1
|
Shen H, Cai JY, Wang JH, Yu YL, Liu S. Dual-stage excitation source improves the analytical sensitivity of miniaturized optical emission spectrometer. Talanta 2025; 286:127540. [PMID: 39788071 DOI: 10.1016/j.talanta.2025.127540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/29/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
Miniaturized optical emission spectrometric (OES) devices based on various microplasma excitation sources provide a reliable tool for in-situ elemental analysis. The key to improving analytical performance is enhancing the excitation capability of the microplasma source in these devices. Here, dielectric barrier discharge (DBD) and point discharge (PD) technologies are combined to construct an enhanced dual-stage excitation source (called DBD-PD), which improves the overall excitation efficiency and OES signal sensitivity. Specifically, DBD serves as a pre-excitation source in a narrow discharge chamber, significantly reducing energy consumption during breakdown discharge gas, while improving the excitation capability of subsequent PD microplasma. The microplasma parameter characteristics were calculated, and the microplasma state during the excitation process was imaged using a fast-gated intensified charge-coupled device (ICCD) camera, revealing the enhancement mechanism of the DBD-PD excitation source. Compared to other microplasma excitation sources such as DBD, PD and PD-DBD, DBD-PD increased Se and As signal intensity by up to 16.0 and 11.6 times, respectively. Under the optimal conditions, the detection limits of Se and As reached 0.8 and 0.2 μg L-1, respectively, and the relative standard deviations (RSDs) were less than 5%. The analysis of certified reference materials (GBW07601a and GBW10023) and actual water samples verified the reliability and practicability of the proposed method. This analysis strategy not only offers significant leap in field performance of miniaturized OES devices but also holds extensive potential for broader applications in elemental analysis.
Collapse
Affiliation(s)
- Hao Shen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Ji-Ying Cai
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Shuang Liu
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
2
|
Ouyang M, Liu T, Yuan X, Xie C, Luo K, Zhou L. Nanomaterials-based aptasensors for rapid detection and early warning of key food contaminants: A review. Food Chem 2025; 462:140990. [PMID: 39208725 DOI: 10.1016/j.foodchem.2024.140990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/04/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The frequent occurrence of food safety incidents has aroused public concern about food safety and key contaminants. Foodborne pathogen contamination, pesticide residues, heavy metal residues, and other food safety problems will significantly impact human health. Therefore, developing efficient and sensitive detection method to ensure food safety early warning is paramount. The aptamer-based sensor (aptasensor) is a novel analytical tool with strong targeting, high sensitivity, low cost, etc. It has been extensively utilized in the pharmaceutical industry, biomedicine, environmental engineering, food safety detection, and in other diverse fields. This work reviewed the latest research progress of aptasensors for food analysis and detection, mainly introducing their application in detecting various key food contaminants. Subsequently, the sensing mechanism and performance of aptasensors are discussed. Finally, the review will examine the challenges and opportunities related to aptasensors for detecting major contaminants in food, and advance implementation of aptasensors in food safety and detection.
Collapse
Affiliation(s)
- Min Ouyang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Ting Liu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaomin Yuan
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Can Xie
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Kun Luo
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Liyi Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
3
|
Skok A, Manousi N, Anthemidis A, Bazel Y. Automated Systems with Fluorescence Detection for Metal Determination: A Review. Molecules 2024; 29:5720. [PMID: 39683879 DOI: 10.3390/molecules29235720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Industrialization has led to environmental pollution with various hazardous chemicals including pollution with metals. In this regard, the development of highly efficient analytical methods for their determination has received considerable attention to ensure public safety. Currently, scientists are paying more and more attention to the automation of analytical methods, since it permits fast, accurate, and sensitive analysis with minimal exposure of analysts to hazardous substances. This review discusses the automated methods with fluorescent detection developed for metal determination since 2000. It is evident that flow-injection analysis (FIA) with no preconcentration or with solid-phase preconcentration are predominant compared to liquid-phase preconcentration systems. FIA systems are also more widespread than sequential injection analysis (SIA) systems. Moreover, a significant number of works have been devoted to chromatography-based methods. Atomic fluorescence detectors significantly prevail over molecular fluorescence detectors. It must be highlighted that most of the methods result in good figures of merit and performance characteristics, demonstrating their superiority in comparison with manual systems.
