1
|
Liu N, Fang TB, Zhao LX, Li N, Chen XF, Zhao RS. Efficient adsorption behavior of Fe-based ternary magnetic LDHs for naphthalene acetic acid: Role of Fe element. ENVIRONMENTAL RESEARCH 2025; 269:120848. [PMID: 39824275 DOI: 10.1016/j.envres.2025.120848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/20/2025]
Abstract
Naphthalene acetic acid (NAA) is an auxin plant growth regulator (PGR) and widely used to regulate the growth process of plants. As excessive NAA enter the environment, it damages the ecological environment and endangers human life and health. Layered bimetallic hydroxides (LDHs) are widely used for the adsorption of pollutants due to their large surface area and excellent structural properties. Based on the classical Fe3O4@MgAl-LDH material, Fe3O4@FeMgAl-LDHs were synthesized by adding different contents of Fe element to adsorb NAA in water. The morphology and properties of Fe3O4@FeMgAl-LDHs and the effect of Fe on adsorption efficiency were studied. The adsorption process and adsorption mechanism of NAA were analyzed. The results indicated that the content of Fe element will affect the adsorption effect of NAA by influencing the specific surface area and adsorption sites of Fe3O4@FeMgAl-LDHs. The maximum adsorption capacity for NAA can reach 330.1 mg/g when the proportion of Fe is 0.50. Exploring the adsorption mechanism, Fe3O4@FeMgAl-LDHs achieved efficient removal of NAA through hydrogen bonding, van der Waals forces, anion exchange, and electrostatic interactions. The adsorption efficiency of various PGRs were deeply explored. Fe3O4@FeMgAl-LDH (Fe-0.50) has good adsorption and regeneration ability for various PGRs. Therefore, by exploring the influence of different Fe ratios on the adsorption efficiency of the Fe3O4@FeMgAl-LDH, the adsorption performance of the material can be improved, making it have greater application advantages in wastewater treatment containing drugs.
Collapse
Affiliation(s)
- Ning Liu
- School of Environmental Science and Engineering, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Ti-Bo Fang
- School of Environmental Science and Engineering, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Ling-Xi Zhao
- School of Environmental Science and Engineering, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Na Li
- School of Environmental Science and Engineering, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Xiang-Feng Chen
- School of Environmental Science and Engineering, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Ru-Song Zhao
- School of Environmental Science and Engineering, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| |
Collapse
|
2
|
Wang M, Yuan Y, Han Y, Qiao F, Li J, Yan H. Two-dimensional hydrophilic imprinted resin-graphene oxide composite for selective extraction and rapid determination of gibberellin traces in licorice samples. Food Chem 2024; 452:139553. [PMID: 38733687 DOI: 10.1016/j.foodchem.2024.139553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024]
Abstract
This study presents novel methodologies and materials for selectively and sensitively determining gibberellin traces in licorice to address food safety concerns. A novel hydrophilic imprinted resin-graphene oxide composite (HMIR-GO) was developed with fast mass transfer, high adsorption capacity, and exceptional aqueous recognition performance for gibberellin. Leveraging the advantages of molecular imprinting, hydrophilic resin synthesis, and rapid mass transfer characteristics of GO, HMIR-GO was employed as an adsorbent, showing resistance to matrix interference. Coupled with HPLC, a rapid and selective method for determining gibberellin was established. Under optimal conditions, the method exhibited a wide linear range (0.02-5.00 μg g-1, r = 0.9999), low detection limits (3.3 ng g-1), and satisfactory recoveries (92.0-98.4%), enabling the accurate and rapid detection of gibberellin in licorice. This study introduces a pioneering strategy for the selective extraction and determination of trace gibberellin levels, offering insights for similar applications in functional foods.
