1
|
Dissanayake IH, Tabassum W, Alsherbiny M, Chang D, Li CG, Bhuyan DJ. Lactic acid bacterial fermentation as a biotransformation strategy to enhance the bioavailability of phenolic antioxidants in fruits and vegetables: A comprehensive review. Food Res Int 2025; 209:116283. [PMID: 40253191 DOI: 10.1016/j.foodres.2025.116283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/24/2025] [Accepted: 03/12/2025] [Indexed: 04/21/2025]
Abstract
Fruits and vegetables (FVs) are rich sources of macro and micro-nutrients crucial for a healthy diet. In addition to these nutrients, FVs also contain fibre and phytochemicals known for their antioxidant properties. Despite the growing evidence of the disease-preventive role of antioxidants in FVs, their bioavailability and bioaccessibility vary significantly and have not been adequately explored. Lactic acid bacterial (LAB) fermentation is considered the most appropriate and accessible biotechnological approach to maintain and enhance the safety, nutritional, sensory and shelf-life properties of perishable foods such as FVs. This review critically assesses how LAB fermentation could be utilised as a promising biotransformation strategy to enhance the bioavailability of antioxidants in FVs. Furthermore, it discusses the potential use of uniquely nutritious Australian native fruits as suitable candidates for LAB fermentation. Further research is essential to identify the beneficial properties of bioactive compounds and effective LAB-based biotransformation strategies to improve the bioavailability and bioaccessibility of antioxidants in FVs.
Collapse
Affiliation(s)
| | - Wahida Tabassum
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| | - Muhammad Alsherbiny
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; Freedman Foundation Metabolomics Facility, Innovation Centre, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| | - Chung Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia; School of Science, Western Sydney University, Penrith, NSW 2751, Australia.
| |
Collapse
|
2
|
Wu Q, Liu D, Zhang J, Li T, Niu H, Xin X, Zhao S, He C, Zhang C. Enhancing the formation of functional glucosinolate degradation products in fermented broccoli stalk by-product with lactic acid bacteria. Food Chem 2025; 464:141689. [PMID: 39427612 DOI: 10.1016/j.foodchem.2024.141689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Broccoli stalk by-product (BsBP) is rich in glucosinolates (GSLs). Its fermentation process is generally characterized by the degradation of GSLs and formation of bioactive isothiocyanates (ITCs), in which lactic acid bacteria (LAB) play an important role. The GSLs-degrading capacity of 61 LAB strains was investigated in vitro. Lacticaseibacillus paracasei YC5, Pediococcus pentosaceus RBHZ36, and Lactiplantibacillus plantarum ND1, with high potential to transform GSLs into ITCs, were screened. The functional GSL degradation products (total content of sulforaphane, indol-3-carbinol, and ascorbigen) increased 22.0-33.5 % compared to natural fermentation after 24 h when BsBP was fermented by the three screened strains in pure culture. LAB fermentation also helped to increase the quantity of indolic GSL degradation products in BsBP brine, suggesting that LAB fermentation promoted BsBP GSLs transformation into bioactive ITCs. The proposed use of the LAB strains characterized in this study provided a fermented BsBP and brine with high profile of functional GSL degradation products.
Collapse
Affiliation(s)
- Qinghang Wu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Daqun Liu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jianming Zhang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ting Li
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Haiyue Niu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaoting Xin
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shengming Zhao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Chengyun He
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Chengcheng Zhang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
3
|
Salas-Millán JÁ, Aguayo E. Bioaccessibility and unravelling of polyphenols, sulforaphane, and indoles biotransformation after in vitro gastrointestinal digestion of a novel lactofermented broccoli beverage. Food Funct 2024; 15:11949-11960. [PMID: 39555602 DOI: 10.1039/d4fo03528c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
This study assesses the transformation and stability of polyphenols, sulforaphane, and indoles in a fermented beverage made from broccoli leaves during in vitro gastrointestinal digestion (GID). This process was simulated using a dialysis membrane to assess intestinal absorption. The total phenolic compounds (TPC) and antioxidant TEAC assays showed an increase in phytochemical content due to the GID process. The higher TPC and antioxidant activity observed after digestion was likely due to the enzymatic transformation of polyphenols in mildly alkaline conditions. Individual phytochemical analysis revealed that hydroxycinnamic acids, particularly 3CQa, remained stable initially but then decreased significantly during intestinal digestion. Acylated flavonoids exhibited a decrease during intestinal digestion, while deacylated flavonoids initially decreased before stabilising. This indicated the occurrence of enzymatic hydrolysis of more structurally complex flavonoids to glycosylated flavonoids such as kaempferol-3,7-diglucoside, and kaempferol-3-sophoroside-7-glucoside. Consequently, deacylated flavonoids were highlighted for their high bioaccessibility rate after in vitro GID. Glucosinolate-hydrolysis products, including sulforaphane and indoles, exhibited a general decrease during digestion, with sulforaphane showing 51% bioaccessibility. The study highlights the dialysed in vitro GID process, which affects the release and transformation of bioactive compounds, potentially increasing their bioaccessibility and the subsequent health benefits of the lactofermented beverage made from broccoli leaves.
Collapse
Affiliation(s)
- José Ángel Salas-Millán
- Postharvest and Refrigeration Group, Polytechnic University of Cartagena (UPCT), Paseo Alfonso XIII, 48, 30203 Cartagena, Spain.
- Food Quality and Health Group, Institute of Plant Biotechnology (IBV-UPCT), Campus Muralla del Mar, 30202 Cartagena, Spain
| | - Encarna Aguayo
- Postharvest and Refrigeration Group, Polytechnic University of Cartagena (UPCT), Paseo Alfonso XIII, 48, 30203 Cartagena, Spain.
- Food Quality and Health Group, Institute of Plant Biotechnology (IBV-UPCT), Campus Muralla del Mar, 30202 Cartagena, Spain
| |
Collapse
|
4
|
Bas-Bellver C, Barrera C, Seguí L. Impact of Thermophysical and Biological Pretreatments on Antioxidant Properties and Phenolic Profile of Broccoli Stem Products. Foods 2024; 13:3585. [PMID: 39594002 PMCID: PMC11593915 DOI: 10.3390/foods13223585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Fruit and vegetable industrialisation is a major contributor to food waste; thus, its integral transformation into functional powders has gained attention. Pretreatments can be incorporated into valorisation processes to generate structural or biochemical changes that improve powders' characteristics. This study deepens into the impact of biological (fermentation, FERM) and thermophysical (autoclaving, AUTO; microwaves, MW; ultrasound, US; and pasteurisation, PAST) pretreatments, combined with dehydration (hot air-drying, HAD; or freeze-drying, FD) on the characteristics of powdered products obtained from broccoli stems. The impact of pretreatments on physicochemical (moisture, water activity, total soluble solids) and antioxidant properties (phenols, flavonoids, antioxidant capacity by ABTS and DPPH) on residue and powdered products was studied, together with their impact on plant tissue structure (Cryo-SEM) and the powders' phenolic profile (HPLC). Probiotic viability was also determined on the fermented samples. The pretreatments applied, particularly the ultrasound, improved the antioxidant properties of the broccoli stems compared to the unpretreated samples, in line with microscopic observations. Dehydration did also improve the antioxidant attributes of the broccoli wastes, especially drying at 60 °C. However, pretreatments combined with dehydration did not generally lead to an improvement in the antioxidant properties of the powders. Probiotic properties were preserved in the freeze-dried products (>107 CFU/g). In conclusion, pretreatments may be applied to enhance the antioxidant attributes of broccoli wastes, but not necessarily that of dried powdered products.
Collapse
Affiliation(s)
| | | | - Lucía Seguí
- Institute of Food Engineering—FoodUPV, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain; (C.B.-B.); (C.B.)
| |
Collapse
|
5
|
Li Y, He W, Liu S, Hu X, He Y, Song X, Yin J, Nie S, Xie M. Innovative omics strategies in fermented fruits and vegetables: Unveiling nutritional profiles, microbial diversity, and future prospects. Compr Rev Food Sci Food Saf 2024; 23:e70030. [PMID: 39379298 DOI: 10.1111/1541-4337.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 10/10/2024]
Abstract
Fermented fruits and vegetables (FFVs) are not only rich in essential nutrients but also contain distinctive flavors, prebiotics, and metabolites. Although omics techniques have gained widespread recognition as an analytical strategy for FFVs, its application still encounters several challenges due to the intricacies of biological systems. This review systematically summarizes the advances, obstacles and prospects of genomics, transcriptomics, proteomics, metabolomics, and multi-omics strategies in FFVs. It is evident that beyond traditional applications, such as the exploration of microbial diversity, protein expression, and metabolic pathways, omics techniques exhibit innovative potential in deciphering stress response mechanisms and uncovering spoilage microorganisms. The adoption of multi-omics strategies is paramount to acquire a multidimensional network fusion, thereby mitigating the limitations of single omics strategies. Although substantial progress has been made, this review underscores the necessity for a comprehensive repository of omics data and the establishment of universal databases to ensure precision in predictions. Furthermore, multidisciplinary integration with other physical or biochemical approaches is imperative, as it enriches our comprehension of this intricate process.