Collapse
Affiliation(s)
- Arina Skok
- Department of Analytical Chemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Safarik University in Kosice, Moyzesova 11, 040 01 Kosice, Slovakia
| | - Natalia Manousi
- Laboratory of Analytical Chemistry, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Aristidis Anthemidis
- Laboratory of Analytical Chemistry, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Yaroslav Bazel
- Department of Analytical Chemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Safarik University in Kosice, Moyzesova 11, 040 01 Kosice, Slovakia
| |
Collapse
|
4
|
Wang L, Pan Y, Wei Y, Wang Z, Wei X. Portable smartphone-based RecJf exonuclease-modulated enhanced ratiometric fluorescence bioplatform for rapid visual detection of As 3. Food Chem 2024; 454:139735. [PMID: 38795621 DOI: 10.1016/j.foodchem.2024.139735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024]
Abstract
Arsenite (As3+), a highly carcinogenic heavy metal ion and widely distributed in nature, can have serious health implications even with minimal exposure. Herein, a portable smartphone device-based ratiometric fluorescence platform was established for sensitive detection of As3+. The work relied on the use of metal-organic framework-tagged cDNA (PCN-224-cDNA), with high adsorption capability and fluorescence properties, as an internal reference to quench the fluorescence of FAM-anchored aptamer (FAM-Apt) via hybridization. In the presence of As3+, FAM-Apt specifically bound to As3+ leading to conformational changes, which detached from the PCN-224-cDNA surface. Interestingly, a smartphone-based readout equipment engineered using a 3D-printed hardware device administered the portable detection of As3+. The limit of detection (LOD) for the proposed ratiometric biosensor was calculated to be 0.021 ng/mL, significantly below WHO's safety threshold. Hence, it demonstrates significant potential for large-scale screening of As3+ residues in food and the environment.
Collapse
Affiliation(s)
- Li Wang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Yi Pan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Yang Wei
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Zhengwu Wang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Xinlin Wei
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
| |
Collapse
|
5
|
Chen L, Zhong Z, Wu R, Lin Q, Gong Z, Yuan D. On-site monitoring of dissolved Sb species in natural waters by an automatic system using flow injection coupled with hydride generation atomic fluorescence spectrometer. Talanta 2024; 274:126037. [PMID: 38604046 DOI: 10.1016/j.talanta.2024.126037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/23/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
Antimony (Sb) is a toxic and potentially carcinogenic element in the environment. The toxicity of Sb(III) is ten times that of Sb(V). Therefore, on-site monitoring technique for dissolved Sb species is crucial for the study of Sb environmental processes. In this study, an automated, portable, and cost-effective system was developed for field simultaneous analysis of Sb(III) and Sb(III + V) in natural waters. The system comprised a portable atomic fluorescence spectrometer equipped with a built-in electrochemical H2 generator to reduce the consumption of acid/borohydride solution and make the atomizer more stable for on-site analysis. Flow injection technique was also used to achieve on-line pretreatment of water samples, including filtration, acidification, pre-reduction, and hydride generation procedures. Under the optimal conditions, the limits of detection (3σ, n = 11) of the developed method were 0.015 μg/L and the linear ranges were 0.05-5.0 μg/L for both Sb(III) and Sb(III + V). The relative standard deviations (n = 11) of the spiked samples of Sb(V) were 3.2% (0.05 μg/L), 3.3% (0.2 μg/L), and 1.7% (0.5 μg/L), respectively. The spiked recoveries of lake water, treated wastewater, and seawater ranged from 97.0% to 108.5%. The novel system of flow injection coupled with hydride generation atomic fluorescence spectrometer (FI-HG-AFS) was applied to carry out an 18-h fixed-point monitoring at a secondary settling tank of a wastewater treatment facility in Xiamen University, and a 6-h real-time underway analysis in the surface seawater of Dongshan Bay, China, proving that the system was capable of long-term monitoring in the field.