Collapse
Affiliation(s)
- Mingwei Wang
- Hebei Key Laboratory of Public Health Safety, College of Pharmaceutical Science, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China
| | - Yanan Yuan
- Hebei Key Laboratory of Public Health Safety, College of Pharmaceutical Science, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China
| | - Yehong Han
- Hebei Key Laboratory of Public Health Safety, College of Pharmaceutical Science, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China
| | - Fengxia Qiao
- College of Biochemical and Environmental Engineering, Baoding University, Baoding, 071002, China
| | - Jinliang Li
- Hebei Key Laboratory of Public Health Safety, College of Pharmaceutical Science, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Hongyuan Yan
- Hebei Key Laboratory of Public Health Safety, College of Pharmaceutical Science, College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China.
| |
Collapse
|
3
|
Yuan Y, Zhang Y, Wang M, Cao J, Yan H. Green synthesis of superhydrophilic resin/graphene oxide for efficient analysis of multiple pesticide residues in fruits and vegetables. Food Chem 2024; 450:139341. [PMID: 38631206 DOI: 10.1016/j.foodchem.2024.139341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/07/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
The escalating use of pesticides on fruits and vegetables has raised concerns about potential health risks. Therefore, we developed a superhydrophilic resin/graphene oxide (SR/GO) with rich adsorption interactions using an eco-friendly synthetic approach. SR/GO demonstrated excellent hydrophilicity, ensuring optimal contact with aqueous sample matrices. The multiple adsorption interactions, including π-π conjugation, hydrogen bonding, and electrostatic adsorption, facilitated multi-pesticide residue co-extraction. The synthesized SR/GO was applied to a miniaturized centrifugation-accelerated pipette-tip extraction method, coupled with high-performance liquid chromatography. The optimized method exhibited low consumption (15.0 mg adsorbent), and high efficiency, with low detection limits (1.4-2.9 ng g-1) and high recoveries (75.3-113.0%). Water-compatible SR/GO, along with a miniaturized extraction process, showcases a potent analytical approach for pesticide residue analysis in fruits and vegetables. The significance of this method lies in its ability to ensure agricultural and food safety by using a low-cost and efficient multi-pesticide residue analytical strategy.
Collapse
Affiliation(s)
- Yanan Yuan
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, College of Pharmaceutical Science, Hebei University, Baoding 071002, China; Hebei Key Laboratory of Public Health Safety, College of Public Health, Hebei University, Baoding 071002, China
| | - Yanfei Zhang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, College of Pharmaceutical Science, Hebei University, Baoding 071002, China
| | - Mingwei Wang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, College of Pharmaceutical Science, Hebei University, Baoding 071002, China
| | - Jiankun Cao
- Hebei Key Laboratory of Public Health Safety, College of Public Health, Hebei University, Baoding 071002, China
| | - Hongyuan Yan
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Materials Science, College of Pharmaceutical Science, Hebei University, Baoding 071002, China; Hebei Key Laboratory of Public Health Safety, College of Public Health, Hebei University, Baoding 071002, China.
| |
Collapse
|
4
|
Xia L, Yuan C, He T, Cui J. Zeolitic imidazolate framework-8 as a high-affinity adsorbent for dispersive solid-phase extraction in the analysis of plant growth regulators in fruits. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5321-5327. [PMID: 39028291 DOI: 10.1039/d4ay00707g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Facile and sensitive determination of plant growth regulators (PGRs) in food samples is crucial but still poses a significant challenge. In this study, to enhance the sensitivity of the HPLC-DAD method for PGR detection, a dispersive solid phase extraction (d-SPE) method using zeolitic imidazolate framework-8 (ZIF-8) as the highly effective adsorbent is developed. ZIF-8 nanoparticles are formed through the coordination of Zn2+ with 2-methylimidazole. Due to its high porosity, large surface area, abundant π electronics and nitrogen electronics, ZIF-8 exhibits a strong affinity to PGRs due to the synergistic effects of π-π interaction, van der Waals force, H-bond, and surface effect. Under the optimal d-SPE conditions, the sensitivity of the method is significantly enhanced with outstanding performances, including a wide range of linearity (2.0-200 ng g-1) with high correlation coefficients (R ≥ 0.9989), low limits of detection (LODs, 0.9-8.0 ng g-1 for all PGRs), satisfactory precision (intra-day RSDs ≤ 3.3%, inter-day RSDs ≤ 4.2%), and high accuracy (recovery: 86.6-101.5%). The developed method was successfully applied to quantitatively detect 9 PGRs in fruit samples, yielding satisfactory results. This d-SPE-HPLC-DAD method, characterized by high sensitivity, simplicity, efficiency, ease of practice and cost-effectiveness for PGR detection, shows potential for detecting PGRs in other complex samples and provides a strategy for designing target-affinity adsorbents.