Collapse
Affiliation(s)
- Yuhao Li
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Weiwei He
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Shuai Liu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Xiaoyi Hu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Yuxing He
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Xiaoxiao Song
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Junyi Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Jawanda SK, Ramaswamy HS. Yellow Mustard Protein a Immunoreactivity Reduction Through Seed Germination, Lactic Acid Fermentation, and Cooking. Foods 2024; 13:3498. [PMID: 39517281 PMCID: PMC11545414 DOI: 10.3390/foods13213498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/29/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Food allergens are becoming increasingly threatening and are disrupting the health and social structure of a significantly large population worldwide. Proteins from mustard are among the well-recognized food allergens which affect many sensitive individuals. Many processing methods are continually being explored to reduce allergen immunoreactivity and for developing hypoallergenic foods. Cooking, germination, and fermentation have been evaluated to attenuate the immunoreactivity of food allergens. The objective of this study is to evaluate the effect of seed germination, lactic acid fermentation, and/or cooking on yellow mustard seed protein immunoreactivity (IR) (protein A) using ELISA techniques. Samples from five-day germination at 35-40 °C and three-day fermentation between 25 °C and 35 °C were evaluated. The germination and fermentation processes yielded varying reductions in the IRs of mustard proteins, with a combined yield of about 90% reduction. When complemented with further stovetop cooking, protein IR reduction was extended up to 98%, while cooking alone resulted only in about a 70% reduction. FTIR results confirmed that changes in mustard protein conformation maybe due to the unfolding and/or denaturation of mustard proteins. These processing methods are beneficial as they not only help reduce the native mustard protein IR, but also increased inherent antioxidant activities in germinated and fermented mustard seeds.
Collapse
Affiliation(s)
| | - Hosahalli S. Ramaswamy
- Department of Food Science, McGill University, Macdonald Campus, 21111 Lakeshore Road, Ste Anne de Bellevue, QC H9X 3V9, Canada;
| |
Collapse
|
7
|
Khosravi A, Razavi SH, Castangia I, Manca ML. Valorization of Date By-Products: Enhancement of Antioxidant and Antimicrobial Potentials through Fermentation. Antioxidants (Basel) 2024; 13:1102. [PMID: 39334760 PMCID: PMC11428283 DOI: 10.3390/antiox13091102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
The by-products from three varieties of dates-Mozafati, Sayer, and Kabkab-were subjected to solid-state fermentation using Aspergillus niger alone or in co-culture with Lactiplantibacillus plantarum or Limosilactobacillus reuteri to enhance their phenolic and flavonoid content, along with antioxidant and antimicrobial activities. Solid-state fermentation, being environmentally friendly and cost-effective, is particularly suitable for agricultural residues. Significant increases (p < 0.05) in total polyphenol content (TPC), total flavonoid content (TFC), and antioxidant power were observed post-fermentation, especially under co-culture conditions. The highest TPC (12.98 ± 0.29 mg GA/g) and TFC (1.83 ± 0.07 mg QE/g) were recorded in the co-culture fermentation of by-products from the Mozafati and Sayer varieties, respectively. HPLC analysis revealed changes in polyphenol profiles post-fermentation, with reductions in gallic and ferulic acids and increases in caffeic acid, p-coumaric acid, rutin, quercetin, and kaempferol. FT-IR analysis confirmed significant alterations in polyphenolic functional groups. Enhanced antimicrobial activity was also observed, with inhibition zones ranging from 8.26 ± 0.06 mm for Kabkab to 17.73 ± 0.09 mm for Mozafati. These results suggest that co-culture solid-state fermentation is a promising strategy for valorizing date by-products, with potential applications in nutraceuticals and/or pharmaceutical products and as valuable additives in the food industry.
Collapse
Affiliation(s)
- Azin Khosravi
- Bioprocess Engineering Laboratory (BPEL), Department of Food Science, Engineering and Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj 31587-77871, Iran
| | - Seyed Hadi Razavi
- Bioprocess Engineering Laboratory (BPEL), Department of Food Science, Engineering and Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj 31587-77871, Iran
| | - Ines Castangia
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, Italy
| | - Maria Letizia Manca
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, Italy
| |
Collapse
|
8
|
Tomas M, Wen Y, Liao W, Zhang L, Zhao C, McClements DJ, Nemli E, Bener M, Apak R, Capanoglu E. Recent progress in promoting the bioavailability of polyphenols in plant-based foods. Crit Rev Food Sci Nutr 2024; 65:2343-2364. [PMID: 38590257 DOI: 10.1080/10408398.2024.2336051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Polyphenols are important constituents of plant-based foods, exhibiting a range of beneficial effects. However, many phenolic compounds have low bioavailability because of their low water solubility, chemical instability, food matrix effects, and interactions with other nutrients. This article reviews various methods of improving the bioavailability of polyphenols in plant-based foods, including fermentation, natural deep eutectic solvents, encapsulation technologies, co-crystallization and amorphous solid dispersion systems, and exosome complexes. Several innovative technologies have recently been deployed to improve the bioavailability of phenolic compounds. These technologies may be utilized to increase the healthiness of plant-based foods. Further research is required to better understand the mechanisms of action of these novel approaches and their potential to be used in food production.
Collapse
Affiliation(s)
- Merve Tomas
- Department of Food Engineering, Istanbul Technical University, Maslak, Istanbul, Türkiye
| | - Yuxi Wen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei Liao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lizhu Zhang
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Elifsu Nemli
- Department of Food Engineering, Istanbul Technical University, Maslak, Istanbul, Türkiye
| | - Mustafa Bener
- Department of Chemistry, Faculty of Science, Istanbul University, Istanbul, Türkiye
| | - Resat Apak
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Istanbul, Türkiye
- Turkish Academy of Sciences (TUBA), Ankara, Türkiye
| | - Esra Capanoglu
- Department of Food Engineering, Istanbul Technical University, Maslak, Istanbul, Türkiye
| |
Collapse
|
9
|
Serna-Barrera MA, Bas-Bellver C, Seguí L, Betoret N, Barrera C. Exploring fermentation with lactic acid bacteria as a pretreatment for enhancing antioxidant potential in broccoli stem powders. AIMS Microbiol 2024; 10:255-272. [PMID: 38919719 PMCID: PMC11194623 DOI: 10.3934/microbiol.2024013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/07/2024] [Accepted: 03/19/2024] [Indexed: 06/27/2024] Open
Abstract
Fruit and vegetable industries face a major environmental challenge with food loss and waste. Broccoli stems, comprising 38% of the plant's total weight, are usually discarded by the industry producing fourth-range and ready-to-use products, despite being rich in antioxidants, vitamins, fiber, carotenoids, phenolic compounds, and glucosinolates. Addressing the challenge of reducing waste in this sector includes the production of stable and nutrient-concentrated powders, which can be consumed directly or used as ingredients in functional food formulation. This study investigated fermentation with lactic acid bacteria (Limosilactobacillus reuteri, Lactiplantibacillus plantarum, and Lactobacillus salivarius) as a pretreatment for enhancing antioxidant and probiotic potential in broccoli stem powders. Results showed maximum counts 24 h after inoculation, and no effect of the previous disruption intensity on microbial growth was observed. Fermenting broccoli stems for 24 h with the three microbial strains led to a significant increase in total phenols and flavonoids but to a general reduction in the samples' capacity to scavenge DPPH and ABTS free radicals. Overall, ground broccoli stems exhibited the most favorable antioxidant properties following the 24 h fermentation step. The subsequent freeze-drying and final grinding had minimal impact on the microbial population but significantly enhanced the extractability of the antioxidant compounds. This study offers a valuable reference for researchers and stakeholders exploring the development of new products and innovations from vegetable waste.
Collapse
Affiliation(s)
| | | | | | | | - Cristina Barrera
- Instituto de Ingeniería de Alimentos-FoodUPV de la Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| |
Collapse
|
10
|
Bae WY, Lee DU, Yu HS, Lee NK, Paik HD. Fermentation of Inula britannica using Lactobacillus plantarum SY12 increases of epigallocatechin gallate and attenuates toxicity. Food Chem 2023; 429:136844. [PMID: 37454617 DOI: 10.1016/j.foodchem.2023.136844] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/25/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
This study aimed to increase epigallocatechin gallate (EGCG) levels and attenuate the toxicity in Inulabritannica by fermentation using Lactobacillus plantarum SY12. The optimal medium was composed of 10 g of I. britannica, 4 g of xylose, 5 g of soytone, and 5 g of beef extract. The predicted value of EGCG was 237.327 μg/mL. To investigate damage in HepG2 cell lines by I. britannica extracts (IE) or fermented I. britannica extracts (FIE), cell viability, mitochondria membrane potential, the expression of apoptosis and autophagy genes, and chemical composition were measured. FIE increased cell viability, regulation of the gene expression (decreased p53, p62, p-ERK 1/2, and p-p38; increased CDK2 and CDK4) compared with IE. These results were explained by an increase in 1,3-dicaffeoylquinic acid and a decrease in 1-O-caffeoylquinic acid, 1-O-acetylbritannilactone, and ergolide in FIE. In conclusion, these results indicated that fermentation can mitigate the toxicity in I. britannica.
Collapse
Affiliation(s)
- Won-Young Bae
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Do-Un Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Hyung-Seok Yu
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
11
|
Yang M, Lai H, Wang Y, Mei Y, Huang Y, Zeng X, Ge L, Zhao J, Zhu Y, Huang Q, Zhao N. Characterizing the impact of species/strain-specific Lactiplantibacillus plantarum with community assembly and metabolic regulation in pickled Suancai. Food Res Int 2023; 174:113650. [PMID: 37986488 DOI: 10.1016/j.foodres.2023.113650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/22/2023]
Abstract
To investigate the colonization and impact of the specific Lactiplantibacillus plantarum strains, four isolated strains were applied in pickled Suancai which is a traditional pickled mustard (Brassica juncea). Results showed that strain-8 with the highest lactic acid bacteria (LAB) counts and acetic acid (p < 0.05). There were 11.42 % ∼ 32.35 % differential volatile compounds detected, although nitriles, esters, and acids were predominant. L. plantarum disturbed the microbial community, in which the microbial composition of strain-11 was most similar to the naturally fermented sample. Amino acids, carbohydrate metabolism, and metabolism of cofactors and vitamins were the main functional classes because of the similar dominant microbes (Lactiplantibacillus and Levilactobacillus). The functional units were separated based on NMDS analysis, in which bacterial chemotaxis, amino acid-related units, biotin metabolism, fatty acid biosynthesis, and citrate cycle were significantly different calculated by metagenomeSeq and Benjamin-Hochberg methods (p < 0.05). The contents of most flavor compounds were consistent with their corresponding enzymes. In particular, glucosinolates metabolites were different and significantly related to the myrosinase and metabolic preference of LAB. Therefore, this study revealed the impact mechanism of the specific L. plantarum strains and provided a perspective for developing microbial resources to improve the flavor diversity of fermented vegetables.
