1
|
Uddin MN, Das S, Noyon MROK, Islam MSMM, Khaled ASM, Islam MA, Chakraborty D, Uddin M, Nabi MN, Chandra Bhattacharjee S. Multi-matrix HPLC investigation of preservatives employing a recent validated method: A Monte Carlo simulation approach to health risks in Bangladeshi processed foods and healthcare. Food Chem Toxicol 2025; 197:115282. [PMID: 39909300 DOI: 10.1016/j.fct.2025.115282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/24/2025] [Accepted: 01/25/2025] [Indexed: 02/07/2025]
Abstract
To determine the amounts of benzoic acid, sorbic acid, methylparaben, and propylparaben in an assortment of products, this study provides a validated HPLC-PDA method. Linearity, recovery, accuracy, precision, sensitivity, specificity, system suitability, and robustness were all examined throughout validation in compliance with ICH criteria. The method of measurement showed high reliability, precision, and linear calibration curves (5-50 mg/L) with correlation values over 0.999, demonstrating that it is suitable for consistent analysis. Reliability across various matrices was validated by robustness testing. Goods such as fruit juices, ketchup, cakes, herbal goods, and pharmaceuticals were subjected to health risk assessments including CDI, THQ, and HI. Significant sorbate and high benzoate levels, in particular in herbal products (up to 6636 mg/kg), were found in processed meals, while methylparaben surpassed the recommended limit in some herbal and pharmaceutical products. Levels of propylparaben remain low. Risk evaluations revealed that consumption of herbal products was the main cause of significant worry, especially for children with lower body weights. THQ levels below the threshold were found in Monte Carlo simulations (5th, median, and 95th percentiles), indicating that food preservatives provide little non-carcinogenic risk to the majority of the population.
Collapse
Affiliation(s)
| | - Suman Das
- Bangladesh Council of Scientific and Industrial Research (BCSIR) Chattogram Laboratories, Chattogram, 4220, Bangladesh.
| | | | - Md Samrat Mohay Menul Islam
- Bangladesh Council of Scientific and Industrial Research (BCSIR) Chattogram Laboratories, Chattogram, 4220, Bangladesh
| | | | - Md Ashraful Islam
- Bangladesh Council of Scientific and Industrial Research (BCSIR) Chattogram Laboratories, Chattogram, 4220, Bangladesh
| | - Dipankar Chakraborty
- Bangladesh Council of Scientific and Industrial Research (BCSIR) Chattogram Laboratories, Chattogram, 4220, Bangladesh
| | - Monir Uddin
- Department of Chemistry, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Md Nurun Nabi
- School of Engineering and Technology, Central Queensland University, Melbourne, Victoria, Australia
| | | |
Collapse
|
2
|
Kim TE, Lee MH, Kim BK, Lee JH, Chun YG, Jang HW. Optimization of the QuEChERS-UPLC-APCI-MS/MS method for the analysis of vitamins D and K nanoencapsulated in yogurt. J Chromatogr A 2024; 1734:465275. [PMID: 39181095 DOI: 10.1016/j.chroma.2024.465275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
A novel approach was developed to simultaneously determine the contents of vitamins D2, D3, K1, and K2 in yogurt fortified with nanoencapsulated vitamins D and K. This method combines QuEChERS extraction with UPLC-APCI-MS/MS analysis. Optimization of the QuEChERS process included fine-tuning the addition of salts using response surface methodology based on the Box-Behnken design. Under the optimized conditions, the developed method exhibited an excellent linearity (R2 > 0.999) across concentrations ranging from 0.5 to 500 µg/L. The limits of detection and quantification (LOD and LOQ) were found to be 0.01-0.04 µg/L and 0.04-0.11 µg/L, respectively, with precision, accuracy, and recovery rates exceeding 94.88 %, and accompanied by acceptable relative standard deviations. Comparative analysis with traditional methodologies revealed the significant advantages of the proposed approach. Previous techniques such as liquid-liquid extraction combined with saponification are time-consuming and require high sample quantities. In addition, dispersive liquid-liquid microextraction requires a long analysis time and exhibits a poor sensitivity, particularly in terms of its LOD and LOQ values. In contrast, our method offers a straightforward, efficient, and reliable sample preparation technique suitable for detecting vitamins D2, D3, K1, and K2 in a yogurt matrix. This study not only demonstrates the feasibility of applying the QuEChERS method for stable vitamin quantification in yogurt, but it also represents an innovative contribution to enhancing the detection sensitivity and efficiency in food analysis. By emphasizing these methodological advancements and comparative benefits, this research underscores the significance of adopting advanced analytical approaches in food science.