Collapse
Affiliation(s)
- Lian Xia
- Chemistry and Chemical Engineering College, Qufu Normal University, Qufu, Shandong Province 273165, P. R. China.
| | - Can Yuan
- College of Food, Sichuan Tourism University, Chengdu, Sichuan Province 610100, P. R. China.
| | - Tianqiang He
- Chemistry and Chemical Engineering College, Qufu Normal University, Qufu, Shandong Province 273165, P. R. China.
| | - Jiaxin Cui
- Chemistry and Chemical Engineering College, Qufu Normal University, Qufu, Shandong Province 273165, P. R. China.
| |
Collapse
|
5
|
Zang X, Chang Q, Hou F, Zhang S, Wang C, Wang Z, Xu J. Hydroxyl and carboxyl group functionalized conjugated microporous nanomaterial as adsorbent for the solid-phase extraction of phenolic endocrine disrupting chemicals from freshwater fish samples. Food Chem 2024; 436:137674. [PMID: 37832421 DOI: 10.1016/j.foodchem.2023.137674] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
Endocrine disruption chemicals (EDCs) in food can seriously harm human health. In this study, a hydroxyl and carboxyl group functionalized conjugated microporous nanomaterial (CMP) was prepared by Friedel-Crafts reaction and used as solid-phase extraction (SPE) adsorbent. A functionalized CMP based SPE combined with high performance liquid chromatography-diode array detection was built for the determination of phenolic EDCs from nine fish samples. The extraction conditions were optimized by both single factor and response surface methodology (Box-Behnken Design). The established method performed well in terms of the response linearity (in the range of 0.50-100 ng g-1 with coefficient of determination larger than 0.9942), limits of detection (0.15-0.30 ng g-1, S/N of 3), limits of quantification (0.50-1.00 ng g-1, S/N = 10), method recoveries (78.4-121 %) and repeatability (relative standard deviation < 11 %). It can be used as an efficient method to detect trace phenolic EDCs in real fish samples.
Collapse
Affiliation(s)
- Xiaohuan Zang
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, Hebei, China; Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Qingyun Chang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Fangyuan Hou
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Shuaihua Zhang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Chun Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Zhi Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China.
| | - Jianzhong Xu
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, Hebei, China.
| |
Collapse
|
6
|
Wang Z, Xie S, Zhang W, Chen H, Ding Q, Xu J, Yu Q, Zhang L. Mechanochemical synthesis ionic covalent organic frameworks/cotton composites for pipette tip solid-phase extraction of domoic acid in seafood. Talanta 2024; 269:125485. [PMID: 38048683 DOI: 10.1016/j.talanta.2023.125485] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/09/2023] [Accepted: 11/23/2023] [Indexed: 12/06/2023]
Abstract
Pipette tip solid-phase extraction (PT-SPE) as a miniaturized solid-phase extraction technique have a wide range of applications in the field of sample pretreatment. In this study, ionic covalent organic frameworks@cotton (iCOF@cotton) were facilely synthesized by mechanochemical grinding method only in half an hour, and used as the adsorbents of PT-SPE. The synthesized iCOF@cotton not only had high specific surface area, suitable pore structure and cationic charge groups of iCOF that can extract polar targets quickly, but also reduced the problem of high back pressure of PT-SPE by the addition of cotton, thus accelerating extraction time. Combined with high performance liquid chromatographic tandem mass spectrometry (HPLC-MS/MS), an efficient and sensitive method was established for detection of domoic acid (DA, a toxin produced by algae). Under the optimal conditions, the proposed analysis method displayed excellent analytical performance, including broad range of linearity (10-1000 pg mL-1), low limit of detection (LOD, 5 pg mL-1), high correlation coefficient (0.9993), satisfactory precision (RSDs ≤6.4 %). In addition, the developed method was applied to the detection of DA in marine samples, and detected trace DA (18.6 pg mL-1) with satisfactory recovery (85.7%-107.2 %). The above results indicated that the prepared iCOF@cotton have great potential as the adsorbents for PT-SPE.