Collapse
Affiliation(s)
- Menglu Yang
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Haimei Lai
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Yali Wang
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Yuan Mei
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Yuli Huang
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Xueqing Zeng
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Lihong Ge
- College of Life Science, Sichuan Normal University, Chengdu 610066, China
| | - Jichun Zhao
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yongqing Zhu
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Qiaolian Huang
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Nan Zhao
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
| |
Collapse
|
12
|
Zdziobek P, Jodłowski GS, Strzelec EA. Biopreservation and Bioactivation Juice from Waste Broccoli with Lactiplantibacillus plantarum. Molecules 2023; 28:4594. [PMID: 37375149 DOI: 10.3390/molecules28124594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
The content of polyphenols, lactic acid, and antioxidant properties in fermented juice increases more at 30 °C than at 35 °C during the lactic fermentation process in butanol extract and broccoli juice. The concentration of polyphenols is expressed by phenolic acid equivalents as gallic acid-Total Phenolic Content (TPC), ferulic acid (CFA), p-cumaric acid (CPA), sinapic acid (CSA), and caffeic acid (CCA). The polyphenols present in fermented juice exhibit antioxidant properties and the ability to reduce free radicals using total antioxidant capacity (TAC) assay, while also the percentage of the DPPH (2,2-Diphenyl-1-picrylhydrazyl) radical and ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) cation radical scavenging activity. Lactic acid concentration (LAC), total flavonoid content as quercetin equivalents (QC), and acidity increases during the work of Lactiplantibacillus plantarum (previously Lactobacillus plantarum) in broccoli juice. The pH was monitored during the process of fermentation in both temperatures (30 °C and 35 °C). Densitometric measurements of lactic bacteria (LAB) showed increasing concentration at 30 °C and 35 °C after 100 h (~4 h), but the value concentration dropped after 196 h. The Gram staining showed only Gram-positive bacilli Lactobacillus plantarum ATCC 8014. The Fourier transform infrared (FTIR) spectrum for the fermented juice showed the characteristic carbon-nitrogen vibrations that may originate from glucosinolates or isothiocyanates. Among the fermentation gases, more CO2 was released from fermenters at 35 °C than at 30 °C. The biopreservation used Lactiplantibacillus plantarum to prevent the problem of food waste of plant origin. The probiotic bacteria used in fermentation have a very beneficial effect on health and the human body.
Collapse
Affiliation(s)
- Patryk Zdziobek
- Department of Fuels Technology, Faculty of Energy and Fuels, AGH University of Krakow, 30-059 Kraków, Poland
| | - Grzegorz Stefan Jodłowski
- Department of Fuels Technology, Faculty of Energy and Fuels, AGH University of Krakow, 30-059 Kraków, Poland
| | - Edyta Aneta Strzelec
- Department of Fuels Technology, Faculty of Energy and Fuels, AGH University of Krakow, 30-059 Kraków, Poland
| |
Collapse
|
13
|
Gaur G, Chen C, Gänzle MG. Characterization of isogenic mutants with single or double deletions of four phenolic acid esterases in Lactiplantibacillus plantarum TMW1.460. Int J Food Microbiol 2023; 388:110100. [PMID: 36706579 DOI: 10.1016/j.ijfoodmicro.2023.110100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/05/2022] [Accepted: 01/15/2023] [Indexed: 01/22/2023]
Abstract
In plants, hydroxycinnamic and hydroxybenzoic acids occur mainly as esters. This study aimed to determine the contribution of individual phenolic acid esterases in Lp. plantarum TMW1.460, which encodes for four esterases: TanA, Lp_0796, Est_1092 and a homolog of Lj0536 and Lj1228 that was termed HceP. To determine which of the phenolic acid esterases present in Lp plantarum TMW1.460 are responsible for esterase activity, mutants with deletions in lp_0796, est_1092, tanB, hceP, or hceP and est_1092 were constructed. The phenotype of wild type strain and mutants was determined with esters of hydroxycinnamic acids (chlorogenic acid and ethyl ferulate) and of hydroxybenzoic acids (methyl gallate, tannic acid and epigallocatechin-3-gallate). Lp. plantarum TMW1.460 hydrolysed chlorogenic acid, methyl ferulate and methyl gallate but not tannic acid or epigallocatechin gallate. The phenotype of mutant strains during growth in mMRS differed from the wild type as follows: Lp. plantarum TMW1.460ΔhceP did not hydrolyse esters of hydroxycinnamic acids; Lp. plantarum TMW1.460ΔtanB did not hydrolyse esters of hydroxybenzoic acids; disruption of est_1092 or Lp_0796 did not alter the phenotype. The phenotype of Lp. plantarum TMW1.460ΔΔhceP/est_1092 was identical to Lp. plantarum TMW1.460ΔhceP. The metabolism of phenolic acids during growth of the mutant strains in broccoli puree and wheat sourdough did not differ from metabolism of the wild type strain. In conclusion, esters of hydroxycinnamic and hydroxybenzoic acids each are hydrolysed by dedicated enzymes. The hydroxycinnamic acid esterase HceP is not expressed, or not active during growth of Lp. plantarum TMW1.460 in all food substrates.
Collapse
Affiliation(s)
- Gautam Gaur
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Alberta, Canada
| | - Chen Chen
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Alberta, Canada; Shanghai Institute of Technology, School of Perfume and Aroma Technology, Shanghai, PR China
| | - Michael G Gänzle
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Alberta, Canada.
| |
Collapse
|
14
|
Li Y, Gao X, Pan D, Liu Z, Xiao C, Xiong Y, Du L, Cai Z, Lu W, Dang Y, Zhu X. Identification and virtual screening of novel anti-inflammatory peptides from broccoli fermented by Lactobacillus strains. Front Nutr 2023; 9:1118900. [PMID: 36712498 PMCID: PMC9875028 DOI: 10.3389/fnut.2022.1118900] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023] Open
Abstract
Lactobacillus strains fermentation of broccoli as a good source of bioactive peptides has not been fully elucidated. In this work, the peptide composition of broccoli fermented by L. plantarum A3 and L. rhamnosus ATCC7469 was analyzed by peptidomics to study the protein digestion patterns after fermentation by different strains. Results showed that water-soluble proteins such as rubisco were abundant sources of peptides, which triggered the sustained release of peptides as the main target of hydrolysis. In addition, 17 novel anti-inflammatory peptides were identified by virtual screening. Among them, SIWYGPDRP had the strongest ability to inhibit the release of NO from inflammatory cells at a concentration of 25 μM with an inhibition rate of 52.32 ± 1.48%. RFR and KASFAFAGL had the strongest inhibitory effects on the secretion of TNF-α and IL-6, respectively. At a concentration of 25 μM, the corresponding inhibition rates were 74.61 ± 1.68% and 29.84 ± 0.63%, respectively. Molecular docking results showed that 17 peptides formed hydrogen bonds and hydrophobic interactions with inducible nitric oxide synthase (iNOS). This study is conducive to the high-value utilization of broccoli and reduction of the antibiotic use.
Collapse
Affiliation(s)
- Yao Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of AgroProducts, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Xinchang Gao
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of AgroProducts, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Zhu Liu
- Zhejiang Institute for Food and Drug Control, Hangzhou, Zhejiang, China
| | - Chaogeng Xiao
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Yongzhao Xiong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of AgroProducts, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Lihui Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of AgroProducts, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Zhendong Cai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of AgroProducts, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Wenjing Lu
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Yali Dang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of AgroProducts, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China,*Correspondence: Yali Dang ✉
| | - Xiuzhi Zhu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China,Xiuzhi Zhu ✉
| |
Collapse
|
15
|
Qinghang W, Zhang C, Zhang J, Xin X, Li T, He C, Zhao S, Liu D. Variation in glucosinolates and the formation of functional degradation products in two Brassica species during spontaneous fermentation. Curr Res Food Sci 2023; 6:100493. [PMID: 37026022 PMCID: PMC10070088 DOI: 10.1016/j.crfs.2023.100493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
Vegetables from the Brassica species are excellent sources of glucosinolates (GLSs), the precursors of health-promoting isothiocyanates (ITCs). Fermentation enhances the biotransformation of GLSs into potential bioactive ITCs. To explore the biotransformation of GLSs during Brassica fermentation, the changes in GLSs during the fermentation of two Brassica species (i.e., cauliflower and broccoli); the formation of corresponding breakdown products; and the shifts in physicochemical parameters, bacterial communities, and myrosinase activities involved in GLSs degradation were systematically investigated. Nine aliphatic, three indolic, and two benzenic GLSs were identified in fermented cauliflower (FC) and fermented broccoli (FB). Aliphatic glucoiberin and glucoraphanin were the major forms of GLS in FC and FB, respectively; indolic glucobrassicin was also abundant in both FC and FB. The total GLS content decreased by 85.29% and 65.48% after 3 d of fermentation in FC and FB, respectively. After 2 d of fermentation, a significant increase in bioactive GLS degradation products (P < 0.05), including sulforaphane (SFN), iberin (IBN), 3,3-diindolylmethane (DIM), and ascorbigen (ARG), was observed in FC and FB compared to in fresh cauliflower and broccoli. Moreover, variations in pH value and titratable acidity in FC and FB correlated with Brassica fermentation and were accomplished by lactic acid bacteria, including Weissella, Lactobacillus-related genera, Leuconostoc, Lactococcus, and Streptococcus. These changes may enhance the biotransformation of GSLs to ITCs. Overall, our results indicate fermentation leads to the degradation of GLSs and the accumulation of functional degradation products in FC and FB.
