1
|
Chaudhary K, Khalid S, Altemimi AB, Abrar S, Ansar S, Aslam N, Hussain M, Aadil RM. Advances in non-thermal technologies: A revolutionary approach to controlling microbial deterioration, enzymatic activity, and maintaining other quality parameters of fresh stone fruits and their processed products. Food Chem 2025; 464:141825. [PMID: 39504893 DOI: 10.1016/j.foodchem.2024.141825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/22/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024]
Abstract
Stone fruits and their processed products are highly valued in the whole world for their flavor, aroma, rich nutritional contents, and various health benefits. While large quantities of stone fruits are produced globally, significant losses occur due to improper handling and storage, from production to consumption. This review focuses on the application of advanced non-thermal treatment techniques for whole fresh stone fruits and their processed products. It provides a comprehensive assessment of the factors contributing to spoilage, along with the mechanisms, applications, and limitations of non-thermal techniques in reducing spoilage. Compared to traditional preservation methods, such as the use of artificial food additives, chemicals, thermal treatments, and low-temperature storage, these novel techniques demonstrate better results in minimizing spoilage. Moreover, non-thermal techniques are most sustainable and eco-friendly, as they reduce energy consumption, minimize chemical use, and generate less waste than traditional methods.
Collapse
Affiliation(s)
- Kashmala Chaudhary
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Samran Khalid
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan..
| | - Ammar B Altemimi
- Food Science Department, College of Agriculture, University of Basrah, Basrah 61004, Iraq
| | - Saqib Abrar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Sadia Ansar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Nabila Aslam
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Mudassar Hussain
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan..
| |
Collapse
|
2
|
Milanezzi GC, Silva EK. Pulsed electric field-induced starch modification for food industry applications: A review of native to modified starches. Carbohydr Polym 2025; 348:122793. [PMID: 39562069 DOI: 10.1016/j.carbpol.2024.122793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/08/2024] [Accepted: 09/21/2024] [Indexed: 11/21/2024]
Abstract
Starch, a polysaccharide primarily composed of amylose and amylopectin, serves as a critical energy source in plants. However, its native properties often limit its application in the food industry. To overcome these limitations, starch modification is essential for enhancing its technological characteristics. In this context, this review explored the impacts of pulsed electric field (PEF) technology on starch modification. PEF, along with other electrotechnologies, utilizes high-voltage electrical pulses to induce structural and chemical changes in starch granules, leading to improvements in properties such as gelatinization, solubility, viscosity, and swelling capacity. Although PEF is a non-thermal process, it enables significant structural and physicochemical modifications in starch. By avoiding high temperatures that can cause changes in color, flavor, and degradation of essential nutrients, PEF-modified starch results in better preservation of nutritional and sensory qualities, while also enhancing its performance in various industrial processes. Despite its advantages, challenges such as the need for standardized protocols and potential unwanted side reactions at high intensities remain. This review examined the effectiveness of PEF in modifying starch for enhanced technological applications in the food industry, addressing both its benefits and limitations. Additionally, the article provided a foundational overview of starch, including its chemical structure, functionalities, and sources, both conventional and non-conventional, ensuring a comprehensive understanding of how PEF can be applied to optimize starch properties for industrial use.
Collapse
Affiliation(s)
- Gabriela Carolina Milanezzi
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos (FEA), Rua Monteiro Lobato, 80, Campinas, SP CEP: 13083-862, Brazil
| | - Eric Keven Silva
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos (FEA), Rua Monteiro Lobato, 80, Campinas, SP CEP: 13083-862, Brazil.
| |
Collapse
|
3
|
Suo K, Yang Z, Wu L, Zhang Y, Feng Y, Xu B, Zhou C, Shi L, Chen W. Enhancing drying characteristics and quality of fruits and vegetables using biochemical drying improvers: A comprehensive review. Compr Rev Food Sci Food Saf 2025; 24:e70094. [PMID: 39746864 DOI: 10.1111/1541-4337.70094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025]
Abstract
Traditional drying is a highly energy-intensive process, accounting for approximately 15% of total manufacturing cost, it often resulting in reduced product quality due to low drying efficiency. Biological and chemical agents, referred to as biochemical drying improvers, are employed as pretreatments to enhance both drying characteristics and quality attributes of fruits and vegetables. This article provides a thorough examination of various biochemical drying improvers (including enzymes, microorganisms, edible film coatings, ethanol, organic acids, hyperosmotic solutions, ethyl oleate alkaline solutions, sulfites, cold plasma, carbon dioxide, ozone, inorganic alkaline agents, and inorganic salts) and their effects on improving the drying processes of fruits and vegetables. Additionally, it introduces physical drying improvers (including ultrasonic, pulsed electric field, vacuum, and others) to enhance the effects of biochemical drying improvers. Pretreatment with biochemical agents not only significantly enhances drying characteristics but also preserves or enhances the color, texture, and bioactive compound content of the dried products. Meanwhile, physical drying improvers reduce moisture diffusion resistance through physical modifications of the food materials, thus complementing biochemical drying improvers. This integrated approach mitigates the energy consumption and quality degradation typically associated with traditional drying methods. Overall, this review examines the role of biochemical agents in enhancing the drying characteristics and quality of fruits and vegetables, offering a comprehensive strategy for energy conservation and quality improvement.