Collapse
Affiliation(s)
- Zhiyong Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Shiye Xie
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Wenmin Zhang
- Department of Chemistry and Biotechnology, Minjiang Teachers College, Fuzhou, Fujian, 350108, China
| | - Hui Chen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Qingqing Ding
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Jinhua Xu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Qidong Yu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Lan Zhang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
7
|
Guo Y, Wang J, Liu W, Liu J, Wang C, Wu Q, Wang Z. Construction of magnetic hydroxyl group-enriched hyper cross-linked polymers with functional triazine as the core for efficient enrichment of plant growth regulators. Food Chem 2024; 433:137309. [PMID: 37683476 DOI: 10.1016/j.foodchem.2023.137309] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/07/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023]
Abstract
The determination of trace plant growth regulators (PGRs) residues in water and food samples make it crucial to develop novel sample pretreatment methods for the enrichment of PGRs. Herein, a novel magnetic hyper cross-linked polymer (M-CTT-9OH-HCP) was constructed and served as a magnetic adsorbent for the efficient extraction of some PGRs from water, watermelon, tomatoes, and milk samples for the first time. Combined with high performance liquid chromatography-fluorescence detection (HPLC-FLD), the established method presented a good linearity (0.03-60.0 ng g-1 (ng mL-1), (r) ≥ 0.9973), satisfactory accuracy with method recoveries (83.0%-119%) and acceptable precision with the intra-day and inter-day variations (expressed as the relative standard deviations (RSDs) ≤ 9.8%). The limits of detection (LODs) and limits of quantitation (LOQs) were in the range of 0.01-1.50 and 0.03-5.00 ng g-1/ ng mL-1. The results show that the established method is sensitive and efficient for the determination of PGRs in real samples.
Collapse
Affiliation(s)
- Yaxing Guo
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Juntao Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Weihua Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Jiajia Liu
- China Petroleum Engineering & Construction Corp. North China Company, Renqiu 062550, Hebei, China
| | - Chun Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Qiuhua Wu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China.
| | - Zhi Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
8
|
Dual-template hydrophilic imprinted resin as an adsorbent for highly selective simultaneous extraction and determination of multiple trace plant growth regulators in red wine samples. Food Chem 2023; 411:135471. [PMID: 36669342 DOI: 10.1016/j.foodchem.2023.135471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/21/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
In recent years, numerous plant growth regulators have been found in foods and have a toxicity to human health, so its simultaneous multiple monitoring is urgently. For the first time, a rapid, accurate, and high-selective method was established to extract and determine multiple plant growth regulators simultaneously in red wines using a new dual-template hydrophilic molecularly imprinted resin (DHMIR) as an adsorbent of pipette tip solid-phase extraction coupled with HPLC. The as-prepared DHMIR combined the advantages of the hydrophilicity of hydrophilic resin and multi-imprinted recognition of dual-template molecular imprinting, overcoming the poor imprinted recognition ability of traditional imprinting materials in water and low extraction efficiency to multiple targets. Under the optimized conditions, the proposed method exhibited high sensitivity (2.29-3.94 ng mL-1) and recoveries (80.9-109.0 %) using only 15 mg DHMIR. This study provides an effective strategy for rapid, accurate, low-cost, and high-selective determination of the multiple analytes in food samples.