Collapse
Affiliation(s)
- Wu Qinghang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Chengcheng Zhang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Hangzhou, 310021, China
| | - Jianming Zhang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Hangzhou, 310021, China
| | - Xiaoting Xin
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Ting Li
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Chengyun He
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Shengming Zhao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
- Corresponding author. School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| | - Daqun Liu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Hangzhou, 310021, China
- Corresponding author. Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
16
|
Zhang J, Zhou P, Xu Y, Ji F, Zheng X, Wang H, Xiao Y, Liu Y. Metabolic profile and dynamic characteristic of rhubarb during the vitro biotransformation by human gut microbiota. Food Chem 2022; 397:133840. [PMID: 35933753 DOI: 10.1016/j.foodchem.2022.133840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/28/2022]
Abstract
Rhubarb is a popular food in the world with laxative effects and steamed pieces of rhubarb (SP) have been widely applied to treatment of constipation in China due to its safety and effectiveness. In the study, metabolism in vitro was conducted to study influence of gut microbiota between raw pieces of rhubarb (RP) and SP. The results showed obvious classifications in metabolic profile between RP and SP were revealed by chemometric analysis, and prompted gut microbiota affected metabolism of rhubarb. Furthermore, 16 characteristic components were identified to distinguish the differences in metabolism. Finally, quantitative analysis of 14 components were verified the regulation of gut microbiota on rhubarb and discovered concentration of components affected the rate of metabolism. The study indicated regulation by gut microbiota could be probably responsible for differences of laxative effects between RP and SP, providing new perspective for exploring mechanisms of effectiveness in clinical application for SP.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiao Lane, Dongzhimennei, Beijing 100700, China
| | - Ping Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiao Lane, Dongzhimennei, Beijing 100700, China
| | - Yudi Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiao Lane, Dongzhimennei, Beijing 100700, China
| | - Feng Ji
- Shimadzu (China) Co., Ltd, Beijing 100020, China
| | - Xin Zheng
- Shimadzu (China) Co., Ltd, Beijing 100020, China
| | - Huaiyou Wang
- Institute of Pharmacy, School of Pharmacy, Henan University, Kaifeng 475004, China; Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST ShenzhenResearch Institute, Shenzhen 518057, China.
| | - Yongqing Xiao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiao Lane, Dongzhimennei, Beijing 100700, China.
| | - Ying Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiao Lane, Dongzhimennei, Beijing 100700, China.
| |
Collapse
|
17
|
Zhang G, Zhang L, Ahmad I, Zhang J, Zhang A, Tang W, Ding Y, Lyu F. Recent advance in technological innovations of sugar-reduced products. Crit Rev Food Sci Nutr 2022; 64:5128-5142. [PMID: 36454077 DOI: 10.1080/10408398.2022.2151560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Sugar is crucial as an essential nutrient for humans as well as for providing texture, sweetness and so on to food. But with the rise in people's pursuit of health, it is becoming increasingly clear that excessive consumption of sugar can locate a load on the body. It has been that excessive sugar is associated with many diseases, such as dental caries, obesity, diabetes, and coronary heart disease. Therefore, researchers and industries are trying to reduce or substitute sugar in food without affecting the sensory evaluation. Substituting sugar with sweeteners is alternatively becoming the most traditional way to minimize its use. So far, the sweeteners such as stevia and xylitol have been are commercially applied. Several studies have shown that technological innovation can partially compensate for the loss in sweetness as a result of sugar reduction, such as cross-modal interactions that stimulate sweetness with aroma, nanofiltration that filters disaccharides and above, enzyme-catalyzed sugar hydrolysis, and microbial fermentation that turns sugar into sugar alcohol. This review summarizes these studies to enhance the safety and quality of sugar-reduced products, and will provide some theoretical frameworks for the food industry to reduce sugar in foods, meet consumers' needs, and promote human health.
Collapse
Affiliation(s)
- Gaopeng Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P. R. China
| | - Lyu Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P. R. China
| | - Ishtiaq Ahmad
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P. R. China
| | - Jianyou Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P. R. China
| | - Anqiang Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P. R. China
| | - Wei Tang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P. R. China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P. R. China
| | - Fei Lyu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P. R. China
| |
Collapse
|
18
|
Microorganisms-An Effective Tool to Intensify the Utilization of Sulforaphane. Foods 2022; 11:foods11233775. [PMID: 36496582 PMCID: PMC9737538 DOI: 10.3390/foods11233775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Sulforaphane (SFN) was generated by the hydrolysis of glucoraphanin under the action of myrosinase. However, due to the instability of SFN, the bioavailability of SFN was limited. Meanwhile, the gut flora obtained the ability to synthesize myrosinase and glucoraphanin, which could be converted into SFN in the intestine. However, the ability of microorganisms to synthesize myrosinase in the gut was limited. Therefore, microorganisms with myrosinase synthesis ability need to be supplemented. With the development of research, microorganisms with high levels of myrosinase synthesis could be obtained by artificial selection and gene modification. Researchers found the SFN production rate of the transformed microorganisms could be significantly improved. However, despite applying transformation technology and regulating nutrients to microorganisms, it still could not provide the best efficiency during generating SFN and could not accomplish colonization in the intestine. Due to the great effect of microencapsulation on improving the colonization ability of microorganisms, microencapsulation is currently an important way to deliver microorganisms into the gut. This article mainly analyzed the possibility of obtaining SFN-producing microorganisms through gene modification and delivering them to the gut via microencapsulation to improve the utilization rate of SFN. It could provide a theoretical basis for expanding the application scope of SFN.
Collapse
|
19
|
Abd El-Montaleb HS, Abbas KAE, Mwaheb MA, Hamdy SM. Production and characteristic quality of probiotic Labneh cheese supplemented with broccoli florets. BRITISH FOOD JOURNAL 2022; 124:3666-3679. [DOI: 10.1108/bfj-05-2021-0554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
PurposeThe purpose of this study is to develop functional probiotic Labneh cheeses supplemented with broccoli florets.Design/methodology/approachProbiotic Labneh cheese was produced using broccoli florets paste at four different levels (0, 5, 10 and 15%), with Lactobacillus casei NRRL B-1922 as a probiotic strain, to evaluate its physicochemical, phenols, antioxidant activity, minerals, vitamins, textural, microbiological and sensory characteristics during storage for 15 days.FindingsThe results indicated that Labneh cheese with added broccoli paste exhibited significantly (p = 0.05) higher level of moisture, acidity, soluble nitrogen, phenols, antioxidant activity, minerals and B vitamins, and lower protein, fat, ash and pH values when compared to control Labneh cheese. Textural analysis of Labneh cheese indicated that Labneh with higher level of broccoli (15%) exhibited harder texture than others. Higher viable counts of Lactobacillus casei and Streptococcus thermophilus were detected in Labneh with broccoli paste, and the counts (107 cfu/g) were higher than the number should be present to achieve their health benefits. The most acceptable Labneh cheeses were those supplemented with 5 and 10% broccoli paste.Originality/valueThis study revealed broccoli florets could enhance the growth of Lactobacillus casei and Streptococcus thermophilus in the Labneh matrix, which resulted in a wider spectrum of health benefits of Labneh cheese to the consumers.
Collapse
|
20
|
Liu D, Zhang C, Zhang J, Xin X, Wu Q. Dynamics of the glucosinolate–myrosinase system in tuber mustard (Brassica juncea var. tumida) during pickling and its relationship with bacterial communities and fermentation characteristics. Food Res Int 2022; 161:111879. [DOI: 10.1016/j.foodres.2022.111879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/08/2022] [Accepted: 08/24/2022] [Indexed: 11/15/2022]
|
21
|
Effect of Starters on Quality Characteristics of Hongsuantang, a Chinese Traditional Sour Soup. FERMENTATION 2022. [DOI: 10.3390/fermentation8110589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hongsuantang (HST) is a traditional Chinese and famous sour soup. However, the quality of naturally fermented HST is not controllable. We investigated the effects of different lactic acid bacteria starters on HST acid production, color, antioxidant capacity, total phenols, total carotenoids, organic acids, volatile substances, and sensory properties to determine the most suitable strain for HST production. The results showed that among the seven lactic acid bacteria strains used to inoculate fermented HST, Lactiplantibacillus plantarum SQ-4 exhibited the most excellent fermentation characteristics. SQ-4 rapidly reduced the HST’s pH by 0.77. It significantly increased the HST’s color, organic acids, total phenols, carotenoids, lycopene, and free radical scavenging ability. Lactiplantibacillus plantarum SQ-4 was an excellent starter for preparing HST with good acid production capacity, moderate sourness and spiciness, and good sensory and other characteristics. Each starter produces its distinct flavor components. α-Pinene, myrcene, α-copaene, and guaiol were vital aroma compounds in HST fermentation by the starter. This study laid a foundation for selecting HST starters and potential industrial production.
Collapse
|
22
|
Tlais AZA, Lemos Junior WJF, Filannino P, Campanaro S, Gobbetti M, Di Cagno R. How Microbiome Composition Correlates with Biochemical Changes during Sauerkraut Fermentation: a Focus on Neglected Bacterial Players and Functionalities. Microbiol Spectr 2022; 10:e0016822. [PMID: 35699432 PMCID: PMC9430578 DOI: 10.1128/spectrum.00168-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/06/2022] [Indexed: 11/23/2022] Open
Abstract
This study provided a new perspective on the bacterial community succession during sauerkraut fermentation, and on resulting metabolic functions. While culture-dependent methods confirmed the key role of the well-known core microbiome species, metagenomic approach (shotgun) revealed Secundilactobacillus malefermentans as a species of the core microbiome, especially during the last weeks of fermentation. Although the potentiality of S. malefermentans has not yet fully explored, it held core functional genes usually attributed to others lactic acid bacteria driving sauerkraut fermentation. Based on our results it is arguable that S. malefermentans might have a key a role during sauerkraut fermentation carried out at low temperature. Under our experimental conditions, the profile of phenolic compounds changed throughout sauerkraut fermentation. The amount of free phenolics, including free phenolic acids, increased at the beginning of the fermentation, whereas the conversion of phenolic acids into microbial derivatives was consistent during the last part of the sauerkraut fermentation. We pioneered correlating changes in the phenolics profile to changes in the microbiome, although the framework presented is still fragmentary. Annotated genes linked to the phenolic compounds metabolism (VprA and padA) were found in many core species during the whole process. A high metabolic potential for phenolics bioconversion emerged for lactobacilli and Pediococcus spp. through correlation analysis between microbiome composition and phenolics profile. IMPORTANCE Our study was not limited to describe the succession pattern of the microbial community during sauerkraut fermentation, but also revealed how some neglected bacterial players belong to the core species during sauerkrauts processing, especially at low temperature. Such species might have a role as potential starters to optimize the fermentation processes and to obtain sauerkrauts with improved and standardized nutritional and sensory features. Furthermore, our correlations between microbiome composition and phenolics profile might also represent new references for sauerkraut biotechnology, aiming to identify new metabolic drivers of potential sauerkraut functionalities. Finally, sauerkraut ecosystem is a tractable model, although with high level of complexity, and resultant ecological information might be extended to other plant ecosystems.