Collapse
Affiliation(s)
- Luodan Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, PR China; Center for Marine Environmental Chemistry and Toxicology, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, PR China
| | - Ziyun Zhong
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, PR China
| | - Rongkun Wu
- Tairui Science and Technology Co., Ltd., Quanzhou, 362000, PR China
| | - Qinglin Lin
- Tairui Science and Technology Co., Ltd., Quanzhou, 362000, PR China
| | - Zhenbin Gong
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, PR China; Center for Marine Environmental Chemistry and Toxicology, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, PR China.
| | - Dongxing Yuan
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, PR China.
| |
Collapse
|
6
|
Yang W, Ye L, Wu Y, Wang X, Ye S, Deng Y, Huang K, Luo H, Zhang J, Zheng C. Arsenic field test kits based on solid-phase fluorescence filter effect induced by silver nanoparticle formation. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134038. [PMID: 38552392 DOI: 10.1016/j.jhazmat.2024.134038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/02/2024] [Accepted: 03/12/2024] [Indexed: 04/25/2024]
Abstract
Millions of people worldwide are affected by naturally occurring arsenic in groundwater. The development of a low-cost, highly sensitive, portable assay for rapid field detection of arsenic in water is important to identify areas for safe wells and to help prioritize testing. Herein, a novel paper-based fluorescence assay was developed for the on-site analysis of arsenic, which was constructed by the solid-phase fluorescence filter effect (SPFFE) of AsH3-induced the generation of silver nanoparticles (AgNPs) toward carbon dots. The proposed SPFFE-based assay achieves a low arsenic detection limit of 0.36 μg/L due to the efficient reduction of Ag+ by AsH3 and the high molar extinction coefficient of AgNPs. In conjunction with a smartphone and an integrated sample processing and sensing platform, field-sensitive detection of arsenic could be achieved. The accuracy of the portable assay was validated by successfully analyzing surface and groundwater samples, with no significant difference from the results obtained through mass spectrometry. Compared to other methods for arsenic analysis, this developed system offers excellent sensitivity, portability, and low cost. It holds promising potential for on-site analysis of arsenic in groundwater to identify safe well locations and quickly obtain output from the global map of groundwater arsenic.
Collapse
Affiliation(s)
- Wenhui Yang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China; Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Liqing Ye
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China; Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yuke Wu
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xi Wang
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Simin Ye
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Yurong Deng
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Ke Huang
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Hong Luo
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China.