Collapse
|
9
|
Synthesis of spindle-like amino-modified Zn/Fe bimetallic metal-organic frameworks as sorbents for dispersive solid-phase extraction and preconcentration of phytohormoes in vegetable samples. Food Chem 2023; 409:135272. [PMID: 36623357 DOI: 10.1016/j.foodchem.2022.135272] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Amino-modified Zn/Fe bimetallic metal-organic frameworks (NH2-Zn/Fe-MIL-88) were synthesized using a one-step solvothermal method with FeCl3·6H2O and Zn(NO3)2·6H2O as metal salts and 2-aminoterephthalic acid as organic ligand. The morphology of NH2-Zn/Fe-MIL-88 can be regulated from octahedral-like to spindle-like with changing molar ratios of metal salts. Using NH2-Zn/Fe-MIL-88 as sorbent, a dispersive solid-phase extraction with putting sorbents into sample solution to extract targets was developed to preconcentrate phytohormones in vegetables. To study the extraction efficiency, a series of NH2-Zn/Fe-MIL-88s with varying molar ratios of metal salts were prepared. The results indicated that NH2-Zn/Fe-MIL-88(1) presented the highest extraction efficiency (82.6 %-98.1 %) to phytohormones among all prepared NH2-Zn/Fe-MIL-88(x). The limits of detection were calculated at 0.07-0.15 ng/mL. The adsorption isotherms and kinetic parameters of NH2-Zn/Fe-MIL-88 for phytohormones were conformed to Langmuir and pseudo-second-order models. The NH2-Zn/Fe-MIL-88 as sorbent combined with HPLC was applied to detect phytohormones in cucumber and tomato samples.
Collapse
|
10
|
Guo L, Tian M, Wang L, Zhou X, Wang Q, Hao L, Wu Q, Wang Z, Wang C. Synthesis of hydroxyl-functional magnetic hypercrosslinked polymer as high efficiency adsorbent for sensitively detecting neonicotinoid residues in water and lettuce samples. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
11
|
Guo Y, Wang J, Hao L, Liu W, Yang X, Wu Q, Wang Z. A carbazole-based spherical microporous polymer for the solid-phase extraction of chlorophenols from water and honey samples. Food Chem 2023; 398:133855. [DOI: 10.1016/j.foodchem.2022.133855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 12/01/2022]
|
12
|
Zhang Q, Mao X, Yuan C, Zhao J, Hu H, Yan A, Wang Y, Xiao W. A simplified dispersive solid-phase extraction using a shaped zirconium-based metal-organic framework: constructing a novel, facile and efficient method for detecting plant growth regulators in citrus fruits. Food Chem 2022; 405:134862. [DOI: 10.1016/j.foodchem.2022.134862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/08/2022]
|
13
|
Lu Y, Yan H, Han Y, Li P, Shen S. Hierarchical porous phenolic polymer for efficient adsorption of triazine herbicides: Novel preparation strategies and potential applications. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
14
|
Tian X, Dai Y, Cheng Y, Zhang L, Kong RM, Xia L, Kong C, Li G. Combination of pipette tip solid phase extraction and high performance liquid chromatography for determination of plant growth regulators in food samples based on the electrospun covalent organic framework/polyacrylonitrile nanofiber as highly efficient sorbent. J Chromatogr A 2021; 1661:462692. [PMID: 34883355 DOI: 10.1016/j.chroma.2021.462692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/27/2021] [Accepted: 11/16/2021] [Indexed: 12/20/2022]
Abstract
Facile and sensitive determination of plant growth regulators (PGRs) in food samples is important but still remains great challenge. Herein, a pipette tip solid phase extraction (PT-SPE) method was developed for fast and sensitively detecting PGRs. The PT-SPE adsorbent was prepared by integrating a novel covalent organic framework (COF) of schiff base network 3 (SNW-3) and polyacrylonitrile (PAN) through electrospinning. The SNW-3 can easily adsorb PGRs with high special affinity through electrovalent bands between the ammonium ions of SNW-3 and the carboxy groups of PGRs. The polymer of PAN acts as scaffold material for SNW-3, which can lower seepage pressure hence accelerates adsorption/desorption kinetics. By combination with HPLC-DAD, a satisfactory method was successfully developed for simultaneous determination of ten PGRs in watermelon. Good analytical performances were achieved with this proposed method, including good linearity (5-500 ng/mL) with high correlation coefficients (R ≥ 0.9981), low limits of detection (S/N = 3, 0.24-3.19 ng/mL) and limits of quantification (S/N = 10, 1.65-5.72 ng/mL), satisfactory precision (intra-day RSDs ≤ 2.7%, inter-day RSDs ≤ 3.7%), and high accuracy (recovery: 82.8-113.0%). The method developed in this study shows high potential for design of high target-affinity adsorbents for food sample preparing.