Collapse
Affiliation(s)
- Kui Suo
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Zhenfeng Yang
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Lili Wu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Yang Zhang
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Yabin Feng
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Baoguo Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Liyu Shi
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Wei Chen
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| |
Collapse
|
4
|
Yang Y, Ling W. Health Benefits and Future Research of Phytochemicals: A Literature Review. J Nutr 2025; 155:87-101. [PMID: 39536969 DOI: 10.1016/j.tjnut.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Phytochemicals are nonnutritive substances found in plant foods that contribute significantly to the flavor and color of foods. These substances are usually classified as polyphenols, terpenes, sulfur-containing compounds, nitrogen-containing compounds, and others. Numerous studies over the last decades have demonstrated these substances play an immeasurable role in physiological regulation, health care, and disease prevention through their actions in antioxidation, anti-inflammation, antiaging, antivirus, anticancer, antithrombosis, lipid profile regulation, cardiovascular protection, neuroprotection, immunity regulation, and improvement of metabolic functions. This article reviews the chemistry and biochemistry of phytochemicals, their classification and chemical structure, occurrence and biosynthesis in plants, and biological activities and implications for human health and various diseases. The discussions are focused on the most recent important advances in these phytochemical researches. In addition, some future research directions of phytochemicals are set forth regarding dose-response, their mechanism and targets, interactions with gut microbiota, and impact on human health and different stages of chronic diseases.
Collapse
Affiliation(s)
- Yan Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Guangdong Province, China; Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Shenzhen, Guangdong Province, China; Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Sun Yat-sen University, Shenzhen, Guangdong Province, China; Guangdong Engineering Technology Center of Nutrition Transformation, Sun Yat-sen University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
5
|
Bao G, Tian Y, Wang K, Chang Z, Jiang Y, Wang J. Mechanistic understanding of the improved drying characteristics and quality attributes of lily (Lilium lancifolium Thunb.) by modified microstructure after pulsed electric field (PEF) pretreatment. Food Res Int 2024; 190:114660. [PMID: 38945591 DOI: 10.1016/j.foodres.2024.114660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/15/2024] [Accepted: 06/15/2024] [Indexed: 07/02/2024]
Abstract
The effects of the non-thermal (pulsed electric field, PEF) and thermal pretreatment (vacuum steam pulsed blanching, VSPB) on the drying kinetics, quality attributes, and multi-dimensional microstructure of lily scales were investigated. The results indicate that both PEF and VSPB pretreatments improved the drying rate compared to untreated lily scales. Specifically, PEF pretreatment reduced the drying time by 29.58 % - 43.60 %, while VSPB achieved a 46.91 % reduction in drying time. PEF treatment facilitated the enhanced leaching of phenols and flavonoids compared to VSPB treated samples, thereby increasing antioxidant activity. The rehydration ratio of the dried lilies was improved with PEF and VSPB treatment, which closely related to the microstructure. Weibull distribution and Page model demonstrated excellent fit for the drying and rehydration kinetics of lily scales, respectively (R2 > 0.993). The analysis of multi-dimensional microstructure and ultrastructure confirmed the variations in moisture migration and phytochemical contents among different treatments. Consequently, this study offers insights into the technological support for the potential of non-thermal pretreatment in fruits and vegetables.
Collapse
Affiliation(s)
- Gangcheng Bao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ye Tian
- School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kunhua Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhengshi Chang
- School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yonglei Jiang
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China
| | - Jun Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
6
|
Liu Y, Oey I, Leong SY, Kam R, Kantono K, Hamid N. Pulsed Electric Field Pretreatments Affect the Metabolite Profile and Antioxidant Activities of Freeze- and Air-Dried New Zealand Apricots. Foods 2024; 13:1764. [PMID: 38890992 PMCID: PMC11172103 DOI: 10.3390/foods13111764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Pulsed electric field (PEF) pretreatment has been shown to improve the quality of dried fruits in terms of antioxidant activity and bioactive compounds. In this study, apricots were pretreated with PEF at different field strengths (0.7 kV/cm; 1.2 kV/cm and 1.8 kv/cm) at a frequency of 50 Hz, and electric pulses coming in every 20 µs for 30 s, prior to freeze-drying and air-drying treatments. PEF treatments were carried out at different field strengths. The impact of different pretreatments on the quality of dried apricot was determined in terms of physical properties, antioxidant activity, total phenolic content, and metabolite profile. PEF pretreatments significantly (p < 0.05) increased firmness of all the air-dried samples the most by 4-7-fold and most freeze-dried apricot samples (44.2% to 98.64%) compared to the control group. However, PEF treatment at 1.2 kV/cm did not have any effect on hardness of the freeze-dried sample. The moisture content and water activity of freeze-dried samples were found to be significantly lower than those of air-dried samples. Scanning electron microscopy results revealed that air drying caused the loss of fruit structure due to significant moisture loss, while freeze drying preserved the honeycomb structure of the apricot flesh, with increased pore sizes observed at higher PEF intensities. PEF pretreatment also significantly increased the antioxidant activity and total phenol content of both air-dried and freeze-dried apricots. PEF treatment also significantly (p < 0.05) increased amino acid and fatty acid content of air-dried samples but significantly (p < 0.05) decreased sugar content. Almost all amino acids (except tyrosine, alanine, and threonine) significantly increased with increasing PEF intensity. The results of this study suggest that PEF pretreatment can influence the quality of air-dried and freeze-dried apricots in terms antioxidant activity and metabolites such as amino acids, fatty acids, sugar, organic acids, and phenolic compounds. The most effective treatment for preserving the quality of dried apricots is freeze drying combined with high-intensity (1.8 kv/cm) PEF treatment.