Collapse
Affiliation(s)
| | | | - Pasquale Filannino
- Department of Soil, Plant and Food Sciences, University of Bari A. Moro, Bari, Italy
| | | | - Marco Gobbetti
- Faculty of Science and Technology, Libera Università di Bolzano, Bolzano, Italy
| | - Raffaella Di Cagno
- Faculty of Science and Technology, Libera Università di Bolzano, Bolzano, Italy
| |
Collapse
|
23
|
Khosroshahi ED, Razavi SH, Kaini H, Aghakhani A. Improvement of stability and antioxidant activity of wheat germ by mixed fermentation versus single fermentation. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:2905-2912. [PMID: 35734138 PMCID: PMC9206948 DOI: 10.1007/s13197-021-05316-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/28/2021] [Accepted: 11/04/2021] [Indexed: 06/15/2023]
Abstract
Wheat germ is a high-nutrient by-product from the milling industry with very limited optimal consumption due to its short shelf life. The severe activity of endogenous lipase and lipoxygenase is associated with the release of fatty acids which are responsible for the rancidity and shelf-life deficiency. Reducing these enzymes activity is essential for prolonging the wheat germ shelf-life. For this purpose, the mixed and simple fermentation of different wheat germ concentrations (10, 15 and 20% w/v wheat germ in distilled water) with Lactobacillus plantarum and Lactobacillus acidophilus was investigated to improve the stability of wheat germ by restraining the activity of the enzymes. Fermentation noticeably reduced the activity of the enzymes in all samples (ranges from 50 to 82.15% for lipase and 55.34 to 72 for lipoxygenase in different treatments), but the mixed-fermented wheat germ with the maximum concentration (20%) achieved the highest reduction level in both enzymes inactivation. Fermentation also resulted in an obvious increase in antioxidant activity from 51.18% in raw wheat germ to more than 72.73% in different samples, which mixed fermentation of 20% wheat germ suspension with the value of 89.76 was ranked first.
Collapse
Affiliation(s)
- E. D. Khosroshahi
- Bioprocess Engineering Laboratory (BPEL), Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, P.O. Box 4111, 3158777871 Karaj, Iran
| | - S. H. Razavi
- Bioprocess Engineering Laboratory (BPEL), Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, P.O. Box 4111, 3158777871 Karaj, Iran
| | - H. Kaini
- Bioprocessing and Biodetection Lab (BBL), Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, P.O. Box 4111, 3158777871 Karaj, Iran
| | - A. Aghakhani
- Bioprocess Engineering Laboratory (BPEL), Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, P.O. Box 4111, 3158777871 Karaj, Iran
| |
Collapse
|
24
|
Flavour Generation during Lactic Acid Fermentation of Brassica Vegetables—Literature Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fermentation is a method of food preservation that has been used for centuries. Lactic acid fermentation, apart from extending the shelf-life of vegetables, affects significantly the flavour of food products. In this review, the formation of flavour, including both taste and aroma, in fermented Brassica vegetables is summarized. The flavour-active compounds are generated in various metabolic pathways from many precursors present in raw materials used for fermentation. In Brassica vegetables, a unique group of chemicals, namely glucosinolates, is present, which significantly influence the flavour of fermented products. In this summary, we took a closer look at the flavour of two of the most commonly eaten worldwide fermented Brassica products, which are sauerkraut and kimchi. Finally, the needs and directions for future studies were addressed.
Collapse
|
25
|
Thermosonication of Broccoli Florets Prior to Fermentation Increases Bioactive Components in Fermented Broccoli Puree. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8050236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The aim of this study was to compare the effects of thermosonication (18 kHz at 60 °C for 7 min) pre-treatment with thermal treatment alone (60 °C for 7 min) of broccoli florets prior to pureeing and fermentation on selected bioactive components of fermented broccoli puree. Both thermal and thermosoncation pre-treatments significantly increased the rate of acidification of broccoli puree compared to control untreated broccoli puree, with the time to reach pH 4 being 8.25, 9.9, and 24 h, respectively, for thermally treated, thermosonicated, and control samples. The highest sulforaphane yield of 7268 µmol/kg dry weight (DW) was observed in the thermosonicated samples, followed by 6227 µmol/kg DW and 3180 µmol/kg DW in the thermally treated and untreated samples, respectively. The measurable residual glucoraphanin content was 1642 µmol/kg DW, 1187 µmol/kg DW, and 1047 µmol/kg DW, respectively, in the thermonsonicated, thermally pre-treated, and control fermented samples, indicating that pre-treatment specially by thermosonication increases the extractability of glucoraphanin. The higher sulforaphane yield in the thermosonicated and thermally pre-treated samples could be due to increased extractability and accessibility of glucoraphanin and interaction with myrosinase in addition to the inactivation of epthiospecifier protein (ESP), which directs conversion away from sulforaphane into sulforaphane nitrile.
Collapse
|
26
|
Wu J, Cui S, Liu J, Tang X, Zhao J, Zhang H, Mao B, Chen W. The recent advances of glucosinolates and their metabolites: Metabolism, physiological functions and potential application strategies. Crit Rev Food Sci Nutr 2022:1-18. [PMID: 35389274 DOI: 10.1080/10408398.2022.2059441] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glucosinolates and their metabolites from Brassicaceae plants have received widespread attention due to their anti-inflammatory effects. Glucosinolates occurs an "enterohepatic circulation" in the body, and the glucosinolates metabolism mainly happens in the intestine. Glucosinolates can be converted into isothiocyanates by intestinal bacteria, which are active substances with remarkable anti-inflammatory, anti-cancer, anti-obesity and neuroprotective properties. This biotransformation can greatly improve the bioactivities of glucosinolates. However, multiple factors in the environment can affect the biotransformation to isothiocyanates, including acidic pH, ferrous ions and thiocyanate-forming protein. The derivatives of glucosinolates under those conditions are usually nitriles and thiocyanates, which may impair the potential health benefits. In addition, isothiocyanates are extremely unstable because of an active sulfhydryl group, which limits their applications. This review mainly summarizes the classification, synthesis, absorption, metabolism, physiological functions and potential application strategies of glucosinolates and their metabolites.
Collapse
Affiliation(s)
- Jiaying Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Junsheng Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, China
| |
Collapse
|
27
|
Rastogi YR, Thakur R, Thakur P, Mittal A, Chakrabarti S, Siwal SS, Thakur VK, Saini RV, Saini AK. Food fermentation – Significance to public health and sustainability challenges of modern diet and food systems. Int J Food Microbiol 2022; 371:109666. [DOI: 10.1016/j.ijfoodmicro.2022.109666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 11/28/2022]
|
28
|
Liu Y, Sheng J, Li J, Zhang P, Tang F, Shan C. Influence of lactic acid bacteria on physicochemical indexes, sensory and flavor characteristics of fermented sea buckthorn juice. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
29
|
Fate of Bioactive Compounds during Lactic Acid Fermentation of Fruits and Vegetables. Foods 2022; 11:foods11050733. [PMID: 35267366 PMCID: PMC8909232 DOI: 10.3390/foods11050733] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 01/27/2023] Open
Abstract
Consumption of lactic acid fermented fruits and vegetables has been correlated with a series of health benefits. Some of them have been attributed to the probiotic potential of lactic acid microbiota, while others to its metabolic potential and the production of bioactive compounds. The factors that affect the latter have been in the epicenter of intensive research over the last decade. The production of bioactive peptides, vitamins (especially of the B-complex), gamma-aminobutyric acid, as well as phenolic and organosulfur compounds during lactic acid fermentation of fruits and vegetables has attracted specific attention. On the other hand, the production of biogenic amines has also been intensively studied due to the adverse health effects caused by their consumption. The data that are currently available indicate that the production of these compounds is a strain-dependent characteristic that may also be affected by the raw materials used as well as the fermentation conditions. The aim of the present review paper is to collect all data referring to the production of the aforementioned compounds and to present and discuss them in a concise and comprehensive way.
Collapse
|
30
|
Potential Prebiotic and Anti-Obesity Effects of Codium fragile Extract. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12030959] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Polysaccharides from marine algae exhibit beneficial biological activities. In this study, we examined the effect of Codium fragile extract (CFE) on prebiotic and anti-obesity activity through in vitro experiments. CFE increases the growth of specific beneficial microbial populations with concomitant decrease in pathogenic microbes. Further, total phenolic content (TPC), total flavonoid content (TFC), and DPPH radical scavenging activity (DPPH activity) after fermentation with CFE as the carbon source were higher than for glucose as the control. Moreover, CFE inhibited adipocyte differentiation by inducing differentiation-related factors when the induction of 3T3-L1 preadipocytes into adipocytes was induced. Therefore, we suggest that CFE can be used as a prebiotic material with an anti-obesity effect for human health.