| | - Jinyi Zhang
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Chengbin Zheng
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| |
Collapse
|
7
|
Wang Y, Chen Y, Li K, Zhou J, Yuan X, Zhang M, Huang K. Miniaturized ascorbic acid assay platform based on point discharge atomic emission spectrometry coupling with gold filament enrichment. Anal Chim Acta 2024; 1287:342064. [PMID: 38182370 DOI: 10.1016/j.aca.2023.342064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Miniaturized microplasma-based atomic emission spectrometry (AES) has been extensively used for element analysis in recent years due to the advantages of low power consumption, low gas consumption, relatively low manufacturing and running cost, and the potential for real-time and field analysis. However, few applications in bioassay detection have been reported based on microplasma AES systems because of their relatively low sensitivity and the absence of indirect analytical strategies. It is still a challenge to develop a simple, sensitive, and portable microplasma-based AES bioassay approach. RESULTS In this work, a portable analytical system was designed based on point discharge chemical vapor generation atomic emission spectrometry (PD-CVG-AES) coupling with gold filament enrichment. The detection of ascorbic acid (AA) was realized indirectly by means of the highly sensitive analysis of Hg2+. The measurement was based on Ag + can decrease the concentration of Hg2+ by forming Ag-Hg amalgam in the presence of the reductant SnCl2, while AA can pre-reduce Ag + to Ag0, leading to the generation of silver nanoparticles (Ag NPs). The pre-reduce procedure can decrease the generation of Ag-Hg amalgam, resulting in the recovery of Hg2+ signal. The dissociative Hg2+ was further detected by PD-CVG-AES combination of gold filament enrichment, which significantly improved the detection sensitivity for both Hg2+ and AA. Under optimal conditions, the limit of detection (LOD) of AA is as low as 19 nM with a relative standard deviation (RSD, n = 5) of 0.7 %. SIGNIFICANCE The developed novel analytical strategy obviously broadens the application of microplasma-based AES, and it is well demonstrated by the determination of AA in several traditional Chinese medicines (TCMs), offering a higher level of sensitivity compared to current AA detection techniques. It has potential for future application in point-of-care testing (POCT) assays.
Collapse
Affiliation(s)
- Yanping Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuemei Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Kejun Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jinrong Zhou
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Xin Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Mei Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ke Huang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China.
| |
Collapse
|
8
|
Liu T, Liu J, Mao X, Jiang X, Zhao Y, Qian Y. Rapid and Portable Detection of Hg and Cd in Grain Samples Based on Novel Catalytic Pyrolysis Composite Trap Coupled with Miniature Atomic Absorption Spectrometry. Foods 2023; 12:foods12091778. [PMID: 37174316 PMCID: PMC10178322 DOI: 10.3390/foods12091778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/11/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
As toxic metals, Hg and Cd are a concern for food safety and human health; their rapid and portable analysis is still a challenge. A portable and rapid Hg-Cd analyzer constructed from a metal-ceramic heater (MCH)-based electrothermal vaporizer (ETV), an on-line catalytic pyrolysis furnace (CPF), a composite Pt/Ni trap, and a homemade miniature atomic absorption spectrometer (AAS) was proposed for grain analysis in this work. To enhance sensitivity, a new folded light path was designed for simultaneous Hg and Cd analysis using charge coupled device (CCD) in AAS. To eliminate the grain matrix interference, a catalytic pyrolysis furnace with aluminum oxide fillers was utilized to couple with a composite Pt/Ni trap. The method limits of detection (LODs) were 1.1 μg/kg and 0.3 μg/kg for Hg and Cd using a 20 mg grain sample, fulfilling the real sample analysis to monitor the grain contamination quickly; linearity R2 > 0.995 was reached only using standard solution calibration, indicating the sample was free of grain matrix interference. The favorable analytical accuracy and precision were validated by analyzing real and certified reference material (CRM) grains with recoveries of 97-103% and 96-111% for Hg and Cd, respectively. The total analysis time was less than 5 min without sample digestion or use of any chemicals, and the instrumental size and power consumption were <14 kg and 270 W, respectively. Compared with other rapid methods, this newly designed Hg-Cd analyzer is proven to be simple, portable, and robust and is, thus, suitable to quickly monitor Hg and Cd contamination in the field to protect grain and food safety.