Collapse
Affiliation(s)
- Ye Liu
- Centre for Future Foods, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand; (Y.L.); (R.K.); (K.K.)
| | - Indrawati Oey
- Department of Food Science, University of Otago, PO Box 56, Dunedin 9054, New Zealand; (I.O.); (S.Y.L.)
| | - Sze Ying Leong
- Department of Food Science, University of Otago, PO Box 56, Dunedin 9054, New Zealand; (I.O.); (S.Y.L.)
| | - Rothman Kam
- Centre for Future Foods, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand; (Y.L.); (R.K.); (K.K.)
| | - Kevin Kantono
- Centre for Future Foods, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand; (Y.L.); (R.K.); (K.K.)
| | - Nazimah Hamid
- Centre for Future Foods, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand; (Y.L.); (R.K.); (K.K.)
| |
Collapse
|
7
|
Fan R, Wang L, Cao H, Du R, Yang S, Yan Y, Zheng B. Characterization of the Structure and Physicochemical Properties of Soluble Dietary Fiber from Peanut Shells Prepared by Pulsed Electric Fields with Three-Phase Partitioning. Molecules 2024; 29:1603. [PMID: 38611882 PMCID: PMC11013324 DOI: 10.3390/molecules29071603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
This study evaluated the impact of pulsed electric fields (PEFs) combined with three-phase partitioning (TPP) extraction methods on the physicochemical properties, functional properties, and structural characterization of the soluble dietary fiber (SDF) derived from peanut shells (PS). The findings of this study indicated that the application of a PEF-TPP treatment leads to a notable improvement in both the extraction yield and purity of SDF. Consequently, the PEF-TPP treatment resulted in the formation of more intricate and permeable structures, a decrease in molecular weight, and an increase in thermal stability compared to SDFs without TPP treatment. An analysis revealed that the PEF-TPP method resulted in an increase in the levels of arabinose and galacturonic acid, leading to enhanced antioxidant capacities. Specifically, the IC50 values were lower in SDFs which underwent PEF-TPP (4.42 for DPPH and 5.07 mg/mL for ABTS) compared to those precipitated with 40% alcohol (5.54 mg/mL for DPPH, 5.56 mg/mL for ABTS) and PEF75 (6.60 mg/mL for DPPH, 7.61 mg/mL for ABTS), respectively. Notably, the SDFs which underwent PEF-TPP demonstrated the highest water- and oil-holding capacity, swelling capacity, emulsifying activity, emulsion stability, glucose adsorption, pancreatic lipase inhibition, cholesterol adsorption, nitric ion adsorption capacity, and the least gelation concentration. Based on the synthesis scores obtained through PCA (0.536 > -0.030 > -0.33), which indicated that SDFs which underwent PEF-TPP exhibited the highest level of quality, the findings indicate that PEF-TPP exhibits potential and promise as a method for preparing SDFs.
Collapse
Affiliation(s)
- Rui Fan
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China;
| | - Lei Wang
- Tangshan Food and Drug Comprehensive Testing Center, Tangshan 063000, China; (L.W.); (H.C.); (R.D.); (S.Y.)
- Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Tangshan 063000, China
- Hebei Agricultural Products Quality and Safety Testing Innovation Center, Tangshan 063000, China
| | - Huihui Cao
- Tangshan Food and Drug Comprehensive Testing Center, Tangshan 063000, China; (L.W.); (H.C.); (R.D.); (S.Y.)
- Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Tangshan 063000, China
- Hebei Agricultural Products Quality and Safety Testing Innovation Center, Tangshan 063000, China
| | - Ruihuan Du
- Tangshan Food and Drug Comprehensive Testing Center, Tangshan 063000, China; (L.W.); (H.C.); (R.D.); (S.Y.)
- Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Tangshan 063000, China
- Hebei Agricultural Products Quality and Safety Testing Innovation Center, Tangshan 063000, China
| | - Shuo Yang
- Tangshan Food and Drug Comprehensive Testing Center, Tangshan 063000, China; (L.W.); (H.C.); (R.D.); (S.Y.)
- Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Tangshan 063000, China
- Hebei Agricultural Products Quality and Safety Testing Innovation Center, Tangshan 063000, China
| | - Yanhua Yan
- Tangshan Food and Drug Comprehensive Testing Center, Tangshan 063000, China; (L.W.); (H.C.); (R.D.); (S.Y.)
- Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Tangshan 063000, China
- Hebei Agricultural Products Quality and Safety Testing Innovation Center, Tangshan 063000, China
| | - Baiqin Zheng
- Tangshan Food and Drug Comprehensive Testing Center, Tangshan 063000, China; (L.W.); (H.C.); (R.D.); (S.Y.)
- Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Tangshan 063000, China
- Hebei Agricultural Products Quality and Safety Testing Innovation Center, Tangshan 063000, China
| |
Collapse
|
8
|
Šumić Z, Tepić Horecki A, Kašiković V, Rajković A, Pezo L, Daničić T, Pavlić B, Milić A. Prototype of an Innovative Vacuum Dryer with an Ejector System: Comparative Drying Analysis with a Vacuum Dryer with a Vacuum Pump on Selected Fruits. Foods 2023; 12:3198. [PMID: 37685131 PMCID: PMC10487248 DOI: 10.3390/foods12173198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/25/2023] [Accepted: 07/29/2023] [Indexed: 09/10/2023] Open
Abstract
The following article describes new research about the design, construction and installation of the new prototype of a vacuum dryer with an ejector system. Moreover, the testing of this new prototype involved comparing the qualities of fruit dried in a vacuum drier with an ejector system to fruit dried in a convectional vacuum drier. The data obtained were then analyzed and presented. Due to their economic relevance and highly valuable nutritional value and sensory properties, sour cherries and apricots have been chosen to be the subjects for the testing. The most appropriate quality indicators for analyzing were moisture content, aw value, share and penetration force, total phenol, flavonoid and anthocyanin content and antioxidant activity (FRAP, DPPH and ABTS test). The main results of this study were achieved by designing, constructing, installing and testing the usage of the innovative prototype of a vacuum dryer with an ejector system in the laboratory of the Technology of fruit and vegetable products of the Faculty of Technology Novi Sad, University of Novi Sad. Based on our analyses of the obtained data, it was concluded that vacuum dryer with an ejector system are similar to vacuum dryer with a vacuum pump in terms of all tested physical, chemical and biological properties of dried samples. We observed similarities in some of the most important parameters, including product safety and quality, such as the aw value and the total phenol content, respectively. For example, in dried sour cherry, the aw values ranged from 0.250 to 0.521 with the vacuum pump and from 0.232 to 0.417 with the ejector system; the total phenol content ranged from 2322 to 2765 mg GAE/100 g DW with the vacuum pump and from 2327 to 2617 mg GAE/100 g DW with the ejector system. In dried apricot, the aw ranged from 0.176 to 0.405 with the vacuum pump and from 0.166 to 0.313 with the ejector system; total phenol content ranged from 392 to 439 mg GAE/100 g DW with the vacuum pump and from 378 to 428 mg GAE/100 g DW with the ejector system.
Collapse
Affiliation(s)
- Zdravko Šumić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (Z.Š.)
| | - Aleksandra Tepić Horecki
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (Z.Š.)
| | | | - Andreja Rajković
- Research Unit Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty Bio-Science Engineering, Ghent University, 9000 Ghent, Belgium
| | - Lato Pezo
- Institute of General and Physical Chemistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Tatjana Daničić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (Z.Š.)
| | - Branimir Pavlić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (Z.Š.)
| | - Anita Milić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (Z.Š.)
| |
Collapse
|
9
|
Ciurzynska A, Trusinska M, Rybak K, Wiktor A, Nowacka M. The Influence of Pulsed Electric Field and Air Temperature on the Course of Hot-Air Drying and the Bioactive Compounds of Apple Tissue. Molecules 2023; 28:molecules28072970. [PMID: 37049733 PMCID: PMC10096262 DOI: 10.3390/molecules28072970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
Drying is one of the oldest methods of obtaining a product with a long shelf-life. Recently, this process has been modified and accelerated by the application of pulsed electric field (PEF); however, PEF pretreatment has an effect on different properties—physical as well as chemical. Thus, the aim of this study was to investigate the effect of pulsed electric field pretreatment and air temperature on the course of hot air drying and selected chemical properties of the apple tissue of Gloster variety apples. The dried apple tissue samples were obtained using a combination of PEF pretreatment with electric field intensity levels of 1, 3.5, and 6 kJ/kg and subsequent hot air drying at 60, 70, and 80 °C. It was found that a higher pulsed electric field intensity facilitated the removal of water from the apple tissue while reducing the drying time. The study results showed that PEF pretreatment influenced the degradation of bioactive compounds such as polyphenols, flavonoids, and ascorbic acid. The degradation of vitamin C was higher with an increase in PEF pretreatment intensity level. PEF pretreatment did not influence the total sugar and sorbitol contents of the dried apple tissue as well as the FTIR spectra. According to the optimization process and statistical profiles of approximated values, the optimal parameters to achieve high-quality dried apple tissue in a short drying time are PEF pretreatment application with an intensity of 3.5 kJ/kg and hot air drying at a temperature of 70 °C.
Collapse
|
10
|
Wang L, Fan R, Yan Y, Yang S, Wang X, Zheng B. Characterization of the structural, physicochemical, and functional properties of soluble dietary fibers obtained from the peanut shell using different extraction methods. Front Nutr 2023; 9:1103673. [PMID: 36817066 PMCID: PMC9929463 DOI: 10.3389/fnut.2022.1103673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/20/2022] [Indexed: 02/05/2023] Open
Abstract
Objective To propose a possible solution for a peanut by-product, peanut shell (PS), this study evaluated the effects of different methods, including enzymatic extraction (E-SDF), microwave extraction (M-SDF), and pulsed electric field extraction (PEF-SDF), on the characterization of soluble dietary fibers (SDFs) from PS. Methods We determined the physicochemical properties, including water- and oil-holding capacities (WHC and OHC), emulsifying properties, rheological properties, functional properties, including pancreatic lipase activity inhibition (PRAI), glucose and cholesterol adsorption capacities (GAC and CAC), and the structural properties of SDFs. Results The results showed that PEF-SDF possessed the highest WHC, OHC, and emulsifying properties. M-SDF and PEF-SDF appeared to have more complex and porous structures, and they showed small molecular weights. Notably, PEF-SDF showed the strongest capacities in CAC, GAC, and PRAI. Conclusions The results indicate that PEF-SDF is a potential SDF preparation method for a promising dietary fiber (DF) source, PS.
Collapse
Affiliation(s)
- Lei Wang
- Tangshan Food and Drug Comprehensive Testing Center, Tangshan, China,Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Tangshan, China,Hebei Agricultural Products Quality and Safety Testing Innovation Center, Tangshan, China,Tangshan Institute of Industrial Technology for Functional Agricultural Products, Tangshan, China
| | - Rui Fan
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Yanhua Yan
- Tangshan Food and Drug Comprehensive Testing Center, Tangshan, China,Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Tangshan, China,Hebei Agricultural Products Quality and Safety Testing Innovation Center, Tangshan, China,Tangshan Institute of Industrial Technology for Functional Agricultural Products, Tangshan, China
| | - Shuo Yang
- Tangshan Food and Drug Comprehensive Testing Center, Tangshan, China,Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Tangshan, China,Hebei Agricultural Products Quality and Safety Testing Innovation Center, Tangshan, China,Tangshan Institute of Industrial Technology for Functional Agricultural Products, Tangshan, China
| | - Xuesong Wang
- Tangshan Food and Drug Comprehensive Testing Center, Tangshan, China,Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Tangshan, China,Hebei Agricultural Products Quality and Safety Testing Innovation Center, Tangshan, China,Tangshan Institute of Industrial Technology for Functional Agricultural Products, Tangshan, China
| | - Baiqin Zheng
- Tangshan Food and Drug Comprehensive Testing Center, Tangshan, China,Key Laboratory of Quality Evaluation and Nutrition Health of Agro-Products, Ministry of Agriculture and Rural Affairs, Tangshan, China,Hebei Agricultural Products Quality and Safety Testing Innovation Center, Tangshan, China,Tangshan Institute of Industrial Technology for Functional Agricultural Products, Tangshan, China,*Correspondence: Baiqin Zheng ✉
| |
Collapse
|
11
|
Boateng ID. Thermal and Nonthermal Assisted Drying of Fruits and Vegetables. Underlying Principles and Role in Physicochemical Properties and Product Quality. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09326-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Boateng ID. Recent processing of fruits and vegetables using emerging thermal and non-thermal technologies. A critical review of their potentialities and limitations on bioactives, structure, and drying performance. Crit Rev Food Sci Nutr 2022; 64:4240-4274. [PMID: 36315036 DOI: 10.1080/10408398.2022.2140121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fruits and vegetables have rich bioactive compounds and antioxidants that are vital for the human body and prevent the cell from disease-causing free radicals. Therefore, there is a growing demand for high-quality fruits and vegetables. Nevertheless, fruits and vegetables deteriorate due to their high moisture content, resulting in a 40-50% loss. Drying is a common food preservation technique in the food industry to increase fruits and vegetables' shelf-life. However, drying causes chemical modifications, changes in microstructure, and bioactives, thus, lowering the final product's quality as a considerable amount of bioactives compounds and antioxidants are lost. Conventional pretreatments such as hot water blanching, and osmotic pretreatment have improved fruit and vegetable drying performance. However, these conventional pretreatments affect fruits' bioactive compounds retention and microstructure. Hence, emerging thermal (infrared blanching, microwave blanching, and high-humidity hot-air impingement blanching) and non-thermal pretreatments (cold plasma, ultrasound, pulsed electric field, and edible films and coatings) have been researched. So the question is; (1) what are the mechanisms behind emerging non-thermal and thermal technologies' ability to improve fruits and vegetables' microstructure, texture, and drying performance? (2) how do emerging thermal and non-thermal technologies affect fruits and vegetables' bioactive compounds and antioxidant activity? and (3) what are preventing the large-scale commercialization of these emerging thermal and non-thermal technologies' for fruits and vegetables, and what are the future recommendations? Hence, this article reviewed emerging thermal blanching and non-thermal pretreatment technologies, emphasizing their efficacy in improving dried fruits and vegetables' bioactive compounds, structural properties, and drying performance. The fundamental mechanisms in emerging thermal and non-thermal blanching pretreatment methods on the fruits and vegetables' microstructure and drying performance were delved in, as well as what are preventing the large-scale commercialization of these emerging thermal and non-thermal blanching for fruits and vegetables, and the future recommendations. Emerging pretreatment approaches not only improve the drying performance but further significantly improve the retention of bioactive compounds and antioxidants and enhance the microstructure of the dried fruits and vegetables.
