:1175-1182. [PMID: 33575897 DOI: 10.1007/s10529-021-03099-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To achieve continuous production of fructooligosaccharides (FOS) by recycling of the mycelial cells containing the thermal-stable β-fructofuranosidase in Aspergillus niger without immobilization. RESULTS The thermal-stable β-fructofuranosidase FopA-V1 was successfully expressed in A. niger ATCC 20611 under the control of the constitutive promoter PgpdA. The engineered A. niger strain FV1-11 produced the β-fructofuranosidase with improved thermostability, which remained 91.2% of initial activity at 50 °C for 30 h. Then its mycelial β-fructofuranosidase was recycled for the synthesis of FOS. It was found that the enzyme still had 79.3% of initial activity after being reused for six consecutive cycles, whereas only 62.3% β-fructofuranosidase activity was detected in the parental strain ATCC 20611. Meanwhile, the FOS yield of FV1-11 after six consecutive cycles reached 57.1% (w/w), but only 51.0% FOS yield was detected in ATCC 20611. CONCLUSIONS The thermal-stable β-fructofuranosidase produced by A. niger can be recycled to achieve continuous synthesis of FOS with high efficiency, providing a powerful and economical strategy for the industrial production of FOS.
Collapse
|
14
|
Efficient production of fructo-oligosaccharides from sucrose and molasses by a novel Aureobasidium pullulan strain. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107747] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Ojwach J, Kumar A, Mukaratirwa S, Mutanda T. Purification and biochemical characterization of an extracellular fructosyltransferase enzyme from Aspergillus niger sp. XOBP48: implication in fructooligosaccharide production. 3 Biotech 2020; 10:459. [PMID: 33088656 DOI: 10.1007/s13205-020-02440-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/15/2020] [Indexed: 11/26/2022] Open
Abstract
An extracellular fructosyltransferase (Ftase) enzyme with a molar mass of ≈70 kDa from a newly isolated indigenous coprophilous fungus Aspergillus niger sp. XOBP48 is purified to homogeneity and characterized in this study. The enzyme was purified to 4.66-fold with a total yield of 15.53% and specific activity of 1219.17 U mg-1 of protein after a three-step procedure involving (NH4)2SO4 fractionation, dialysis and anion exchange chromatography. Ftase showed optimum activity at pH 6.0 and temperature 50 °C. Ftase exhibited over 80% residual activity at pH range of 4.0-10.0 and ≈90% residual activity at temperature range of 40-60 °C for 6 h. Metal ion inhibitors Hg2+ and Ag+ significantly inhibited Ftase activity at 1 mmol concentration. Ftase showed K m, v max and k cat values of 79.51 mmol, 45.04 µmol min-1 and 31.5 min-1, respectively, with a catalytic efficiency (k cat/K m) of 396 µmol-1 min-1 for the substrate sucrose. HPLC-RI experiments identified the end products of fructosyltransferase activity as monomeric glucose, 1-kestose (GF2), and 1,1-kestotetraose (GF3). This study evaluates the feasibility of using this purified extracellular Ftase for the enzymatic synthesis of biofunctional fructooligosaccharides.
Collapse
Affiliation(s)
- Jeff Ojwach
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban, 4000 South Africa
| | - Ajit Kumar
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban, 4000 South Africa
| | - Samson Mukaratirwa
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban, 4000 South Africa
- Present Address: One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Taurai Mutanda
- Department of Nature Conservation, Faculty of Natural Sciences, Centre for Algal Biotechnology, Mangosuthu University of Technology, P.O. Box 12363, Jacobs 4026, Durban, South Africa
| |
Collapse
|
16
|
Batista JM, Brandão-Costa RM, Carneiro da Cunha MN, Rodrigues HO, Porto AL. Purification and biochemical characterization of an extracellular fructosyltransferase-rich extract produced by Aspergillus tamarii Kita UCP1279. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101647] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
17
|
Kırtel O, Lescrinier E, Van den Ende W, Toksoy Öner E. Discovery of fructans in Archaea. Carbohydr Polym 2019; 220:149-156. [DOI: 10.1016/j.carbpol.2019.05.064] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 02/07/2023]
|
18
|
Analysis of oligosaccharides from Panax ginseng by using solid-phase permethylation method combined with ultra-high-performance liquid chromatography-Q-Orbitrap/mass spectrometry. J Ginseng Res 2019; 44:775-783. [PMID: 33192120 PMCID: PMC7655486 DOI: 10.1016/j.jgr.2019.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/30/2019] [Accepted: 08/02/2019] [Indexed: 12/28/2022] Open
Abstract
Background The reports about valuable oligosaccharides in ginseng are quite limited. There is an urgent need to develop a practical procedure to detect and analyze ginseng oligosaccharides. Methods The oligosaccharide extracts from ginseng were permethylated by solid-phase methylation method and then were analyzed by ultra-high-performance liquid chromatography-Q-Orbitrap/MS. The sequence, linkage, and configuration information of oligosaccharides were determined by using accurate m/z value and tandem mass information. Several standard references were used to further confirm the identification. The oligosaccharide composition in white ginseng and red ginseng was compared using a multivariate statistical analysis method. Results The nonreducing oligosaccharide erlose among 12 oligosaccharides identified was reported for the first time in ginseng. In the comparison of the oligosaccharide extracts from white ginseng and red ginseng, a clear separation was observed in the partial least squares-discriminate analysis score plot, indicating the sugar differences in these two kinds of ginseng samples. The glycans with variable importance in the projection value large than 1.0 were considered to contribute most to the classification. The contents of oligosaccharides in red ginseng were lower than those in white ginseng, and the contents of maltose, maltotriose, maltotetraose, maltopentaose, maltohexaose, maltoheptaose, maltooctaose, maltononaose, sucrose, and erlose decreased significantly (p < 0.05) in red ginseng. Conclusion A solid-phase methylation method combined with liquid chromatography-tandem mass spectrometry was successfully applied to analyze the oligosaccharides in ginseng extracts, which provides the possibility for holistic evaluation of ginseng oligosaccharides. The comparison of oligosaccharide composition of white ginseng and red ginseng could help understand the differences in pharmacological activities between these two kinds of ginseng samples from the perspective of glycans.
Collapse
|