Collapse
|
31
|
Lang B, Zhao Y, Yang R, Liu A, Ranjitkar S, Yang L. Antioxidant and tyrosinase inhibitory activities of traditional fermented Rosa from Dali Bai communities, Northwest Yunnan, China. Sci Rep 2021; 11:22700. [PMID: 34811448 PMCID: PMC8608822 DOI: 10.1038/s41598-021-02160-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/27/2021] [Indexed: 11/10/2022] Open
Abstract
Traditional fermented Rosa (TFR) is a typical food and medical product among the Dali Bai people, and its popularity is growing. A few studies have looked into TFR's medicinal advantages, linked germplasm resources, traditional processing procedures, and functional food qualities. Our goal was to look into Rosa's traditional processing, examine the dominant strains in TFR, and prove how these strains affected antioxidant and tyrosinase inhibitory activities. We used a snowball selection strategy to pick 371 informants for a semi-structured interview, supplemented with direct observations and sample collection. A microbial strain was isolated and identified from a TFR sample collected in the field. We synthesized TFR in the lab using the traditional way. Both of 2, 2-diphenyl-1 picrylhydrazyl (DPPH) free radical scavenging and tyrosinase inhibitory properties of the fermented solution of Rosa 'Dianhong' have been tested in this study. Altogether 15 species belonging to the genus Rosa, which are utilized in herbal medicine and fermented foods. Rosa 'Dianhong' was the Bai community's principal species with considerable cultural value and consumption. Raw Rosa petals included 15 major flavonoids and phenols, which were identified as TFR's active components. TFR-1 was discovered to be the dominating microbial strain in TFR, increasing total phenolic and flavonoid content in the fermented solution of Rosa 'Dianhong' by 0.45 mg GAE/ml and 0.60 mg RE/ml, respectively, after 30 days. TFR-1 also exhibited promising activity in terms of DPPH free radical scavenging and tyrosinase inhibition. TFR showed potent antioxidant and free-radical scavenger properties and is beneficial in skincare and nutrition, according to the findings. TFR's medicinal and edible properties suggest that it could be used as a cosmetic or nutraceutical product.
Collapse
Affiliation(s)
- Bayi Lang
- grid.9227.e0000000119573309Bio-Innovation Center of DR PLANT, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China ,grid.9227.e0000000119573309Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China ,Center of Biodiversity and Indigenous Knowledge, Kunming, 650034 Yunnan China
| | - Yanqiang Zhao
- College of Forestry and Vocational Technology in Yunnan, Kunming, 650224 Yunnan China
| | - Rong Yang
- Center of Biodiversity and Indigenous Knowledge, Kunming, 650034 Yunnan China ,grid.412720.20000 0004 1761 2943Southwest Forestry University, Kunming, 650224 Yunnan China
| | - Aizhong Liu
- Center of Biodiversity and Indigenous Knowledge, Kunming, 650034 Yunnan China ,grid.412720.20000 0004 1761 2943Southwest Forestry University, Kunming, 650224 Yunnan China
| | - Sailesh Ranjitkar
- N.Gene Solution of Natural Innovation, Kathmandu, GPO, 44614, Nepal. .,Faculty of Humanities and Social Science, Mid-Western University, Naya Bato, Lalitpur, 44600, Nepal.
| | - Lixin Yang
- Bio-Innovation Center of DR PLANT, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China. .,Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China. .,Center of Biodiversity and Indigenous Knowledge, Kunming, 650034, Yunnan, China.
| |
Collapse
|
32
|
Lee M, Song JH, Choi EJ, Yun YR, Lee KW, Chang JY. UPLC-QTOF-MS/MS and GC-MS Characterization of Phytochemicals in Vegetable Juice Fermented Using Lactic Acid Bacteria from Kimchi and Their Antioxidant Potential. Antioxidants (Basel) 2021; 10:antiox10111761. [PMID: 34829632 PMCID: PMC8614894 DOI: 10.3390/antiox10111761] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 12/22/2022] Open
Abstract
This study aims to investigate fermentative metabolites in probiotic vegetable juice from four crop varieties (Brassica oleracea var. capitata, B. oleracea var. italica, Daucus carota L., and Beta vulgaris) and their antioxidant properties. Vegetable juice was inoculated with two lactic acid bacteria (LAB) (Companilactobacillus allii WiKim39 and Lactococcus lactis WiKim0124) isolated from kimchi and their properties were evaluated using untargeted UPLC-QTOF-MS/MS and GC-MS. The samples were also evaluated for radical (DPPH• and OH•) scavenging activities, lipid peroxidation, and ferric-reducing antioxidant power. The fermented vegetable juices exhibited high antioxidant activities and increased amounts of total phenolic compounds. Fifteen compounds and thirty-two volatiles were identified using UPLC-QTOF-MS/MS and GC-MS, respectively. LAB fermentation significantly increased the contents of d-leucic acid, indole-3-lactic acid, 3-phenyllactic acid, pyroglutamic acid, γ-aminobutyric acid, and gluconic acid. These six metabolites showed a positive correlation with antioxidant properties. Thus, vegetable juices fermented with WiKim39 and WiKim0124 can be considered as novel bioactive health-promoting sources.
Collapse
Affiliation(s)
- Moeun Lee
- Research and Development Division, World Institute of Kimchi, Gwangju 61755, Korea; (M.L.); (J.H.S.); (E.J.C.); (Y.-R.Y.)
- Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Jung Hee Song
- Research and Development Division, World Institute of Kimchi, Gwangju 61755, Korea; (M.L.); (J.H.S.); (E.J.C.); (Y.-R.Y.)
| | - Eun Ji Choi
- Research and Development Division, World Institute of Kimchi, Gwangju 61755, Korea; (M.L.); (J.H.S.); (E.J.C.); (Y.-R.Y.)
| | - Ye-Rang Yun
- Research and Development Division, World Institute of Kimchi, Gwangju 61755, Korea; (M.L.); (J.H.S.); (E.J.C.); (Y.-R.Y.)
| | - Ki Won Lee
- Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon 16229, Korea
- Correspondence: (K.W.L.); (J.Y.C.)
| | - Ji Yoon Chang
- Research and Development Division, World Institute of Kimchi, Gwangju 61755, Korea; (M.L.); (J.H.S.); (E.J.C.); (Y.-R.Y.)
- Correspondence: (K.W.L.); (J.Y.C.)
| |
Collapse
|
33
|
Szutowska J, Gwiazdowska D, Rybicka I, Pawlak-Lemańska K, Biegańska-Marecik R, Gliszczyńska-Świgło A. Controlled fermentation of curly kale juice with the use of autochthonous starter cultures. Food Res Int 2021; 149:110674. [PMID: 34600676 DOI: 10.1016/j.foodres.2021.110674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/04/2021] [Accepted: 08/25/2021] [Indexed: 01/17/2023]
Abstract
The aim of this paper was to evaluate the influence of different indigenous lactic acid bacteria isolates - as a single culture or bacterial consortium - on the functional and physicochemical properties of fermented curly kale juice. All tested variants exhibited good growth parameters, manifested by efficient pH lowering, increases in acidity, and fructose and glucose metabolism, as well as a significant inhibition of pathogens. A slight increase in total phenolic content was observed, while antioxidant activity remained unchanged. L. sakei and MIX A were associated with an increase in riboflavin and pyridoxine content, while L. plantarum only contributed to an increase in vitamin B6 content. Bioconversion of individual phenolic compounds, carotenoids, and glucosinolates strongly depended on the strain-specific metabolism. In the process, the levels of ferulic acid and other hydroxycinnamic acids were maintained, while the content of 9-cis lutein increased. Considering presented results and our previous research regarding probiotic features of LAB strains, among tested starter cultures - L. plantarum seemed to possess the best characteristics as a potential starter culture for controlled fermentation of curly kale juice.
Collapse
Affiliation(s)
- Julia Szutowska
- Department of Natural Science and Quality Assurance, Institute of Quality Science, Poznań University of Economics and Business, al. Niepodległości 10, 61-875 Poznań, Poland.
| | - Daniela Gwiazdowska
- Department of Natural Science and Quality Assurance, Institute of Quality Science, Poznań University of Economics and Business, al. Niepodległości 10, 61-875 Poznań, Poland
| | - Iga Rybicka
- Department of Technology and Instrumental Analysis, Institute of Quality Science, Poznań University of Economics and Business, Al. Niepodległości 10, 61-875 Poznań, Poland
| | - Katarzyna Pawlak-Lemańska
- Department of Technology and Instrumental Analysis, Institute of Quality Science, Poznań University of Economics and Business, Al. Niepodległości 10, 61-875 Poznań, Poland
| | - Róża Biegańska-Marecik
- Institute of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Ul. Wojska Polskiego 28, 60-637 Poznań, Poland
| | - Anna Gliszczyńska-Świgło
- Department of Technology and Instrumental Analysis, Institute of Quality Science, Poznań University of Economics and Business, Al. Niepodległości 10, 61-875 Poznań, Poland
| |
Collapse
|
34
|
Ciska E, Honke J, Drabińska N. Changes in glucosinolates and their breakdown products during the fermentation of cabbage and prolonged storage of sauerkraut: Focus on sauerkraut juice. Food Chem 2021; 365:130498. [PMID: 34243119 DOI: 10.1016/j.foodchem.2021.130498] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 10/21/2022]
Abstract
Sauerkraut juice has not gained much scientific attention to date. Therefore, this study aimed to track changes in glucosinolates (GLS) during fermentation of white cabbage and the formation of corresponding breakdown products in sauerkraut and sauerkraut juice separately and to evaluate their stability during prolonged storage of the final products. The results obtained indicate that both sauerkraut and sauerkraut juice are a good source of bioactive compounds: ascorbigen and isothiocyanates. The stability of individual compounds during storage varied, and the absolute content of phytochemicals depended on the content of native GLS in the raw material and its bacterial composition. The dominant compound was ascorbigen, stable in acidic pH in both sauerkraut and sauerkraut juice, even after prolonged storage. Sauerkraut juice was also found as a rich source of bioactive isothiocyanates. One 250 mL glass of sauerkraut juice (after two weeks) can deliver approx. 75 μmol of bioactive ascorbien and isothiocyanates, hence it can be considered as functional food, delivering beneficial health effects.