Collapse
Affiliation(s)
- Xiaoxia Tian
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, PR China
| | - Yue Dai
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, PR China
| | - Yuanyuan Cheng
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, PR China
| | - Lingdong Zhang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, PR China
| | - Rong-Mei Kong
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, PR China
| | - Lian Xia
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, PR China.
| | - Cong Kong
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, PR China.
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| |
Collapse
|
15
|
Ma W, Row KH. Hydrophilic deep eutectic solvents modified phenolic resin as tailored adsorbent for the extraction and determination of levofloxacin and ciprofloxacin from milk. Anal Bioanal Chem 2021; 413:4329-4339. [PMID: 34041574 DOI: 10.1007/s00216-021-03389-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/19/2021] [Accepted: 05/03/2021] [Indexed: 12/19/2022]
Abstract
A reliable and efficient method for the simultaneous extraction and determination of antibiotics of ciprofloxacin and levofloxacin from milk was developed with solid phase extraction based on tailored adsorbent materials of deep eutectic solvents modified phenolic resin (DES-R-SPE). Six types of polyhydric alcohol-based hydrophilic DESs were prepared to modify the phenolic resin with the compositions of 3-aminophenol as a functional monomer, glyoxylic acid as a crosslinker, and polyethylene glycol 6000 as a porogen. And the prepared DES-Rs showed better extraction capacities for the target analytes than the unmodified phenolic resin because of more hydrogen bonding and electrostatic interactions supplied by DESs. The choline chloride-glycerol-based resin (DES1-R) with the highest adsorption amounts was selected and the adsorption behavior of it was studied with static adsorption and the dynamic adsorption performance; the adsorption process followed Freundlich isotherm (R2 ≥ 0.9337) and pseudo-second-order (R2 ≥ 0.9951). The present DES1-R-SPE method showed good linear range from 0.5 to100 μg mL-1 (R2 ≥ 0.9998), good recoveries of spiked milk samples (LEV, 96.7%; CIP, 101.5%), and satisfied repeatability for intra-day and inter-day (LEV, RSD≤5.4%; CIP, RSD≤4.6%).
Collapse
Affiliation(s)
- Wanwan Ma
- Department of Chemistry and Chemical Engineering, Inha University, Incheon, 402-701, South Korea
| | - Kyung Ho Row
- Department of Chemistry and Chemical Engineering, Inha University, Incheon, 402-701, South Korea.
| |
Collapse
|
16
|
Guo Y, Wang J, Hao L, Wu Q, Wang C, Wang Z. Triazine-triphenylphosphine based porous organic polymer as sorbent for solid phase extraction of nitroimidazoles from honey and water. J Chromatogr A 2021; 1649:462238. [PMID: 34034109 DOI: 10.1016/j.chroma.2021.462238] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022]
Abstract
A triazine-based porous organic polymer was prepared by facile solvothermal polymerization with cyanuric chloride and triphenyl phosphine as functional monomers. The polymer was characterized and then used for the first time as the sorbent for the effective solid-phase extraction of some nitroimidazoles (NDZs) (metronidazole, ronidazole, secnidazole, dimetridazole and ornidazole). The main experimental influencing parameters for the extraction including the eluent solvent, eluent volume, sample loading rate, sample solution pH, salt concentration and sample volume were investigated. The adsorption kinetics and adsorption isotherms were investigated to elucidate the possible adsorption mechanism. With the triazine-based porous organic polymer as the SPE adsorbent, trace NDZs were effectively extracted. The good enrichment capability for the NDZs was mainly attributed to the hydrogen binding interactions by the aromatic 1,3,5-trizine rings. After the SPE, the extracted analytes were analyzed by high-performance liquid chromatograph with ultraviolet detection. Under the selected conditions, the method had a good linear response for the analytes in the range of 0.06-120 ng mL-1 for water and 1.5-1200 ng g-1 for honey samples. The limits of detections (S/N=3) fell in the range of 0.02-0.06 ng mL-1 for water and 0.5-1.5 ng g-1 for honey samples. The method recoveries for the analytes for spiked samples were in the range of 80.3-118%. The method can be applied for the determination of the NDZs from real samples.