Collapse
Affiliation(s)
- Tengpeng Liu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-Food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Jixin Liu
- Beijing Ability Technology Co., Ltd., Beijing 100081, China
| | - Xuefei Mao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-Food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xiaoming Jiang
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Yabo Zhao
- Beijing Ability Technology Co., Ltd., Beijing 100081, China
| | - Yongzhong Qian
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-Food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| |
Collapse
|
9
|
Yu J, Zhang K, Duan X, Zhao C, Wei X, Guo Q, Yuan CG. Simultaneous removal of arsenate and arsenite in water using a novel functional halloysite nanotube composite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:77131-77144. [PMID: 35676577 DOI: 10.1007/s11356-022-20261-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/10/2022] [Indexed: 06/15/2023]
Abstract
This work aims at exploring a novel environment-friendly nanomaterial based on natural clay minerals for arsenic removal in aqueous samples. Halloysite nanotubes (HNTs) were selected as the substrate with Mn oxides loaded on the surface to enhance its arsenic adsorption ability and then grafted onto the SiO2-coated Fe3O4 microsphere to get a just enough magnetic performance facilitating the material's post-treatment. The prepared composite (Fe3O4@SiO2@Mn-HNTs) was extensively characterized by various instruments including Fourier transform infrared spectroscope (FTIR), scanning electron microscope (SEM), transmission electron microscope (TEM), thermogravimetric analysis (TG), vibrating sample magnetometer (VSM), X-ray photoelectron spectroscope (XPS), and X-ray diffraction (XRD). Batch experiments were carried out to get the optimum test conditions for arsenic adsorption by the composite, including pH, loading amount of Mn oxides, adsorbent dosage, and the co-existing ions. The adsorption of AsIII and AsV on Fe3O4@SiO2@Mn-HNTs were both well fitted with the pseudo-second-order kinetic model as well as the Langmuir adsorption isotherm model revealing the chemisorption between arsenic and Fe3O4@SiO2@Mn-HNTs. The adsorption process of AsIII and AsV were both endothermic and spontaneous displayed by the thermodynamic study. The capacities of the prepared composite are 3.28 mg g-1 for AsIII and 3.52 mg g-1 for AsV, respectively, which are comparable or better than those of many reported materials in the references. Toxicity characteristic leaching procedure (TCLP) and synthetic precipitation leaching procedure (SPLP) tests were carried out to access the secondary environmental risk of the composite and showed that it was quite environmentally stable and can be safely disposed. The composite was successfully applied in environmental water samples indicating its great potential applicability in future.
Collapse
Affiliation(s)
- Jiexuan Yu
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding, 071000, China
- Wetland Research Center for Baiyangdian Lake, North China Electric Power University, Baoding, 071000, China
| | - Kegang Zhang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding, 071000, China
- Wetland Research Center for Baiyangdian Lake, North China Electric Power University, Baoding, 071000, China
| | - Xuelei Duan
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding, 071000, China
| | - Changxian Zhao
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding, 071000, China
| | - Xiaoyang Wei
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding, 071000, China
| | - Qi Guo
- Wetland Research Center for Baiyangdian Lake, North China Electric Power University, Baoding, 071000, China
| | - Chun-Gang Yuan
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding, 071000, China.
- Wetland Research Center for Baiyangdian Lake, North China Electric Power University, Baoding, 071000, China.
| |
Collapse
|
10
|
Yu YL, Zhu SC, Shi MZ, Liu FM, Cao J. Two-step micelle-to-solvent stacking of arsenic species from foods in permanently coated tubing for capillary electrophoresis. J Chromatogr A 2022; 1673:463112. [DOI: 10.1016/j.chroma.2022.463112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/19/2022] [Accepted: 05/01/2022] [Indexed: 10/18/2022]
|
11
|
Shao Y, Dong Y, Bin L, Fan L, Wang L, Yuan X, Li D, Liu X, Zhao S. Application of gold nanoparticles/polyaniline-multi-walled carbon nanotubes modified screen-printed carbon electrode for electrochemical sensing of zinc, lead, and copper. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Li WT, Hu ZJ, Meng J, Zhang X, Gao W, Chen ML, Wang JH. Zn-based metal organic framework-covalent organic framework composites for trace lead extraction and fluorescence detection of TNP. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125021. [PMID: 33476910 DOI: 10.1016/j.jhazmat.2020.125021] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
A novel dual functional composite (MOFL-TpBD) was prepared through solvothermal methods, with excellent Pb2+ ions separation and stable 2,4,6-Trinitrophenol (TNP) fluorescence detection performance. MOFL-TpBD was characterized by FTIR, XRD, XPS, SEM and TGA et al. The prepared material was used to extract Pb2+ ions, with an adsorption capacity of 21.74 mg g-1 calculated by Langmuir isotherm model. The limit of detection was 0.32 μg L-1, along with a linear range from 0.7 to 12 μg L-1 and a precision of 5.4% (1 μg L-1, n = 9), respectively, where MOFL-TpBD was adopted as adsorbent for Pb2+ ions preconcentration. The practical samples and reference water sample were measured by the provided method, with the satisfactory recoveries (91-110%) and reliable analytical results. MOFL-TpBD was capable of fluorescent sensing of TNP, with a linear range from 0.01 to 1 mM and a limit of detection of 3.52 μM, respectively, and a precision of 3.29% was obtained (0.2 mM, n = 11). Meanwhile, the recoveries ranged from 91% to 108% in analysis of TNP for the practical samples. The designed material provided a potential candidate material for the detection of heavy metal ions and explosives in environmental water samples.
Collapse
Affiliation(s)
- Wei-Tao Li
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, P.O. Box 332, Shenyang 110819, China
| | - Zheng-Jie Hu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, P.O. Box 332, Shenyang 110819, China
| | - Jie Meng
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, P.O. Box 332, Shenyang 110819, China
| | - Xuan Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, P.O. Box 332, Shenyang 110819, China
| | - Wei Gao
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, P.O. Box 332, Shenyang 110819, China
| | - Ming-Li Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, P.O. Box 332, Shenyang 110819, China; Analytical and Testing Center, Northeastern University, P.O. Box 106, Shenyang 110819, China.
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, P.O. Box 332, Shenyang 110819, China.
| |
Collapse
|
13
|
Kara S, Chormey DS, Saygılar A, Bakırdere S. Arsenic speciation in rice samples for trace level determination by high performance liquid chromatography-inductively coupled plasma-mass spectrometry. Food Chem 2021; 356:129706. [PMID: 33831825 DOI: 10.1016/j.foodchem.2021.129706] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022]
Abstract
Six arsenic species, namely arsenite (AsIII), arsenate (AsV), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenobetaine (AsB) and arsenocholine (AsC) were speciated using a combination of high-performance liquid chromatography and inductively coupled plasma mass spectrometry (HPLC-ICP-MS). Under optimum chromatographic conditions, six arsenic species were well separated, and the performance of the combined system (HPLC-ICP-MS) for the species was determined. The limits of detection were calculated in the range of 0.14-0.29 ng/mL, and the corresponding quantification limits ranged between 0.45 and 0.97 ng mL-1 for the species. Spike recovery experiments performed on rice samples were used to validate the method's applicability to complex matrices. The recovery results calculated ranged between 93 and 109%, validating the method's applicability. Triplicate measurements for all spiked samples recorded percent relative standard deviation values below 10%.
Collapse
Affiliation(s)
- Semih Kara
- Radix Analysis Laboratory, Yenibosna Ladin St., No.: 4/Z229, Bahçelievler, İstanbul, Turkey
| | - Dotse Selali Chormey
- Radix Analysis Laboratory, Yenibosna Ladin St., No.: 4/Z229, Bahçelievler, İstanbul, Turkey; Yıldız Technical University, Department of Chemistry, 34349 İstanbul, Turkey
| | - Ahmet Saygılar
- Radix Analysis Laboratory, Yenibosna Ladin St., No.: 4/Z229, Bahçelievler, İstanbul, Turkey
| | - Sezgin Bakırdere
- Yıldız Technical University, Department of Chemistry, 34349 İstanbul, Turkey; Turkish Academy of Sciences (TÜBA), Piyade Sokak No.: 27, Çankaya, 06690 Ankara, Turkey.
| |
Collapse
|
14
|
Yu H, Yan X, Zheng X, Xu K, Zhong Q, Yang T, Liu F, Wang C, Shu L, He Z, Xiao F, Yan Q. Differential distribution of and similar biochemical responses to different species of arsenic and antimony in Vetiveria zizanioides. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:3995-4010. [PMID: 32661876 DOI: 10.1007/s10653-020-00658-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 07/01/2020] [Indexed: 05/04/2023]
Abstract
Vetiver grass (Vetiveria zizanioides L. Nash) has a great application potential to the phytoremediation of heavy metals pollution. However, few studies explored the bioavailability and distribution of different speciations of As and Sb in V. zizanioides. This study aimed to clarify the allocation and accumulation of two inorganic species arsenic (As(III) and As(V)) and antimony (Sb(III) and Sb(V)) in V. zizanioides, to understand the self-defense mechanisms of V. zizanioides to these metal(loids) elements. Thus, an experiment was conducted under greenhouse conditions to identify distribution of As and Sb in plant roots and shoots. Antioxidant enzymes (superoxide dismutase, SOD) and changes of subcellular structures were tested to evaluate metal(loids) tolerance capacities of V. zizanioides. This study demonstrated that V. zizanioides had higher capacity to accumulate Sb than As. For Sb absorption, Sb(III) content is significantly higher than Sb(V) in tissues of V. zizanioides under all concentration levels, despite the oxidation of Sb(III) on the nutrient solution surface. Additional Sb was mainly accumulated in plant roots due to Sb immobilization by transforming it into precipitates. As was more easily transferred to aerial tissues and had low accumulation rates, probably due to its restricted uptake rather than restricted transport. In many cases, two inorganic species of As and Sb showed almost same biotoxicity to V. zizanioides estimated from its biomass, SOD activity, and MDA content as well as functional groups. In summary, the results of this study provide new insights into understanding allocation, accumulation and phytotoxicity effects of arsenic and antimony in V. zizanioides. Schematic diagram of distribution of and biochemical responses to As(III), As(V), Sb(III), and Sb(V) in tissue of V. zizanioides.
Collapse
Affiliation(s)
- Huang Yu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xizhe Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xiafei Zheng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Kui Xu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Qiuping Zhong
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Tony Yang
- Swift Current Research and Development Centre, Science and Technology Branch, Agriculture and Agri-Food Canada, Swift Current, SK, S9H 3X2, Canada
| | - Feifei Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Cheng Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Longfei Shu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Fanshu Xiao
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
15
|
Welna M, Szymczycha-Madeja A, Pohl P. Non-chromatographic Speciation of As by HG Technique-Analysis of Samples with Different Matrices. Molecules 2020; 25:molecules25214944. [PMID: 33114574 PMCID: PMC7663061 DOI: 10.3390/molecules25214944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 01/04/2023] Open
Abstract
The applicability of the hydride generation (HG) sample introduction technique combined with different spectrochemical detection methods for non-chromatographic speciation of toxic As species, i.e., As(III), As(V), dimethylarsinate (DMA) and monomethylarsonate (MMA), in waters and other environmental, food and biological matrices is presented as a promising tool to speciate As by obviating chromatographic separation. Different non-chromatographic procedures along with speciation protocols reported in the literature over the past 20 year are summarized. Basic rules ensuring species selective generation of the corresponding hydrides are presented in detail. Common strategies and alternative approaches are highlighted. Aspects of proper sample preparation before analysis and the selection of adequate strategies for speciation purposes are emphasized.