Collapse
Affiliation(s)
- Tae-Eun Kim
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Min Hyeock Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Bum-Keun Kim
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Jae Hoon Lee
- Department of Food Science and Technology, Jeonbuk National University, Jeonju 54896, Korea
| | - Yong Gi Chun
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Hae Won Jang
- Department of Food Science and Biotechnology, Sungshin Women's University, 55, 76 ga-gil, Dobong-ro, Gangbuk-gu, Seoul 01133, Republic of Korea.
| |
Collapse
|
3
|
Wang L, Hu Z, Chen J, Wang T, Wu P, Ying Y. Simultaneous Determination of 12 Preservatives in Pastries Using Gas Chromatography-Mass Spectrometry. Foods 2023; 12:3819. [PMID: 37893712 PMCID: PMC10606472 DOI: 10.3390/foods12203819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/03/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Background: Preservatives may pose a potential threat to human health. To ensure food safety, this study has devised a method that concurrently detects a dozen preservatives (acetic acid, propionic acid, dehydroacetic acid, benzoic acid, sorbic acid, dimethyl fumarate, methyl parahydroxybenzoate, ethyl parahydroxybenzoate, propyl parahydroxybenzoate, isopropyl parahydroxybenzoate, butyl parahydroxybenzoate, and isobutyl parahydroxybenzoate) in pastry, utilizing gas chromatography-mass spectrometry. (2) Methods: The pastry samples were acidified with hydrochloric acid, extracted with acetonitrile via vortexing, purified by hexane and saturated with sodium chloride solution to remove lipids and impurities, and then concentrated via nitrogen blowing. The method was then quantitatively analyzed using GC-MS with the internal standard method after methanol re-dissolution. (3) Results: The results showed that the content of the 12 preservatives had good linearity within the range of 1.0-50 μg/mL, with correlation coefficients all greater than 0.99. The method detection limit was 0.04-2.00 mg/kg and the quantification limit was 0.12-6.67 mg/kg. The average recovery rates of the samples at three different spiked concentrations of low, medium, and high were 70.18-109.22%, and the relative standard deviations were 1.82-9.79% (n = 6). (4) Conclusions: This method requires a small amount of sample, has high sensitivity, and is simple and fast to operate, making it suitable for the simultaneous determination of 12 preservatives in pastry. This approach contributes to the effective surveillance and regulation of preservative usage in pastries, thereby safeguarding public well-being.
Collapse
Affiliation(s)
| | | | | | | | | | - Ying Ying
- Zhejiang Province Center for Disease Control and Prevention, Hangzhou 310051, China; (L.W.); (Z.H.); (J.C.); (T.W.); (P.W.)
| |
Collapse
|
4
|
Jakavula S, Nqombolo A, Mpupa A, Ren J, Nomngongo PN. Hybrid porous material supported in a cellulose acetate polymeric membrane for the direct immersion thin-film microextraction of parabens in water. J Chromatogr A 2023; 1705:464187. [PMID: 37419016 DOI: 10.1016/j.chroma.2023.464187] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
A simple and sensitive direct immersion thin-film microextraction (DI-TFME) method based on MIL-101(Cr) modified with carbon nanofibers supported in cellulose acetate (CA-MIL-101(Cr)@CNFs) polymeric membrane was developed for the extraction and preconcentration of parabens in environmental water samples. A high-performance liquid chromatography-diode array detector (HPLC-DAD) was used for the determination and quantification of methylparaben (MP) and propylparaben (PP). The factors affecting the DI-TFME performance were investigated using central composite design (CCD). The linearity of the DI-TFME/HPLC-DAD method obtained under optimal conditions was 0.04-0.04-500 µg/L with a correlation coefficient (R2) greater than 0.99, respectively. The limits of detection (LOD) and quantification (LOQ) for methylparaben were 11 ng/L and 37 ng/L; for propylparaben, they were 13 ng/L and 43 ng/L, respectively. The enrichment factors were 93.7 and 123 for methylparaben and propylparaben. The intraday (repeatability) and interday (reproducibility) precisions expressed as relative standard deviations (%RSD) were less than 5%. Furthermore, the DI-TFME/HPLC-DAD method was validated using real water samples spiked with known concentrations of the analytes. The recoveries ranged from 91.5 to 99.8%, and intraday and interday trueness values were less than ±15%. The DI-TFME/HPLC-DAD approach was effectively used for the preconcentration and quantification of parabens in river water and wastewater samples.
Collapse
Affiliation(s)
- Silindokuhle Jakavula
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg 2028, South Africa; Department of Science and Innovation-National Research Foundation South African Research Chair Initiative (DSI-NRF SARChI) in Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
| | - Azile Nqombolo
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice 5700, South Africa
| | - Anele Mpupa
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg 2028, South Africa; Department of Science and Innovation-National Research Foundation South African Research Chair Initiative (DSI-NRF SARChI) in Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
| | - Jianwei Ren
- Department of Mechanical Engineering Science, University of Johannesburg, Cnr Kingsway and University Roads, Auckland Park, Johannesburg 2092, South Africa
| | - Philiswa Nosizo Nomngongo
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg 2028, South Africa; Department of Science and Innovation-National Research Foundation South African Research Chair Initiative (DSI-NRF SARChI) in Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa; Department of Science and Innovation /Mintek Nanotechnology Innovation Centre, University of Johannesburg, Doornfontein 2028, South Africa.
| |
Collapse
|
5
|
Novel QuEChERS-ultra-performance liquid chromatography-atmospheric-pressure chemical ionization tandem mass spectrometry method for the simultaneous determination of vitamin D and vitamin K in vitamin-fortified nanoemulsions. Food Chem 2022; 389:133009. [PMID: 35490514 DOI: 10.1016/j.foodchem.2022.133009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 03/15/2022] [Accepted: 04/17/2022] [Indexed: 11/23/2022]
Abstract
Nanoemulsion is a new vehicle for food fortification. In this study, a simple and reliable method for the simultaneous analysis of vitamins D2, D3, K1, and K2 in vitamin-fortified nanoemulsions was developed using QuEChERS (quick, easy, cheap, effective, rugged, and safe) extraction and ultra-high performance liquid chromatography-atmospheric-pressure chemical ionization tandem mass spectrometry techniques. Response surface methodology was employed to optimize the extraction parameters. The method was validated for the vitamins in terms of LOD (0.03-0.25 μg/L), LOQ (0.10-0.77 μg/L), intra-day (≤4.50%), inter-day precisions (≤6.43%), and accuracy (98.5%-108.0%). The recoveries of the vitamin-fortified nanoemulsion and yogurt were in the ranges of 104.0%-109.2% and 73.3%-85.2%, respectively. The solvent consumption and analysis time were reduced by 5.6 and 3.3 folds, respectively, rendering it superior to the traditional extraction methods established by the Association of Official Analytical Chemists and the Ministry of Food and Drug Safety.
Collapse
|
6
|
Yang F, Dong H, Zhang F, Shao J, Wang Y, Deng H, Tang G, Zhang X, Li B, Liu S. A rapid and environmentally friendly method for determination of parabens preservatives in flavors by supercritical fluid chromatography tandem mass spectrometry. J Sep Sci 2022; 45:3043-3053. [PMID: 35621260 DOI: 10.1002/jssc.202200241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/07/2022] [Accepted: 05/23/2022] [Indexed: 11/09/2022]
Abstract
A rapid method for determination of parabens preservatives (methyl paraben, ethyl paraben, isopropyl paraben, propyl paraben, isobutyl paraben, and butyl paraben) in flavors was established by using supercritical fluid chromatography tandem mass spectrometry combined with dispersive solid phase extraction. After adding methanol and primary secondary amine to the sample simultaneously, high extraction efficiency and good sample cleanup could be obtained by simple shaking. Parabens were well separated on a Chiralpak IG-3 column in 6 min by gradient elution. Recoveries from spiked blank samples at 0.5, 1.0, and 5.0 mg/kg were determined to be 88.3-106.6%with relative standard deviations less than 8.0%. All analytes achieved good linear relation (r≥0.999 2). The limits of detection for all analytes ranged from 0.03 to 0.09 mg/kg and the limits of quantification from 0.11 to 0.31 mg/kg, respectively. A total of 20 actual samples were successfully analyzed by taking the proposed method. Being simple, rapid, green and reliable, this method can be taken for the determination of parabens preservatives in flavors. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Fei Yang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, 450001, China
| | - Hao Dong
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, 450001, China
| | - Fengmei Zhang
- China tobacco Yunnan Industrial Co. Ltd, Kunming, 650231, China
| | - Jimin Shao
- Sichuan Tobacco Quality Supervision and Testing Station, Chengdu, 610041, China
| | - Ying Wang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, 450001, China
| | - Huimin Deng
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, 450001, China
| | - Gangling Tang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, 450001, China
| | - Xiaotao Zhang
- China tobacco Guizhou Industrial Co. Ltd, Guiyang, 550009, China
| | - Bo Li
- Guangdong Tobacco Quality Supervision and Testing Station, Guangzhou, 510610, China
| | - Shanshan Liu
- China National Tobacco Quality Supervision and Test Center, Zhengzhou, 450001, China
| |
Collapse
|
7
|
Application of interval wavelength selection by iterative space shrinkage approach iVISSA for spectroscopic quantification of spectrally overlapping food preservatives by multivariate calibration. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01311-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Zhang H, Yang H, Liu P, Qin X, Liu G. Colorimetric quantification of sodium benzoate in food by using d-amino acid oxidase and 2D metal organic framework nanosheets mediated cascade enzyme reactions. Talanta 2022; 237:122906. [PMID: 34736643 DOI: 10.1016/j.talanta.2021.122906] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/16/2021] [Accepted: 09/25/2021] [Indexed: 01/06/2023]
Abstract
A rapid colorimetric method for detecting sodium benzoate in food products was established based on the d-amino acid oxidase (DAAO) and 2D metal organic framework (2D MOF) nanosheets mediated cascade enzyme reactions. Firstly, the synthesized 2D MOF nanosheets served as high efficient nanozyme with outstanding peroxidase-like catalytic activity and catalyzed the color reaction between H2O2 and 3, 3', 5, 5'- tetramethylbenzidine. Secondly, sodium benzoate as a competitive inhibitor of DAAO, could influence the production of H2O2 in DAAO mediated oxidation reaction. After a combination of those two reactions, this colorimetric quantitative method was constructed and validated for sodium benzoate determination with wide linear range (2.0-200.0 μM), low limit of detection (2.0 μM), high accuracy (recovery rate in 95.80-108.00%) and satisfied selectivity. Lastly, this method was utilized to analyze sodium benzoate concentration in juice, wine and vinegar by naked eyes.
Collapse
Affiliation(s)
- Haizhi Zhang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Huanyu Yang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Pei Liu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Xinguang Qin
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Gang Liu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China.
| |
Collapse
|
9
|
Abdelghani JI, Al-Degs YS. Spectroscopic quantifiication of preservatives in different food matrices using QuEChERS extraction and multivariate calibration with comparison against liquid chromatography. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
10
|
Li M, Luo S, Di X, Cui Y. Ultrasound-assisted extraction coupling to high performance liquid chromatography for enantiomerically quantitative analysis of two preservatives in cosmetics and the potentially cytotoxic study. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Application of the poly (POSS-octavinyl-co-N-methylacetamide-co-divinylbenzene) solid extraction column in analyzing preservatives. Anal Bioanal Chem 2021; 414:1493-1501. [PMID: 34505165 DOI: 10.1007/s00216-021-03613-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/30/2021] [Accepted: 08/09/2021] [Indexed: 01/07/2023]
Abstract
In this study, a special poly solid-phase extraction (in-tube SPE) column consisting of poly (POSS-octavinyl-co-N-methylacetamide-co-divinylbenzene) [poly (POSS-OS-co-DVB-co-NMA)] was prepared based on the chemical structure of the preservatives, and was used as medium for extraction analysis in combination with UPLC. The composition of polymer SPE was optimized and characterized; good scanning electron microscopy (SEM) properties and satisfactory porosity were obtained with 30% monomer (POSS-OS:DVB:NMA = 2 wt%:13 wt%:15 wt%) and 70 wt% porogenic solvent (PEG20000:DMSO:ACN = 10 wt%:50 wt%:10 wt%). The experimental parameters of the in-tube SPE-UPLC analysis were optimized systematically. Then, the in-tube SPE-UPLC method was applied for analyzing the beverage sample, and correlation coefficients (R2) > 0.99 were obtained for the linear relationship within limits of 0.1~5.0 μg mL-1. Excellent extraction efficiency, good precision, and satisfactory limit of detection sensitivity between 0.03 and 0.10 μg mL-1 were obtained. The recovery ranged from 71.5 to 88.0%, with RSD ≤ 6.1%. Furthermore, the proposed method has the features of simple sample pretreatment, high throughput, rapid analysis, cost-effectiveness, and satisfactory sensitivity. Hence, the developed in-tube SPE-UPLC method based on the poly (POSS-OS-co-DVB-co-NMA) SPE column can be potentially used for simple and sensitive detection of preservatives.
Collapse
|
12
|
de Oliveira Arias JL, Rocha CB, Kupski L, Barbosa SC, Primel EG. Salting-Out Induced Liquid-Liquid Microextraction: an Environmentally Friendly Approach to Preservative Determination in Food Samples. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-01989-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Dantas MSR, Lourenço AS, Silva AC, Bichinho KM, Araujo MCU. Simultaneous determination of methyl, ethyl, propyl, and butyl parabens in sweetener samples without any previous pretreatment using square wave voltammetry and multiway calibration. Food Chem 2021; 365:130472. [PMID: 34265641 DOI: 10.1016/j.foodchem.2021.130472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/26/2021] [Accepted: 06/24/2021] [Indexed: 01/18/2023]
Abstract
Parabens are compounds used as chemical preservatives in cosmetics, drugs, and food. Some can cause adverse effects on human health. In this study, a square wave voltammetric method using a glassy carbon electrode was developed for simultaneous determination of methyl, ethyl, propyl, and butyl parabens in sweeteners. To overcome the strong overlap of voltammetric signals caused by calibrated and uncalibrated constituents, unfolded partial least squares with residual bilinearization (U-PLS/RBL) was used. The U-PLS/RBL calibration model was constructed and evaluated using a validation set obtained using a Taguchi design. Satisfactory and unbiased results were obtained with a linear response in the range of 0.78-4.48 μmol L-1 and recoveries from 82.64% to 121.77%. As far as the authors know, a voltammetric method that simultaneously determines four parabens in complex samples such as sweeteners without any previous pretreatment has not yet been reported in the literature.
Collapse
Affiliation(s)
- Maria S R Dantas
- Universidade Federal da Paraíba, Departamento de Química, 58051-970 João Pessoa, Paraíba, Brazil
| | - Anabel S Lourenço
- Universidade Federal da Paraíba, Departamento de Química, 58051-970 João Pessoa, Paraíba, Brazil
| | - Amanda C Silva
- Instituto Federal da Paraíba, Química, 58999-000 Sousa, Paraíba, Brazil
| | - Kátia M Bichinho
- Universidade Federal da Paraíba, Departamento de Química, 58051-970 João Pessoa, Paraíba, Brazil
| | - Mario C U Araujo
- Universidade Federal da Paraíba, Departamento de Química, 58051-970 João Pessoa, Paraíba, Brazil.
| |
Collapse
|
14
|
Zhang Q, Zhi Y, Bao L, Zheng Y, Wang X, Jiang L, Wu Y. Determination of six parabens in biological samples by magnetic solid-phase extraction with magnetic mesoporous carbon adsorbent and UHPLC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1179:122817. [PMID: 34325307 DOI: 10.1016/j.jchromb.2021.122817] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 04/22/2021] [Accepted: 05/26/2021] [Indexed: 11/26/2022]
Abstract
Although parabens are useful due to their antiseptic properties, their widespread use has caused concerns regarding their potential toxicological effects. In this study, a novel magnetic solid-phase extraction combined with ultra-high-performance liquid chromatography-tandem mass spectrometry (MSPE-UHPLC-MS/MS) was developed, based on ordered magnetic mesoporous carbon (MMC), for paraben analysis. The MMC was prepared by soft-template synthesis, with a unique pore structure and a highly specific surface response, indicating potential as an excellent adsorbent. Several parameters affecting the paraben extraction efficiency were investigated and a novel method for paraben analysis in serum and urine samples using MSPE-UHPLCMS/MS was developed. The concentrations of methylparaben, ethylparaben, isopropylparaben, and propylparaben in these samples were 0.0380-4.36, 0.460-9.65, 0.0118-0.770, and 0.0363-0.641 μg/L, respectively, whereas isobutylparaben and butylparaben were not detected. Furthermore, satisfactory recoveries of 76.4-121% with relative standard deviations (n = 5) of 1.9-8.6% were obtained. Therefore, the developed MSPE-UHPLC-MS/MS method was efficient, highly sensitive, and reliable for analysing parabens in complex biological samples.
Collapse
Affiliation(s)
- Qianchun Zhang
- School of Biology and Chemistry, Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, Xingyi Normal University for Nationalities, Xingyi 562400, PR China.
| | - Yongzhi Zhi
- School of Biology and Chemistry, Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, Xingyi Normal University for Nationalities, Xingyi 562400, PR China
| | - Linchun Bao
- Clinical Laboratory, Qian Xi Nan People's Hospital, Xingyi, 562400, PR China
| | - Yuguo Zheng
- School of Biology and Chemistry, Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, Xingyi Normal University for Nationalities, Xingyi 562400, PR China
| | - Xingyi Wang
- School of Biology and Chemistry, Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, Xingyi Normal University for Nationalities, Xingyi 562400, PR China
| | - Li Jiang
- School of Biology and Chemistry, Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, Xingyi Normal University for Nationalities, Xingyi 562400, PR China
| | - Yun Wu
- School of Biology and Chemistry, Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, Xingyi Normal University for Nationalities, Xingyi 562400, PR China.
| |
Collapse
|
15
|
Zhang M, Lian K, Ai L, Kang W, Zhao T. Simultaneous determination of 11 antiseptic ingredients in surface water based on polypyrrole decorated magnetic nanoparticles. RSC Adv 2020; 10:37473-37481. [PMID: 35521266 PMCID: PMC9057185 DOI: 10.1039/d0ra07064e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022] Open
Abstract
With the emergence and spread of coronavirus COVID-19, the use of personal cleansing, medical and household disinfectant products have increased significantly. In this work, a new magnetic solid-phase extraction (MSPE) method for the determination of 11 antiseptic ingredients in surface water by high performance liquid chromatography-mass spectrometry (HPLC-MS/MS) for 6 months based on Fe3O4@PPy magnetic nanoparticles (MNPs) was established. The MSPE method possessed the advantages of simple processing, little time consumption and less organic solvent consumption, and the MNPs could be reused several times. The analytical parameters influencing the extraction efficiency, such as sample pH, amount of MNPs and extraction time, were optimized in detail. It was indicated that the method had satisfactory linearities in the range of 0.50 to 1000.0 μg L-1 with the correlation coefficients (r) higher than 0.9996. Additionally, satisfactory spiked recoveries were achieved in the range of 80.21-107.33% with relative standard deviations (RSDs) from 1.98% to 8.05%. The limits of detection (LODs) and limits of quantitation (LOQs) were in the range of 0.20 to 2.0 μg L-1 and 0.50 to 5.0 μg L-1. Therefore, the developed MSPE-HPLC-MS/MS method has high selectivity and stability, and satisfactory quantitative capability for the antiseptic ingredients in surface water. Furthermore, this method can provide relevant technical support for the development of surface water standards.
Collapse
Affiliation(s)
- Mengyan Zhang
- Hebei Key Laboratory of Environment and Human Health, School of Public Health, Hebei Medical University Shijiazhuang 050017 PR China
| | - Kaoqi Lian
- Hebei Key Laboratory of Environment and Human Health, School of Public Health, Hebei Medical University Shijiazhuang 050017 PR China
| | - Lianfeng Ai
- Technology Center of Shijiazhuang Customs Shijiazhuang 050051 China
| | - Weijun Kang
- Hebei Key Laboratory of Environment and Human Health, School of Public Health, Hebei Medical University Shijiazhuang 050017 PR China
| | - Tangjuan Zhao
- Hebei Key Laboratory of Environment and Human Health, School of Public Health, Hebei Medical University Shijiazhuang 050017 PR China
| |
Collapse
|
16
|
Hidalgo-Serrano M, Borrull F, Marcé RM, Pocurull E. Simple method for determining phthalate diesters and their metabolites in seafood species using QuEChERS extraction and liquid chromatography-high resolution mass spectrometry. Food Chem 2020; 336:127722. [PMID: 32771902 DOI: 10.1016/j.foodchem.2020.127722] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023]
Abstract
In this article we describe a new and simple analytical method based on the Quick, Easy, Cheap, Effective, Rugged and Safe technique followed by dispersive solid-phase extraction clean-up with C18 and Lipifiltr® and LC-HRMS for simultaneously extracting six phthalate diesters and six of their metabolites (phthalate monoesters) from highly consumed seafood species. The method was validated for seafood with high and low lipid contents. Apparent recoveries were up to 79% for all compounds. Matrix effect values ranged from -8 to -48% for all compounds in both types of matrices. Method limits of detection were 1-25 ng g-1 dry weight (d.w.) for most compounds. Five seafood species were analysed using this method, and several phthalate diesters and monoesters were successfully quantified. Phthalate diesters were found at concentrations of up to 982 ng g-1 (d.w.) and phthalate monoesters were found at concentrations of up to 178 ng g-1 (d.w.).
Collapse
Affiliation(s)
- Míriam Hidalgo-Serrano
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Marcel·lí Domingo s/n, Tarragona 43007, Spain.
| | - Francesc Borrull
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Marcel·lí Domingo s/n, Tarragona 43007, Spain.
| | - Rosa Maria Marcé
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Marcel·lí Domingo s/n, Tarragona 43007, Spain.
| | - Eva Pocurull
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Marcel·lí Domingo s/n, Tarragona 43007, Spain.
| |
Collapse
|
17
|
An ultrasensitive electroanalytical sensor based on MgO/SWCNTs- 1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide paste electrode for the determination of ferulic acid in the presence sulfite in food samples. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104572] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Antibacterial activity and action mechanism of microencapsulated dodecyl gallate with methyl-β-cyclodextrin. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106953] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|