1
|
Carabajal MD, Bortolato SA, Lisandrini FT, Olivieri AC. An exhaustive analysis of the use of image moments for second-order calibration. A comparison with multivariate curve resolution-alternating least-squares. Anal Chim Acta 2024; 1288:342177. [PMID: 38220307 DOI: 10.1016/j.aca.2023.342177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND the chemometric processing of second-order chromatographic-spectral data is usually carried out with the aid of multivariate curve resolution-alternating least-squares (MCR-ALS). Recently, an alternative procedure was described based on the estimation of image moments for each data matrix and subsequent application of multiple linear regression after suitable variable selection. RESULTS The analysis of both simulated and experimental data leads to the conclusion that the image moment method, although can cope with chromatographic lack of reproducibility across injections, it only performs well in the absence of uncalibrated interferents. MCR-ALS, on the other hand, provides good analytical results in all studied situations, whether the test samples contain uncalibrated interferents or not. SIGNIFICANCE The results are useful to assess the real usefulness of newly proposed methodologies for second-order calibration in the case of chromatographic-spectral data sets, especially when samples contain unexpected chemical constituents.
Collapse
Affiliation(s)
- Maira D Carabajal
- Departamento de Química Analítica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina; Instituto de Química Rosario (CONICET-UNR), 27 de Febrero 210 Bis, 2000, Rosario, Argentina
| | - Santiago A Bortolato
- Departamento de Matemática, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina; Instituto de Química Rosario (CONICET-UNR), 27 de Febrero 210 Bis, 2000, Rosario, Argentina
| | - Franco T Lisandrini
- Physikalisches Institut, University of Bonn, Nussallee 12, 53115, Bonn, Germany
| | - Alejandro C Olivieri
- Departamento de Química Analítica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina; Instituto de Química Rosario (CONICET-UNR), 27 de Febrero 210 Bis, 2000, Rosario, Argentina.
| |
Collapse
|
2
|
Lima GDS, Pereira I, Maciel LIL, Lima NM, Araujo GL, de Aguiar DVA, Dos Santos GF, Vaz BG. Combining LAESI Imaging and Tissue Spray Ionization Mass Spectrometry To Unveil Pesticides Contaminants in Fruits. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2461-2468. [PMID: 37804228 DOI: 10.1021/jasms.3c00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2023]
Abstract
There is an increasing need for developing a strategy to analyze the penetration of pesticides in cultures during postharvest control with minimal or no sample preparation. This study explores the combined use of laser ablation electrospray ionization mass spectrometry imaging (LAESI imaging) and tissue spray ionization mass spectrometry (TSI-MS) to investigate the penetration of thiabendazole (TBZ) in fruits, simulating a postharvest procedure. Slices of guava and apple were prepared, and an infrared laser beam was used, resulting in the ablation of TBZ directly ionized by electrospray and analyzed by mass spectrometry. The experiments were conducted for 5 days of fruit storage after TBZ administration to simulate a postharvest treatment. During postharvest treatment, TBZ is applied directly to the fruit peel after harvesting. Consequently, TBZ residues may remain on the peel if the consumer does not wash the fruit properly before its consumption. To evaluate the effectiveness of household washing procedures, TSI-MS was employed as a rapid and straightforward technique to monitor the remaining amount of TBZ in guava and apple peels following fruit washing. This study highlights the advantages of LAESI imaging for evaluating TBZ penetration in fruits. Moreover, the powerful capabilities of TSI-MS are demonstrated in monitoring and estimating TBZ residues after pesticide application, enabling the comprehensive unveiling of pesticide contaminants in fruits.
Collapse
Affiliation(s)
| | - Igor Pereira
- Chemistry Institute, Federal University of Goiás, Goiánia, Goiás 74690-900, Brazil
- Department of Chemistry, Vancouver Island University, Nanaimo, British Columbia V9R 5S5, Canada
| | | | | | | | | | | | - Boniek Gontijo Vaz
- Chemistry Institute, Federal University of Goiás, Goiánia, Goiás 74690-900, Brazil
| |
Collapse
|
3
|
Budetić M, Kopf D, Dandić A, Samardžić M. Review of Characteristics and Analytical Methods for Determination of Thiabendazole. Molecules 2023; 28:3926. [PMID: 37175335 PMCID: PMC10179875 DOI: 10.3390/molecules28093926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Thiabendazole (TBZ) is a fungicide and anthelmintic drug commonly found in food products. Due to its toxicity and potential carcinogenicity, its determination in various samples is important for public health. Different analytical methods can be used to determine the presence and concentration of TBZ in samples. Liquid chromatography (LC) and its subtypes, high-performance liquid chromatography (HPLC) and ultra-high-performance liquid chromatography (UHPLC), are the most commonly used methods for TBZ determination representing 19%, 18%, and 18% of the described methods, respectively. Surface-enhanced Raman spectroscopy (SERS) and fluorimetry are two more methods widely used for TBZ determination, representing 13% and 12% of the described methods, respectively. In this review, a number of methods for TBZ determination are described, but due to their limitations, there is a high potential for the further improvement and development of each method in order to obtain a simple, precise, and accurate method that can be used for routine analysis.
Collapse
Affiliation(s)
| | | | | | - Mirela Samardžić
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (M.B.); (A.D.)
| |
Collapse
|
4
|
Pee CY, Ong S, Raveendran P, Wong L. Efficient Anisotropic Scaling and Translation Invariants of Tchebichef Moments Using Image Normalization. Pattern Recognit Lett 2023. [DOI: 10.1016/j.patrec.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
5
|
New Constructed EEM Spectra Combined with N-PLS Analysis Approach as an Effective Way to Determine Multiple Target Compounds in Complex Samples. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238378. [PMID: 36500471 PMCID: PMC9740148 DOI: 10.3390/molecules27238378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/26/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022]
Abstract
Excitation-emission matrix (EEM) fluorescence spectroscopy has been applied to many fields. In this study, a simple method was proposed to obtain the new constructed three-dimensional (3D) EEM spectra based on the original EEM spectra. Then, the application of the N-PLS method to the new constructed 3D EEM spectra was proposed to quantify target compounds in two complex data sets. The quantitative models were established on external sample sets and validated using statistical parameters. For validation purposes, the obtained results were compared with those obtained by applying the N-PLS method to the original EEM spectra and applying the PLS method to the extracted maximum spectra in the concatenated mode. The comparison of the results demonstrated that, given the advantages of less useless information and a high calculating speed of the new constructed 3D EEM spectra, N-PLS on the new constructed 3D EEM spectra obtained better quantitative analysis results with a correlation coefficient of prediction above 0.9906 and recovery values in the range of 85.6-95.6%. Therefore, one can conclude that the N-PLS method combined with the new constructed 3D EEM spectra is expected to be broadened as an alternative strategy for the simultaneous determination of multiple target compounds.
Collapse
|
6
|
Liu W, Chen Y, Yin X, Liu F, Li W, Yu J, Jing G, Li W. A Rapid and on-Site detection of Pesticide Residue from Fruit Samples based on Surface Swab-Electrospray Ionization-Ion Mobility Spectrometry. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
7
|
Lu SH, Zhang MC, Zhai HL, Bi KX, Zhao BQ. Rapid Determination in the Quality Control of Chinese Patent Medicine. J Pharm Innov 2022. [DOI: 10.1007/s12247-021-09608-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Tu FQ, Yang M. Determination of Pesticides in Apples by High-Performance Liquid Chromatography–Mass Spectrometry (HPLC–MS) with High-Resolution Multiple Reaction Monitoring. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1938594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Feng-Qin Tu
- Wuhan Institute for Food and Cosmetic Control, Wuhan, China
| | - Ming Yang
- Wuhan Institute for Food and Cosmetic Control, Wuhan, China
| |
Collapse
|
9
|
Chen K, Wang Y, Cui H, Wei Z, Jia X, Liu Z, Guo X. Difunctional Fluorescence Nanoparticles for Accurate Tracing of Nanopesticide Fate and Crop Protection Prepared by Flash Nanoprecipitation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:735-741. [PMID: 31895559 DOI: 10.1021/acs.jafc.9b06744] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Facile fabrication of difunctional nanoparticles (NPs) for pesticide delivery and imaging is still a fascinating challenge. Here, water-dispersible difunctional NPs were developed using flash nanoprecipitation (FNP) where self-assembling amphiphilic block copolymers were used to encapsulate a highly hydrophobic model pesticide, Lambda-cyhalothrin, and the fluorescent dye Nile red. The particle size (ranging from 158 to 280 nm) and fluorescence property of NPs could be controlled by varying the flow rate or Nile red feed concentration. The aggregation state and rearrangement of the dye molecules in the NPs were also investigated. IVIS imaging and confocal laser scanning microscopy analysis demonstrated that the resulting difunctional nanopesticide particles could allow accurate in situ tracking of the pesticide on the leaf surface, while effectively avoiding interference from chlorophyll autofluorescence. The difunctional NP suspension maintained high insecticidal activity and stability. This work demonstrates the feasibility and great potential of the FNP method in universal fabrication of multifunctional NPs with in situ pesticide tracing and crop protection capabilities.
Collapse
Affiliation(s)
- Kai Chen
- State Key Laboratory of Chemical Engineering, Engineering Research Center of Large Scale Reactor Engineering and Technology (Ministry of Education), and International Joint Research Center of Green Energy Chemical Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China
- Institute of Environment and Sustainable Development in Agriculture , Chinese Academy of Agricultural Sciences , Beijing 100081 , P. R. China
- Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan, Key Laboratory of Materials Chemical Engineering of Xinjiang Uygur Autonomous Region , Shihezi University , Shihezi 832000 , P. R. China
| | - Yan Wang
- Institute of Environment and Sustainable Development in Agriculture , Chinese Academy of Agricultural Sciences , Beijing 100081 , P. R. China
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture , Chinese Academy of Agricultural Sciences , Beijing 100081 , P. R. China
| | - Zhong Wei
- Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan, Key Laboratory of Materials Chemical Engineering of Xinjiang Uygur Autonomous Region , Shihezi University , Shihezi 832000 , P. R. China
| | - Xin Jia
- Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan, Key Laboratory of Materials Chemical Engineering of Xinjiang Uygur Autonomous Region , Shihezi University , Shihezi 832000 , P. R. China
| | - Zhiyong Liu
- Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan, Key Laboratory of Materials Chemical Engineering of Xinjiang Uygur Autonomous Region , Shihezi University , Shihezi 832000 , P. R. China
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering, Engineering Research Center of Large Scale Reactor Engineering and Technology (Ministry of Education), and International Joint Research Center of Green Energy Chemical Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China
- Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan, Key Laboratory of Materials Chemical Engineering of Xinjiang Uygur Autonomous Region , Shihezi University , Shihezi 832000 , P. R. China
| |
Collapse
|
10
|
Zhou Q, Bian Y, Peng Q, Liu F, Wang W, Chen F. The effects and mechanism of using ultrasonic dishwasher to remove five pesticides from rape and grape. Food Chem 2019; 298:125007. [DOI: 10.1016/j.foodchem.2019.125007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 04/26/2019] [Accepted: 06/12/2019] [Indexed: 01/06/2023]
|
11
|
Ge L, Liu Q, Hao N, Kun W. Recent developments of photoelectrochemical biosensors for food analysis. J Mater Chem B 2019; 7:7283-7300. [DOI: 10.1039/c9tb01644a] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent developments of photoelectrochemical biosensors for food analysis are summarized and the future prospects in this field are discussed.
Collapse
Affiliation(s)
- Lan Ge
- Key Laboratory of Modern Agriculture Equipment and Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Qian Liu
- Key Laboratory of Modern Agriculture Equipment and Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Nan Hao
- Key Laboratory of Modern Agriculture Equipment and Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Wang Kun
- Key Laboratory of Modern Agriculture Equipment and Technology
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| |
Collapse
|