Collapse
Affiliation(s)
- Isaac Duah Boateng
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
13
|
Paraskevopoulou E, Andreou V, Dermesonlouoglou EK, Taoukis PS. Combined effect of pulsed electric field and osmotic dehydration pretreatments on mass transfer and quality of air-dried pumpkin. J Food Sci 2022; 87:4839-4853. [PMID: 36250503 DOI: 10.1111/1750-3841.16350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022]
Abstract
Pulsed electric field (PEF) and osmotic dehydration (OD) pretreatment can accelerate the time-consuming drying process and minimize its high energy demands. The effect of PEF and OD pre-processing conditions and osmotic solution composition on mass transfer kinetics (water loss, solid gain, water activity) and quality properties (color, texture, total sensory quality) during OD and subsequent air-drying (AD) of pumpkin was studied. Application of PEF (2.0 kV/cm-1500 pulses) significantly enhanced mass transfer during subsequent air-drying (increased effective diffusivity coefficient Des and drying rate kdrying , respectively). PEF and OD treatments led to a significant reduction of the processing time by 12 and 10%, respectively (p < 0.05). The maximum reduction of processing time by 27% (p < 0.05) (compared to untreated sample) resulted in combined use of PEF and OD as pretreatments prior to AD. When PEF pretreatment was combined with OD prior to AD, the corresponding energy was by 50% less than the respective energy required for nonprocessed samples. PRACTICAL APPLICATION: Pulsed electric fields (PEF) and osmotic dehydration (OD) can be applied for the production of air-dried pumpkin cuts of superior quality (in terms of quality and sensory characteristics) and reduced energy requirements (as a result of total processing time decrease).
Collapse
Affiliation(s)
- Eleni Paraskevopoulou
- School of Chemical Engineering, Laboratory of Food Chemistry and Technology, National Technical University of Athens, Iroon Polytechniou, Polytechnioupoli Zorafou, Athens, Greece
| | - Varvara Andreou
- School of Chemical Engineering, Laboratory of Food Chemistry and Technology, National Technical University of Athens, Iroon Polytechniou, Polytechnioupoli Zorafou, Athens, Greece
| | - Efimia K Dermesonlouoglou
- School of Chemical Engineering, Laboratory of Food Chemistry and Technology, National Technical University of Athens, Iroon Polytechniou, Polytechnioupoli Zorafou, Athens, Greece
| | - Petros S Taoukis
- School of Chemical Engineering, Laboratory of Food Chemistry and Technology, National Technical University of Athens, Iroon Polytechniou, Polytechnioupoli Zorafou, Athens, Greece
| |
Collapse
|
14
|
Bilge G, Yurdakul M, Buzrul S, Bulut O. Evaluation of the Effect of Pulsed Electric Field on Coffee Arabica Beans. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02802-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Luiza Koop B, Nascimento da Silva M, Diniz da Silva F, Thayres dos Santos Lima K, Santos Soares L, José de Andrade C, Ayala Valencia G, Rodrigues Monteiro A. Flavonoids, anthocyanins, betalains, curcumin, and carotenoids: Sources, classification and enhanced stabilization by encapsulation and adsorption. Food Res Int 2022; 153:110929. [DOI: 10.1016/j.foodres.2021.110929] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/24/2021] [Accepted: 12/25/2021] [Indexed: 12/14/2022]
|
16
|
ERGÜN AHSENR. The Effects of Electric Field and Ultrasound Pretreatments on the Drying Time and Physicochemical Characteristics of the Zucchini Chips. AN ACAD BRAS CIENC 2022; 94:e20210349. [DOI: 10.1590/0001-3765202220210349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 11/08/2021] [Indexed: 12/23/2022] Open
|
17
|
Takaki K, Takahashi K, Guionet A, Ohshima T. Pulsed Power Applications for Protein Conformational Change and the Permeabilization of Agricultural Products. Molecules 2021; 26:molecules26206288. [PMID: 34684869 PMCID: PMC8537387 DOI: 10.3390/molecules26206288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
Pulsed electric fields (PEFs), which are generated by pulsed power technologies, are being tested for their applicability in food processing through protein conformational change and the poration of cell membranes. In this article, enzyme activity change and the permeabilization of agricultural products using pulsed power technologies are reviewed as novel, nonthermal food processes. Compact pulsed power systems have been developed with repetitive operation and moderate output power for application in food processing. Firstly, the compact pulsed power systems for the enzyme activity change and permeabilization are outlined. Exposure to electric fields affects hydrogen bonds in the secondary and tertiary structures of proteins; as a result, the protein conformation is induced to be changed. The conformational change induces an activity change in enzymes such as α-amylase and peroxidase. Secondly, the conformational change in proteins and the induced protein functional change are reviewed. The permeabilization of agricultural products is caused through the poration of cell membranes by applying PEFs produced by pulsed discharges. The permeabilization of cell membranes can be used for the extraction of nutrients and health-promoting agents such as polyphenols and vitamins. The electrical poration can also be used as a pre-treatment for food drying and blanching processes. Finally, the permeabilization of cell membranes and its applications in food processing are reviewed.
Collapse
Affiliation(s)
- Koichi Takaki
- Faculty of Science and Engineering, Iwate University, Morioka 020-8551, Japan;
- Agri-Innovation Center, Iwate University, Morioka 020-8550, Japan;
- Correspondence: ; Tel./Fax: +81-19-621-6941
| | - Katsuyuki Takahashi
- Faculty of Science and Engineering, Iwate University, Morioka 020-8551, Japan;
- Agri-Innovation Center, Iwate University, Morioka 020-8550, Japan;
| | - Alexis Guionet
- Agri-Innovation Center, Iwate University, Morioka 020-8550, Japan;
| | - Takayuki Ohshima
- Faculty of Science and Engineering, Gunma University, Kiryu 376-8515, Japan;
| |
Collapse
|
18
|
Nowacka M, Dadan M, Janowicz M, Wiktor A, Witrowa-Rajchert D, Mandal R, Pratap-Singh A, Janiszewska-Turak E. Effect of nonthermal treatments on selected natural food pigments and color changes in plant material. Compr Rev Food Sci Food Saf 2021; 20:5097-5144. [PMID: 34402592 DOI: 10.1111/1541-4337.12824] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/21/2021] [Accepted: 07/12/2021] [Indexed: 12/01/2022]
Abstract
In recent years, traditional high-temperature food processing is continuously being replaced by nonthermal processes. Nonthermal processes have a positive effect on food quality, including color and maintaining natural food pigments. Thus, this article describes the influence of nonthermal, new, and traditional treatments on natural food pigments and color changes in plant materials. Characteristics of natural pigments, such as anthocyanins, betalains, carotenoids, chlorophylls, and so forth available in the plant tissue, are shortly presented. Also, the characteristics and mechanism of nonthermal processes such as pulsed electric field, ultrasound, high hydrostatic pressure, pulsed light, cold plasma, supercritical fluid extraction, and lactic acid fermentation are described. Furthermore, the disadvantages of these processes are mentioned. Each treatment is evaluated in terms of its effects on all types of natural food pigments, and the possible applications are discussed. Analysis of the latest literature showed that the use of nonthermal technologies resulted in better preservation of pigments contained in the plant tissue and improved yield of extraction. However, it is important to select the appropriate processing parameters and to optimize this process in relation to a specific type of raw material.
Collapse
Affiliation(s)
- Małgorzata Nowacka
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Magdalena Dadan
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Monika Janowicz
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Artur Wiktor
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Dorota Witrowa-Rajchert
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Ronit Mandal
- Food, Nutrition and Health Program, Faculty of Land and Food Systems (LFS), The University of British Columbia, Vancouver, British Columbia, Canada
| | - Anubhav Pratap-Singh
- Food, Nutrition and Health Program, Faculty of Land and Food Systems (LFS), The University of British Columbia, Vancouver, British Columbia, Canada
| | - Emilia Janiszewska-Turak
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| |
Collapse
|
19
|
López-Gámez G, Elez-Martínez P, Martín-Belloso O, Soliva-Fortuny R. Changes of carotenoid content in carrots after application of pulsed electric field treatments. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111408] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
20
|
Ozkan G, Stübler AS, Aganovic K, Dräger G, Esatbeyoglu T, Capanoglu E. Retention of polyphenols and vitamin C in cranberrybush purée (Viburnum opulus) by means of non-thermal treatments. Food Chem 2021; 360:129918. [PMID: 34051454 DOI: 10.1016/j.foodchem.2021.129918] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/07/2021] [Accepted: 04/18/2021] [Indexed: 12/18/2022]
Abstract
The effects of high pressure processing (HPP; 200-600 MPa for 5 or 15 min) and pulsed electric field (PEF; 3 kV/cm, 5-15 kJ/kg) treatment on physicochemical properties (conductivity, pH and total soluble solids content), bioactive compounds (vitamin C, total phenolic (TPC), total flavonoid (TFC), total anthocyanin (TAC) and chlorogenic acid contents), antioxidant capacities (DPPH and CUPRAC assays) and polyphenol oxidase (PPO) activity of cranberrybush purée were evaluated immediately after processing. The results were compared to an untreated purée. According to the results, conductivity increased significantly after PEF (15 kJ/kg) treatment. PEF and HPP treatments resulted in a better retention of bioactive compounds (increase in TPC in the range of ~4-11% and ~10-14% and TFC in the range of ~1-5% and ~6-8% after HPP and PEF, respectively) and antioxidant activity (as measured with CUPRAC method) compared to untreated sample. HPP reduced residual enzyme activity of PPO comparatively better than PEF.
Collapse
Affiliation(s)
- Gulay Ozkan
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey; Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University of Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany
| | - Anna-Sophie Stübler
- German Institute of Food Technologies DIL e.V., Prof.-v.-Klitzing-Str. 7, 49610 Quakenbrück, Germany
| | - Kemal Aganovic
- German Institute of Food Technologies DIL e.V., Prof.-v.-Klitzing-Str. 7, 49610 Quakenbrück, Germany
| | - Gerald Dräger
- Institute of Organic Chemistry, Gottfried Wilhelm Leibniz University of Hannover, Schneiderberg 1b, 30167 Hannover, Germany
| | - Tuba Esatbeyoglu
- Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University of Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany.
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey.
| |
Collapse
|
21
|
Impact of pre-treatment with pulsed electric field on drying rate and changes in spinach quality during hot air drying. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
22
|
Use of a Pulsed Electric Field to Improve the Biogas Potential of Maize Silage. ENERGIES 2020. [DOI: 10.3390/en14010119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Some types of biomass require great inputs to guarantee high conversion rates to methane. The complex structure of lignocellulose impedes its penetration by cellulolytic enzymes, as a result of which a longer retention time is necessary to increase the availability of nutrients. To use the full biogas potential of lignocellulosic substrates, a substrate pretreatment is necessary before the proper methane fermentation. This article discusses the impact of the pretreatment of maize silage with a pulsed electric field on biogas productivity. The experiment showed a slight decrease in cellulose, hemicellulose and lignin content in the substrate following pretreatment with a pulsed electric field, which resulted in a higher carbohydrate content in the liquid substrate fraction. The highest biogas production output was obtained for the pretreated sample at the retention time of 180 s for 751.97 mL/g volatile solids (VS), which was approximately 14% higher than for the control sample. The methane production rate for the control sample was 401.83 mL CH4/g VS, and for the sample following disintegration it was 465.62 mL CH4/g VS. The study found that pretreatment of maize silage with a pulsed electric field increased the biogas potential.
Collapse
|
23
|
Nguyen TT, Rosello C, Bélanger R, Ratti C. Fate of Residual Pesticides in Fruit and Vegetable Waste (FVW) Processing. Foods 2020; 9:E1468. [PMID: 33076324 PMCID: PMC7602544 DOI: 10.3390/foods9101468] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 11/17/2022] Open
Abstract
Plants need to be protected against pests and diseases, so as to assure an adequate production, and therefore to contribute to food security. However, some of the used pesticides are harmful compounds, and thus the right balance between the need to increase food production with the need to ensure the safety of people, food and the environment must be struck. In particular, when dealing with fruit and vegetable wastes, their content in agrochemicals should be monitored, especially in peel and skins, and eventually minimized before or during further processing to separate or concentrate bioactive compounds from it. The general objective of this review is to investigate initial levels of pesticide residues and their potential reduction through further processing for some of the most contaminated fruit and vegetable wastes. Focus will be placed on extraction and drying processes being amid the main processing steps used in the recuperation of bioactive compounds from fruit and vegetable wastes.
Collapse
Affiliation(s)
- Tri Thanh Nguyen
- Soils and Agri-Food Engineering Dept, Institute of Nutrition and Functional Foods, Université Laval, Quebec City, QC G1V 0A6, Canada;
| | - Carmen Rosello
- Chemical Engineering Group, Chemistry Department, Universitat des Iles Balears, Palma, 07122 Mallorca, Spain;
- Soils and Agri-Food Engineering Dept, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Richard Bélanger
- Plant Science Dept, Université Laval, Quebec City, QC G1V 0A6, Canada;
| | - Cristina Ratti
- Soils and Agri-Food Engineering Dept, Institute of Nutrition and Functional Foods, Université Laval, Quebec City, QC G1V 0A6, Canada;
| |
Collapse
|
24
|
Llavata B, García-Pérez JV, Simal S, Cárcel JA. Innovative pre-treatments to enhance food drying: a current review. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2019.12.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
25
|
Thamkaew G, Gómez Galindo F. Influence of pulsed and moderate electric field protocols on the reversible permeabilization and drying of Thai basil leaves. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102430] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Characteristics of Cornelian cherry sour non-alcoholic beers brewed with the special yeast Saccharomycodes ludwigii. Food Chem 2019; 312:125968. [PMID: 31881442 DOI: 10.1016/j.foodchem.2019.125968] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 01/14/2023]
Abstract
Recipes for traditional and sour non-alcoholic beers were developed in this study employing a special yeast species Saccharomycodes ludwigii. They were characterized for their basic physicochemical properties, antioxidative activity as well as subjected to the quantitative and qualitative analysis of their biologically-active compounds, and to the sensory assessment. Sour non-alcoholic beers were brewed with the addition of juice from fruits of red-colored Cornelian cherry (Cornus mas L.) variety, which are characterized by naturally sour taste and aroma. Ethyl alcohol content in the beers manufactured ranged from 0.41%v/v in traditional non-alcoholic beers to 0.43%v/v in sour non-alcoholic beers. The final products had a low energy value, ranging from 116 to 148 kcal/500 mL of beer. The sour beers had several times higher antioxidative potential and significantly higher polyphenols concentration compared to the control ones. In addition, they were rich in anthocyanins and iridoids, and presented novel sensory attributes.
Collapse
|
27
|
Evaluation of carotenoids and furosine content in air dried carrots and parsnips pre-treated with pulsed electric field (PEF). Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03367-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|