Collapse
Affiliation(s)
- Ewa Ciska
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland.
| | - Joanna Honke
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland
| | - Natalia Drabińska
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10 Str., 10-748 Olsztyn, Poland.
| |
Collapse
|
35
|
Shakour ZT, Shehab NG, Gomaa AS, Wessjohann LA, Farag MA. Metabolic and biotransformation effects on dietary glucosinolates, their bioavailability, catabolism and biological effects in different organisms. Biotechnol Adv 2021; 54:107784. [PMID: 34102260 DOI: 10.1016/j.biotechadv.2021.107784] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/17/2021] [Accepted: 06/04/2021] [Indexed: 12/28/2022]
Abstract
Glucosinolate-producing plants have long been recognized for both their distinctive benefits to human nutrition and their resistance traits against pathogens and herbivores. Despite the accumulation of glucosinolates (GLS) in plants is associated with their resistance to various biotic and abiotic stresses, the defensive and biological activities of GLS are commonly conveyed by their metabolic products. In view of this, metabolism is considered the driving factor upon the interactions of GLS-producing plants with other organisms, also influenced by plant and plant attacking or digesting organism characteristics. Several microbial pathogens and insects have evolved the capacity to detoxify GLS-hydrolysis products or inhibit their formation via different means, highlighting the relevance of their metabolic abilities for the plants' defense system activation and target organism detoxification. Strikingly, some bacteria, fungi and insects can likewise produce their own myrosinase (MYR)-like enzymes in one of the most important adaptation strategies against the GLS-MYR plant defense system. Knowledge of GLS metabolic pathways in herbivores and pathogens can impact plant protection efforts and may be harnessed upon for genetically modified plants that are more resistant to predators. In humans, the interest in the implementation of GLS in diets for the prevention of chronic diseases has grown substantially. However, the efficiency of such approaches is dependent on GLS bioavailability and metabolism, which largely involves the human gut microbiome. Among GLS-hydrolytic products, isothiocyanates (ITC) have shown exceptional properties as chemical plant defense agents against herbivores and pathogens, along with their health-promoting benefits in humans, at least if consumed in reasonable amounts. Deciphering GLS metabolic pathways provides critical information for catalyzing all types of GLS towards the generation of ITCs as the biologically most active metabolites. This review provides an overview on contrasting metabolic pathways in plants, bacteria, fungi, insects and humans towards GLS activation or detoxification. Further, suggestions for the preparation of GLS containing plants with improved health benefits are presented.
Collapse
Affiliation(s)
- Zeinab T Shakour
- Laboratory of Phytochemistry, National Organization for Drug Control and Research, Cairo, Egypt
| | - Naglaa G Shehab
- Department of Pharmaceutical Chemistry and Natural Products, Dubai Pharmacy College, Dubai, United Arab Emirates
| | - Ahmed S Gomaa
- Faculty of Graduate Studies for Statistical Research, Cairo University, Cairo, Egypt
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany.
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt.
| |
Collapse
|
36
|
Daily Development of Nutritional Composition of Canola Sprouts Followed by Solid-state Fungal Fermentation. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02667-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Sun J, Wang Y, Pang X, Tian S, Hu Q, Li X, Liu J, Wang J, Lu Y. The effect of processing and cooking on glucoraphanin and sulforaphane in brassica vegetables. Food Chem 2021; 360:130007. [PMID: 33993075 DOI: 10.1016/j.foodchem.2021.130007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 04/27/2021] [Accepted: 05/01/2021] [Indexed: 02/06/2023]
Abstract
Brassica vegetables are widely consumed mostly after processing and cooking. These processing and cooking methods not only can affect the taste, texture, flavor and nutrients of these vegetables, but also influence the levels of some important bioactive compounds, such as glucosinolates (GLSs). Glucoraphanin (GLR) is the most abundant GLSs and its hydrolyzed component, sulforaphane (SLR), is the most powerful anti-cancer compound in brassica vegetables. In this review, we find out that varied treatments impact the retention of GLR and the formation of SLR differently. Be specific, 1) freezing can avoid the losses of GLR while short-time microwaving, short-time steaming and fermentation promote the biotransformation from GLR to SLR; 2) Boiling and blanching cause the largest losses of GLR and SLR, while freezing significantly protect their losses.; 3) Stir-frying varies the levels of GLR and SLR in different cooking conditions.
Collapse
Affiliation(s)
- Jing Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu Province 210023, China
| | - Yunfan Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu Province 210023, China
| | - Xinyi Pang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu Province 210023, China
| | - Shuhua Tian
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu Province 210023, China
| | - Qiaobin Hu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu Province 210023, China
| | - Xiangfei Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu Province 210023, China
| | - Jie Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, China
| | - Yingjian Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu Province 210023, China.
| |
Collapse
|
38
|
Drabińska N, Ogrodowczyk A. Crossroad of Tradition and Innovation – The Application of Lactic Acid Fermentation to Increase the Nutritional and Health-Promoting Potential of Plant-Based Food Products – a Review. POL J FOOD NUTR SCI 2021. [DOI: 10.31883/pjfns/134282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
39
|
Xu X, Bi S, Lao F, Chen F, Liao X, Wu J. Induced changes in bioactive compounds of broccoli juices after fermented by animal- and plant-derived Pediococcus pentosaceus. Food Chem 2021; 357:129767. [PMID: 33892355 DOI: 10.1016/j.foodchem.2021.129767] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 01/30/2021] [Accepted: 04/05/2021] [Indexed: 11/19/2022]
Abstract
To investigate the metabolism of bioactive compounds in broccoli juice fermented by animal- and plant-derived Pediococcus pentosaceus, levels of glucosinolates (GS), sulforaphane, and sulforaphane-nitrile; activity of myrosinase; and profiles of organic acids, vitamins, and amino acids were determined. Three aliphatic GS and four indolyl GS were identified. After fermentation by plant- and animal-derived P. pentosaceus, myrosinase activity, contents of total GS and sulforaphane nitrile, and levels of malic acid, acetic acid, ascorbic acid, and thiamine significantly decreased in pasteurized broccoli juice, whereas levels of sulforaphane, lactic acid, and citric acid significantly increased. Fermentation by plant-derived P. pentosaceus decreased levels of riboflavin and β-carotene and increased total levels of free amino acids, in contrast to the trends observed in broccoli juice after fermentation by animal-derived P. pentosaceus. This study indicates that P. pentosaceus may potentially be used in starter cultures to improve the nutritional and functional properties of fermented foods.
Collapse
Affiliation(s)
- Xinxing Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, Shandong, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Shuang Bi
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Fei Lao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China.
| | - Fang Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Jihong Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit & Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China.
| |
Collapse
|
40
|
Fermentation by Probiotic Lactobacillus gasseri Strains Enhances the Carotenoid and Fibre Contents of Carrot Juice. Foods 2020; 9:foods9121803. [PMID: 33291830 PMCID: PMC7762057 DOI: 10.3390/foods9121803] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 12/20/2022] Open
Abstract
Carrot juice (straight, 8.5 Brix and concentrated, 15.2 Brix) was fermented by lactic acid bacteria (Lactobacillus gasseri strain DSM 20604 or DSM 20077). Fermentation enhanced the nutritional profile of carrot juice. There was a greater sugar reduction (27%) in fermented straight carrot juices than in the fermented concentrated juices (15%). The sugar reduction was independent of the strain used for fermentation. The two L. gasseri strains synthesised fructosyltransferase enzymes during fermentation of carrot juice samples that enabled conversion of simple sugars primarily into polysaccharides. The level of conversion to polysaccharides was dependent on the L. gasseri strain and juice concentration. Fermentation of carrot juice by L. gasseri enables the production of a nutritionally-enhanced beverage with reduced calorie and prebiotic potential. An additional benefit is the increased carotenoid content observed in straight and concentrated juices fermented by Lactobacillus gasseri DSM 20077 and the concentrated juice fermented by Lactobacillus gasseri DSM 20604.
Collapse
|
41
|
Comparison of northeast sauerkraut fermentation between single lactic acid bacteria strains and traditional fermentation. Food Res Int 2020; 137:109553. [DOI: 10.1016/j.foodres.2020.109553] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 12/18/2022]
|
42
|
Peng K, Koubaa M, Bals O, Vorobiev E. Recent insights in the impact of emerging technologies on lactic acid bacteria: A review. Food Res Int 2020; 137:109544. [DOI: 10.1016/j.foodres.2020.109544] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022]
|
43
|
Synergic Involvements of Microorganisms in the Biomedical Increase of Polyphenols and Flavonoids during the Fermentation of Ginger Juice. Int J Microbiol 2020; 2020:8417693. [PMID: 33110428 PMCID: PMC7579675 DOI: 10.1155/2020/8417693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/15/2020] [Accepted: 07/20/2020] [Indexed: 11/17/2022] Open
Abstract
Steered fermentation by microorganisms gives great added value in the nutritional quality of local food. Ginger rhizome naturally contains a myriad of bioactive compounds including polyphenol and flavonoids. The aim of this work was to ferment the ginger juice, to evaluate the biochemical parameters of ginger wine, and to understand the involvement of microorganisms in the bioincrease of polyphenol compounds. Titratable acidity and pH values were determined and showed that pH is around 1.6 at the end of the fermentation when the acidity is around 6.431 g/L. Using colorimetric assay, the total polyphenolic and flavonoid compounds were evaluated throughout the fermentation. The variation of the polyphenol and flavonoid concentrations of the unsweetened sample was around 10.18 to 14.64 mg Eq AG/g and 1.394 to 2.224 mg Eq Cat/g Ms, but those from the sweet sample were around 10.82 to 18.34 mg Eq AG/g Ms and 1.311 to 2.290 mg Eq Cat/g. Using one-step PCR, multiplex techniques with specific primers, with yeast-like phenotype 27.27% (6), have been assigned among 22 isolates to Saccharomyces cerevisiae. By using PCR multiplex techniques, Bacillus licheniformis, Bacillus pumilus, Bacillus safensis, and Saccharomyces cerevisiae have been identified. Together with Saccharomyces cerevisiae, we showed that Bacillus sp. are able to secrete enzymatic landscape with some activities up to 50% including cellulase, amylase, pectinase, and protease.