Collapse
Affiliation(s)
- Yaxing Guo
- Department of Food Science, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Juntao Wang
- Department of Food Science, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Lin Hao
- Department of Food Science, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Qiuhua Wu
- Department of Food Science, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China.
| | - Chun Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Zhi Wang
- Department of Food Science, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
17
|
Hou S, Song X, Li L, Wang R, Wang X, Ji W. Boronic Acid-Functionalized Scholl-Coupling Mesoporous Polymers for Online Solid-Phase Extraction of Brassinosteroids from Plant-Derived Foodstuffs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4883-4893. [PMID: 33847497 DOI: 10.1021/acs.jafc.1c00211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Brassinosteroids (BRs) are natural, nontoxic, non-hazardous, biosafe, and eco-friendly plant hormones, possessing diverse pharmacological activities. However, little is known about the type and content of BRs in frequently consumed plant-derived foodstuffs because of their low abundance and high abundance of interference. In this study, a selective, accurate, and sensitive method based on the online solid-phase extraction using the boronic acid-functionalized Scholl-coupling microporous polymer was developed for the analysis of BRs in plant-derived foodstuffs. Under optimum conditions, an excellent linearity (R2 ≥ 0.9970) and lower limits of detection (0.010-0.070 pg mL-1) were obtained. The high relative recoveries were in the range of 90.33-109.34% with relative standard deviations less than 9.73%. The method was successfully used for the determination of BRs in fifteen plant-derived foodstuffs. The present work offers a valuable tool for exploring BRs from the plant-derived foodstuffs and can provide useful information for developing functional foods.
Collapse
Affiliation(s)
- Shenghuai Hou
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xin Song
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Lili Li
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Rongyu Wang
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xiao Wang
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Wenhua Ji
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| |
Collapse
|
18
|
Wang M, Han Y, Qiao F, Yan H. Improved Solid-Phase Extraction for Simple, Sensitive, and Efficient Determination of Trace Plant Growth Regulators in Cherry Tomatoes by High-Performance Liquid Chromatography. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8447-8454. [PMID: 32659084 DOI: 10.1021/acs.jafc.0c02636] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The overuse of plant growth regulators (PGRs) in agricultural products has gradually increased in recent years, resulting in hazardous effects on food safety and human health. For the first time, a sensitive, accurate, and low-cost analytical method involving improved solid-phase extraction coupled with high-performance liquid chromatography was developed to determine trace PGRs in cherry tomatoes. Thereafter, the extraction mechanism and conditions were elucidated. Under optimized conditions, good linearity (0.04-400 ng g-1; r ≥ 0.9996) and lower limits of detection (0.005-0.006 ng g-1) were observed. The recoveries were 81.4-90.1%, with relative standard deviations of ≤6.7% (three levels). Finally, the developed method was successfully used to detect trace PGRs in cherry tomatoes. The results illustrated that this sensitive method shows great potential for application to monitor trace PGRs in agricultural products and, thus, provide technical support for food safety and public health.
Collapse
Affiliation(s)
- Mingwei Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, People's Republic of China
| | - Yehong Han
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, People's Republic of China
| | - Fengxia Qiao
- Department of Biochemistry, Baoding University, Baoding, Hebei 071002, People's Republic of China
| | - Hongyuan Yan
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, People's Republic of China
- Key Laboratory of Public Health Safety of Hebei Province, College of Public Health, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, People's Republic of China
| |
Collapse
|
19
|
Lu Y, Li P, Yang C, Han Y, Yan H. One pot green synthesis of m-aminophenol-urea-glyoxal resin as pipette tip solid-phase extraction adsorbent for simultaneous determination of four plant hormones in watermelon juice. J Chromatogr A 2020; 1623:461214. [PMID: 32505267 DOI: 10.1016/j.chroma.2020.461214] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 12/24/2022]
Abstract
Plant hormones (PHs) are a type of pesticide that can potentially affect human health. Therefore, their quantitative detection is particularly important. In this study, a green and economic method for the simultaneous extraction and determination of four PHs, namely thidiazuron, forchlorfenuron, 1-naphthylacetic acid, and 2-naphthoxyacetic acid, in watermelon juice was developed by using m-aminophenol-urea-glyoxal resin as the adsorbent for pipette tip solid phase extraction (PT-SPE) coupled with liquid chromatography. The resin was synthesized via a simple (one pot hydrothermal synthesis) and green (ethanol as the solvent and glyoxal as crosslinking agent) process. The synthesized resin possesses multiple functional groups (hydroxyl, amino, and imino, among others), high adsorption capacity, larger specific surface area than the urea-glyoxal resin and m-aminophenol-glyoxal resin, and can be regenerated easily. The PT-SPE device is simple, cheap, and easy to obtain, and the adsorbent dosage is only 5.0 mg. The proposed method has a wide linear detection range, high recovery, good precision, and high sensitivity, and satisfies the measurement requirements for detecting trace levels of PHs in fruits and vegetables.
Collapse
Affiliation(s)
- Yanke Lu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Public Health, Hebei University, Baoding 071002, China
| | - Pengfei Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Public Health, Hebei University, Baoding 071002, China
| | - Chunliu Yang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Public Health, Hebei University, Baoding 071002, China.
| | - Yehong Han
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of pharmacy, Hebei University, Baoding 071002, China
| | - Hongyuan Yan
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Public Health, Hebei University, Baoding 071002, China; Key Laboratory of Analytical Science and Technology of Hebei Province, College of pharmacy, Hebei University, Baoding 071002, China.
| |
Collapse
|
20
|
Li P, Lu Y, Cao J, Li M, Yang C, Yan H. Imidazolium ionic-liquid-modified phenolic resin for solid-phase extraction of thidiazuron and forchlorfenuron from cucumbers. J Chromatogr A 2020; 1623:461192. [DOI: 10.1016/j.chroma.2020.461192] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022]
|
21
|
Qin P, Zhu W, Han L, Zhang X, Zhao B, Zhang X, Lu M. Monodispersed mesoporous SiO 2@metal-organic framework (MSN@MIL-101(Fe)) composites as sorbent for extraction and preconcentration of phytohormones prior to HPLC-DAD analysis. Mikrochim Acta 2020; 187:367. [PMID: 32494885 DOI: 10.1007/s00604-020-04326-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022]
Abstract
The monodispersed mesoporous SiO2@metal-organic framework (MSN@MIL-101(Fe)) composites were prepared by grafting MSN-NH2 onto MIL-101(Fe) particles with a solvothermal method. The adsorption ability of the composites was greatly improved compared to that of pristine MSNs or MIL-101(Fe) for phytohormones (Phys). The MSN@MIL-101(Fe) composites were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, energy dispersive spectrometer, and mapping analysis. Using MSN@MIL-101(Fe) composites as sorbent, a dispersive solid-phase extraction procedure (dSPE) was developed to extract three endogenous Phys (abscisic acid (ABA), indole-3-aceticacid (IAA), and indole-3-butyric acid (IBA)) and two exogenous Phys (1-naphthylacetic acid (1-NAA) and 2-naphthylacetic acid (2-NAA)) prior to HPLC-DAD analysis. The experimental parameters including sample volume, sorbent amount, adsorption time, adsorption pH, desorption time, and desorption solvent on extraction efficiency were optimized and evaluated. Under optimized conditions, the working range of 0.08 to 0.45 ng mL-1 with enrichment factors from 144 to 207 were achieved. The linear range is 0.75-200 ng mL-1 for IAA, 0.20-200 ng mL-1 for ABA, and 1.0-200 ng mL-1 for IBA, 1-NAA, and 2-NAA. With MSN@MIL-101(Fe) as sorbent for extraction of Phys and determination by HPLC-DAD, two endogenous Phys (IAA and ABA) were detected from mung bean sprouts which were made in a laboratory, and the results were further confirmed by high-resolution mass spectrometry. The composites can be applied to extract other small molecules, which have similar chemical structures with Phys in biological, environmental, and food samples. Graphical abstract Schematic presentation of a dispersive solid-phase extraction using monodispersed mesoporous SiO2@metal-organic framework composites (MSNs@MIL-101(Fe)) as the sorbent for extraction, clean-up, and preconcentration of phytohormones in mung bean sprouts prior to HPLC-DAD analysis.
Collapse
Affiliation(s)
- