1
|
Shen L, Qiu W, Du L, Zhou M, Qiao Y, Wang C, Wang L. Effects of high hydrostatic pressure on peelability and quality of crayfish(Procambarus clarkii). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:611-619. [PMID: 37437092 DOI: 10.1002/jsfa.12855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/24/2023] [Accepted: 07/12/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND Peeling of crayfish is a very important process in production. Crayfish peeling by machine can increase production efficiency and enhance safety in the production process. The tight muscle-shell attachment causes difficulty in peeling freshly caught crayfish. However, few studies have explored the changes in crayfish quality under favorable shell-loosening treatments. RESULTS In this study, the shell-loosening properties of crayfish and changes in crayfish quality, microstructure and protein fluorescent features were investigated after high hydrostatic pressure (HHP) treatment. New methods were established to measure the peeling performance of crayfish, which are peelability and meat yield rate (MYR). The normalization of peelability and MYR were verified by different weights of crayfish tails and different treatments. The peeling effect of HHP-treated crayfish was evaluated by a new quantitative measurement method, and MYR was calculated. The results showed that all the HHP treatments reduced crayfish peeling work and increased MYR. The HHP treatment provided better crayfish quality in terms of texture and color and enlarged the shell-loosening gap. Among all HHP treatments, 200 MPa treatment exhibited lower peeling work, higher MYR and an expansion of the shell-loosening gap, reaching up to 573.8 μm. At the same time, 200 MPa treatment could maintain crayfish quality. CONCLUSION The findings outlined above suggest that high pressure is a promising method for loosening crayfish shells. 200 MPa is an optimal HHP treatment condition for crayfish peeling, exhibiting a promising application in industrial processing. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- LingWei Shen
- School of Biological and Food, Hubei University of Technology, Wuhan, China
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - WenXing Qiu
- School of Biological and Food, Hubei University of Technology, Wuhan, China
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Liu Du
- School of Biological and Food, Hubei University of Technology, Wuhan, China
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Mingzhu Zhou
- School of Biological and Food, Hubei University of Technology, Wuhan, China
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yu Qiao
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Chao Wang
- School of Biological and Food, Hubei University of Technology, Wuhan, China
| | - Lan Wang
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
2
|
Wang X, Dong T, Zhou Q, Tong L, Zheng J, Qin X, Wang X, Wang Y, Yao B, Huang H, Luo H. Improving the Activity and Stability of Serine Protease ThAPT3 by Alleviating Self-Cleavage and Its Application in Deproteinization of Shrimp Shells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7777-7790. [PMID: 37161941 DOI: 10.1021/acs.jafc.3c01618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The self-cleavage properties of proteases result in low activity and instability, which limit their industrial application. In this study, the serine protease ThAPT3 from Torrubiella hemipterigena was successfully expressed in Komagataella phaffii. We investigated the self-degradation mechanism of ThAPT3 and presented a rational strategy to alleviate self-cleavage. A major self-degradation site (Leu238-Met239) and a primary autolysis region were identified. The autolysis regions (loop18, α8-helix, and loop19) were redesigned and optimized using loop transplantation, energy calculations, surface cavity optimization, and loop anchoring. A triple-superposition mutant, ThAPT3-M9 (M239GKDGAVAAGLC250 → M239TLNRTTAANAC250/A251E/A254Q/R259L/A267E/S280N), was obtained. Compared to the wild type, the autolysis of M9 was significantly alleviated, and its half-life at 60 °C was increased approximately 39-fold (from 1.6 to 62.4 min). The optimal temperature and specific activity of M9 increased by 5 °C (from 60 to 65 °C) and 62% (4985 vs 3078 U/mg), respectively. M9 showed significant advantages in shrimp shell deproteinization.
Collapse
Affiliation(s)
- Xiao Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tao Dong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qiao Zhou
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China
| | - Lige Tong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jie Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xing Qin
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaolu Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yaru Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huoqing Huang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
3
|
Recent advance in the investigation of aquatic “blue foods” at a molecular level: A proteomics strategy. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Diwan AD, Harke SN, Panche AN. Application of proteomics in shrimp and shrimp aquaculture. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 43:101015. [PMID: 35870418 DOI: 10.1016/j.cbd.2022.101015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Since proteins play an important role in the life of an organism, many researchers are now looking at how genes and proteins interact to form different proteins. It is anticipated that the creation of adequate tools for rapid analysis of proteins will accelerate the determination of functional aspects of these biomolecules and develop new biomarkers and therapeutic targets for the diagnosis and treatment of various diseases. Though shrimp contains high-quality marine proteins, there are reports about the heavy losses to the shrimp industry due to the poor quality of shrimp production and many times due to mass mortality also. Frequent outbreaks of diseases, water pollution, and quality of feed are some of the most recognized reasons for such losses. In the seafood export market, shrimp occupies the top position in currency earnings and strengthens the economy of many developing nations. Therefore, it is vital for shrimp-producing companies they produce healthy shrimp with high-quality protein. Though aquaculture is a very competitive market, global awareness regarding the use of scientific knowledge and emerging technologies to obtain better-farmed organisms through sustainable production has enhanced the importance of proteomics in seafood biology research. Proteomics, as a powerful tool, has therefore been increasingly used to address several issues in shrimp aquaculture. In the present paper, efforts have been made to address some of them, particularly the role of proteomics in reproduction, breeding and spawning, immunological responses and disease resistance capacity, nutrition and health, microbiome and probiotics, quality and safety of shrimp production, bioinformatics applications in proteomics, the discovery of protein biomarkers, and mitigating biotic and abiotic stresses. Future challenges and research directions on proteomics in shrimp aquaculture have also been discussed.
Collapse
Affiliation(s)
- A D Diwan
- MGM Institute of Biosciences and Technology, Mahatma Gandhi Mission University N-6, CIDCO, Aurangabad-431003, Maharashtra, India.
| | - S N Harke
- MGM Institute of Biosciences and Technology, Mahatma Gandhi Mission University N-6, CIDCO, Aurangabad-431003, Maharashtra, India.
| | - Archana N Panche
- Novo Nordisk Centre for Biosustainability, Technical University of Denmark, B220 Kemitorvet, 2800 Kgs, Lyngby, Denmark.
| |
Collapse
|
5
|
Ye T, Zhu Y, Wang Y, Liu R, Lin L, Zheng Z, Lu J. Effect of high pressure shucking on the gel properties and in vitro digestibility of myofibrillar proteins from red swamp crayfish (Procambarus clarkii). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Chen L, Jiao D, Yu X, Zhu C, Sun Y, Liu M, Liu H. Effect of high pressure processing on the physicochemical and sensorial properties of scallop (
Mizuhopecten yessoensis
) during iced storage. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Lihang Chen
- College of Food Science and Engineering Jilin Agricultural University Changchun, Jilin 130118 China
- National Engineering Laboratory for Wheat and Corn Deep Processing Changchun, Jilin 130118 China
| | - Dexin Jiao
- College of Food Science and Engineering Jilin Agricultural University Changchun, Jilin 130118 China
- National Engineering Laboratory for Wheat and Corn Deep Processing Changchun, Jilin 130118 China
| | - Xiaona Yu
- College of Food Science and Engineering Jilin Agricultural University Changchun, Jilin 130118 China
- National Engineering Laboratory for Wheat and Corn Deep Processing Changchun, Jilin 130118 China
- College of Life Sciences Jilin Agricultural University Changchun, Jilin 130118 China
| | - Chen Zhu
- College of Food Science and Engineering Jilin Agricultural University Changchun, Jilin 130118 China
- National Engineering Laboratory for Wheat and Corn Deep Processing Changchun, Jilin 130118 China
| | - Ying Sun
- College of Food Science and Engineering Jilin Agricultural University Changchun, Jilin 130118 China
- National Engineering Laboratory for Wheat and Corn Deep Processing Changchun, Jilin 130118 China
| | - Meihong Liu
- College of Food Science and Engineering Jilin Agricultural University Changchun, Jilin 130118 China
- National Engineering Laboratory for Wheat and Corn Deep Processing Changchun, Jilin 130118 China
| | - Huimin Liu
- College of Food Science and Engineering Jilin Agricultural University Changchun, Jilin 130118 China
- National Engineering Laboratory for Wheat and Corn Deep Processing Changchun, Jilin 130118 China
| |
Collapse
|
7
|
Protein Signatures to Trace Seafood Contamination and Processing. Foods 2020; 9:foods9121751. [PMID: 33256117 PMCID: PMC7761302 DOI: 10.3390/foods9121751] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
This review presents some applications of proteomics and selected spectroscopic methods to validate certain aspects of seafood traceability. After a general introduction to traceability and the initial applications of proteomics to authenticate traceability information, it addresses the application of proteomics to trace seafood exposure to some increasingly abundant emergent health hazards with the potential to indicate the geographic/environmental origin, such as microplastics, triclosan and human medicinal and recreational drugs. Thereafter, it shows the application of vibrational spectroscopy (Fourier-Transform Infrared Spectroscopy (FTIR) and Fourier-Transform Raman Spectroscopy (FT Raman)) and Low Field Nuclear Magnetic Resonance (LF-NMR) relaxometry to discriminate frozen fish from thawed fish and to estimate the time and temperature history of frozen fillets by monitoring protein modifications induced by processing and storage. The review concludes indicating near future trends in the application of these techniques to ensure seafood safety and traceability.
Collapse
|
8
|
Yang X, Hao S, Pan C, Li L, Huang H, Yang X, Wang Y. A quantitative method to analysis shrimp peelability and its application in the shrimp peeling process. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaojie Yang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Lab of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs National R&D Center for Aquatic Product Processing Guangzhou China
- College of Food Science and Technology Shanghai Ocean University Shanghai China
| | - Shuxian Hao
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Lab of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs National R&D Center for Aquatic Product Processing Guangzhou China
| | - Chuang Pan
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Lab of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs National R&D Center for Aquatic Product Processing Guangzhou China
| | - Laihao Li
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Lab of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs National R&D Center for Aquatic Product Processing Guangzhou China
| | - Hui Huang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Lab of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs National R&D Center for Aquatic Product Processing Guangzhou China
| | - Xianqing Yang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Lab of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs National R&D Center for Aquatic Product Processing Guangzhou China
| | - Yueqi Wang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Lab of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs National R&D Center for Aquatic Product Processing Guangzhou China
| |
Collapse
|
9
|
Li X, Llave Y, Fukuoka M, Sakai N. Physicochemical changes in cooked prawn muscle with or without shell during water bath treatment: Effect of thermal protein denaturation. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Xiaolong Li
- Department of Food Science and Technology Tokyo University of Marine Science and Technology Tokyo Japan
| | - Yvan Llave
- Department of Agro–Food Science Niigata Agro–Food University Tainai Japan
| | - Mika Fukuoka
- Department of Food Science and Technology Tokyo University of Marine Science and Technology Tokyo Japan
| | - Noboru Sakai
- Department of Food Science and Technology Tokyo University of Marine Science and Technology Tokyo Japan
| |
Collapse
|
10
|
Dang TT, Feyissa AH, Gringer N, Jessen F, Olsen K, Bøknæs N, Orlien V. Effects of high pressure and ohmic heating on shell loosening, thermal and structural properties of shrimp (Pandalus borealis). INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2019.102246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|