Collapse
|
44
|
Szutowska J, Gwiazdowska D. Probiotic potential of lactic acid bacteria obtained from fermented curly kale juice. Arch Microbiol 2020; 203:975-988. [PMID: 33104821 PMCID: PMC7965858 DOI: 10.1007/s00203-020-02095-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/06/2020] [Accepted: 10/13/2020] [Indexed: 12/18/2022]
Abstract
The aim of the paper was to analyse changes in lactic acid bacteria (LAB) populations during spontaneous fermentation of green curly kale juice (Brasicca oleracea L. var. acephala L.) and to determine the probiotic potential of LAB isolates. The analyses revealed that changes in LAB populations were specific for spontaneously fermented vegetable juices. The initial microbiota, composed mostly of Leuconostoc mesenteroides bacteria, was gradually replaced by Lactobacillus species, mainly Lactobacillus plantarum, Lactobacillus sakei, and Lactobacillus coryniformis. Screening tests for the antimicrobial properties and antibiotic susceptibility of isolates allowed for the selection of 12 strains with desirable characteristics. L. plantarum isolates were characterized by the widest spectrum of antimicrobial interactions, both towards Gram-positive and Gram-negative bacteria. Also, L. plantarum strains exhibited the best growth abilities under low pH conditions, and at different NaCl and bile salt concentrations. All strains showed different levels of antibiotic sensitivity, although they were resistant to vancomycin and kanamycin. The present study has shown that bacterial isolates obtained from spontaneously fermented kale juice could constitute valuable probiotic starter cultures, which may be used in fermentation industry.
Collapse
Affiliation(s)
- Julia Szutowska
- Department of Natural Science and Quality Assurance, Institute of Quality Science, Poznań University of Economics and Business, Poznań, Poland.
| | - Daniela Gwiazdowska
- Department of Natural Science and Quality Assurance, Institute of Quality Science, Poznań University of Economics and Business, Poznań, Poland
| |
Collapse
|
45
|
Cai YX, Augustin MA, Jegasothy H, Wang JH, Terefe NS. Mild heat combined with lactic acid fermentation: a novel approach for enhancing sulforaphane yield in broccoli puree. Food Funct 2020; 11:779-786. [PMID: 31922158 DOI: 10.1039/c9fo02089f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study evaluated for the first time the feasibility of mild preheating treatment of broccoli florets combined with lactic acid bacteria fermentation for enhancing sulforaphane yield in broccoli puree. The optimum preheating condition for in-pack processing of broccoli florets was 3 min treatment at 65 °C increasing sulforaphane yield in broccoli puree by ∼5 times compared to untreated broccoli. Preheating of broccoli florets in-pack (65 °C per 3 min) combined with lactic acid bacteria fermentation further enhanced the sulforaphane content by ∼16 times compared to untreated broccoli. The sulforaphane content of the preheated-fermented puree remained stable (∼94% retention) for two weeks at 4 °C. The results indicate that a combination of judicious heat treatment of broccoli florets with lactic acid bacteria fermentation enables production of safe and high sulforaphane content broccoli products with potential health benefits.
Collapse
Affiliation(s)
- Yan Xue Cai
- Engineering Research Center of Health Food Design & Nutrition Regulation, School of Chemical Engineering & Energy Technology, Dongguan University of Technology, Dongguan, 523808, China
| | | | | | | | | |
Collapse
|
46
|
High-Performance Liquid Chromatography Determination of Free Sugars and Mannitol in Mushrooms Using Corona Charged Aerosol Detection. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01863-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractRefractive index detector is usually used in the analysis of sugars in mushrooms, which is characterized by poor sensitivity, reproducibility, and susceptibility to interference from co-eluting sample components. In the current study, identification and determination of free sugars in mushroom samples by high-performance liquid chromatography coupled to corona charged aerosol detector (HPLC-CAD) were presented for the first time. The best chromatographic separation was performed on a Shodex Asahipak NH2P-50 4E 5 μm and mobile phase composed of 75% acetonitrile and 25% water with flow rate was 1 mL/min. The developed method offers good linearity in concentration range 0.001–0.01 or 0.01–0.2 mg/mL for tested compounds with R2 > 0.99. Limit of detection (LOD) for analytes was in the range of 7.1–120.2 ng on column. HPLC-CAD method showed very good reproducibility (RSD < 5.1%). Fructose, mannitol, and glucose were detected in all examined mushroom samples. For white Agaricus bisporus, mannitol was the most abundant sugar (7.575 mg/g dw), whereas trehalose for Pleurotus ostreatus (3.426 mg/g dw). The developed method was successfully applied for quantification of free sugars and mannitol in mushrooms. The optimized method proved to be sensitive, reproducible, and accurate.
Collapse
|
47
|
Comprehensive investigation on volatile and non-volatile metabolites in broccoli juices fermented by animal- and plant-derived Pediococcus pentosaceus. Food Chem 2020; 341:128118. [PMID: 33022577 DOI: 10.1016/j.foodchem.2020.128118] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/23/2020] [Accepted: 09/13/2020] [Indexed: 12/14/2022]
Abstract
A metabolomics approach was employed to investigate differences and correlations among key odorants and non-volatile metabolites in broccoli juices fermented by plant- and animal-derived Pediococcus pentosaceus. Forty volatile metabolites were identified by headspace solid-phase microextraction/gas chromatography-mass spectrometry. According to orthogonal projections to latent structures-differential analysis, 24 and 21 differential volatiles were detected after fermentation by plant- and animal-derived P. pentosaceus, respectively. The concentrations of 10 odorants (OAV ≥ 1) detected by gas chromatography-olfactometry changed significantly after fermentation by P. pentosaceus. Using ultrahigh-pressure liquid chromatography/quadrupole time-of-flight mass spectrometry, 49.47% of the non-volatile metabolites were classified as lipids and lipid-like molecules. The relative expressions of five non-volatile metabolites that exhibited significant correlations with odorants using Spearman correlation analysis changed significantly after fermentation. Fermentation with animal- and plant-derived P. pentosaceus can therefore change key odorants and non-volatile metabolites in broccoli juice that contribute to the characteristic organoleptic properties of products.
Collapse
Key Words
- 1-Hexanol (PubChem CID: 8103)
- 1-Octen-3-ol (PubChem CID: 18827)
- 2,4-Hexadienal, (E,E)- (PubChem CID: 637564)
- 2-Hexen-1-ol, (E)- (PubChem CID: 5,318,042)
- 2-Hexenal, (E)- (PubChem CID: 5281168);
- 3-Hexen-1-ol, (Z)- (PubChem CID: 5281167)
- Dimethyl disulfide (PubChem CID: 12232)
- Dimethyl trisulfide (PubChem CID: 19310)
- Fermented broccoli juice
- Furan, 2-ethyl- (PubChem CID: 18554)
- Furan, 2-pentyl (PubChem CID: 19602)
- Hexanal (PubChem CID: 6184)
- Key odorant
- Non-volatile metabolite
- Pediococcus pentosaceus
- Thiocyanic acid, methyl ester (PubChem CID: 11168)
Collapse
|
48
|
Controlled Fermentation Using Autochthonous Lactobacillus plantarum Improves Antimicrobial Potential of Chinese Chives against Poultry Pathogens. Antibiotics (Basel) 2020; 9:antibiotics9070386. [PMID: 32645847 PMCID: PMC7400581 DOI: 10.3390/antibiotics9070386] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 12/21/2022] Open
Abstract
Chinese chives (CC) are rich in several antimicrobial constituents including organosulfur compounds, phenolics, and saponins, among others. Herein, we fermented CC juice using an autochthonous isolate, Lactobacillus plantarum having antimicrobial effects against poultry pathogens toward formulating an antimicrobial feed additive. Following 24 h of fermentation, the antimicrobial and antiviral activities of CC juice were significantly enhanced against poultry pathogens. However, the antioxidant activity of CC juice was significantly decreased following fermentation. Meanwhile, the compositional changes of CC juice following fermentation were also investigated. The total polyphenol, thiol, and allicin contents were significantly decreased in L. plantarum 24 h-fermented CC juice (LpCC) extract; however, total flavonoids increased significantly following fermentation. The untargeted metabolite profiling of nonfermented CC juice (NCC) and LpCC extracts was carried out using the ultra-high-performance liquid chromatography-linear trap quadrupole-orbitrap-tandem mass spectrometry (UHPLC-LTQ-Orbitrap-MS/MS) followed by multivariate analyses. The score plots of principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) based on UHPLC-LTQ-Orbitrap-MS/MS datasets displayed a clear segregation between the LpCC and NCC samples, which suggests their marked metabolomic disparity. Based on the multivariate analysis, we selected 17 significantly discriminant metabolites belonging to the different chemical classes including alkaloid, flavonols, saponins, fatty acids, amino acids, and organic acids. Notably, the flavonols including the glycosides of quercetin, kaempferol, and isorhamnetin as well as the saponins displayed significantly higher relative abundance in LpCC as compared with NCC. This study provides useful insights for the development of a fermented CC juice based antimicrobial feed additive to combat poultry infections.
Collapse
|
49
|
Torres S, Verón H, Contreras L, Isla MI. An overview of plant-autochthonous microorganisms and fermented vegetable foods. FOOD SCIENCE AND HUMAN WELLNESS 2020. [DOI: 10.1016/j.fshw.2020.02.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
50
|
Multari S, Carafa I, Barp L, Caruso M, Licciardello C, Larcher R, Tuohy K, Martens S. Effects of Lactobacillus spp. on the phytochemical composition of juices from two varieties of Citrus sinensis L. Osbeck: ‘Tarocco’ and ‘Washington navel’. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109205] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|