Collapse
|
16
|
Zhang ZH, Lei KN, Li CN, Luo YH, Jiang ZL. A new and facile nanosilver SPR colored method for ultratrace arsenic based on aptamer regulation of Au-doped carbon dot catalytic amplification. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 232:118174. [PMID: 32106034 DOI: 10.1016/j.saa.2020.118174] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
Here, Au-doped carbon dots (CDAu) nanosols with good stability were prepared by hydrothermal reaction method. We found that CDAu can efficiently catalyze the nanoreaction of reducing AgNO3 by glucose, and at 420 nm,the reaction products of yellow spherical silver nanosol exhibit an intense surface plasmon resonance (SPR) absorption peak. The nucleic acid aptamers (Apt) can be adsorbed on the surface of carbon dots, so that their catalytic activity was suppressed, the nanosilvers were reduced, the solution color becomes lighter, and the Abs value was weakened. When As3+ was added, it forms a stable conjugate with the Apt, releases free carbon dots, restored its catalytic activity, and the color and Abs signals enhanced linearly. Based on the Apt regulation and the catalytic amplification effect of CDAu on AgNO3-glucose, a new extremely sensitive SPR spectrophotometric method for the determination of arsenic ion content of 0.025-0.75 μg/L was established, and the detection limit of As3+ is 0.01 μg/L.
Collapse
Affiliation(s)
- Zhi-Hao Zhang
- School of Food and Bioengineering, Hezhou University, Hezhou 542899, China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
| | - Kai-Ning Lei
- School of Food and Bioengineering, Hezhou University, Hezhou 542899, China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
| | - Chong-Ning Li
- School of Food and Bioengineering, Hezhou University, Hezhou 542899, China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
| | - Yang-He Luo
- School of Food and Bioengineering, Hezhou University, Hezhou 542899, China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
| | - Zhi-Liang Jiang
- School of Food and Bioengineering, Hezhou University, Hezhou 542899, China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China.
| |
Collapse
|
17
|
Cheng L, Yang XA, Shi MT, Zhang WB. Rapid extraction of arsenic species from traditional Chinese herbal by dual-frequency ultrasound-assisted enzymatic digestion prior to spectral analysis. J Chromatogr A 2020; 1619:460915. [PMID: 32008824 DOI: 10.1016/j.chroma.2020.460915] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/18/2020] [Accepted: 01/22/2020] [Indexed: 01/06/2023]
Abstract
Considering the huge difference of biological toxicity, it is extremely significant to recognize the exact content of arsenic species in actual samples. In this paper, a novel pretreatment technique for the efficient extraction of arsenic species from herbal samples is developed by dual-frequency ultrasound-assisted enzymatic digestion (DUED). The preservation of arsenic original form, reduction of the actual analysis time, environmental friendliness and free-interference in subsequent detection make this method over the traditional method such as wet digestion, ashing and some solvent extraction technologies. The combination of DUED and atomic fluorescence spectrometry realize the speciation analysis of arsenic in traditional Chinese medicine. The optimizations of experimental parameters have been achieved, and the potential mechanism is discussed. The experimental data showed that cellulase is suitable for the digestion of herbal matrix than α-amylase and papain. Ultrasound can significantly increase the rate of enzymatic hydrolysis of biological molecules, especially under dual-frequency ultrasound irradiation. The highest relative extraction efficiency can be obtained by combining 40 kHz ultrasonic bath (UB) with 20 kHz ultrasonic probe (UP). Two certified reference materials [CRMs, GBW(E)090066 and GBW(E)090067] and four practical herbs were used to evaluate the accuracy and practicability of the method. Inorganic arsenic, including trivalent arsenic and pentavalent arsenic, was the main species in the four herbal samples.
Collapse
Affiliation(s)
- Lei Cheng
- Department of Applied Chemistry, Anhui University of Technology, Maanshan, Anhui, 243002, PR China
| | - Xin-An Yang
- Department of Applied Chemistry, Anhui University of Technology, Maanshan, Anhui, 243002, PR China.
| | - Meng-Ting Shi
- Department of Applied Chemistry, Anhui University of Technology, Maanshan, Anhui, 243002, PR China
| | - Wang-Bing Zhang
- Department of Applied Chemistry, Anhui University of Technology, Maanshan, Anhui, 243002, PR China.
| |
Collapse
|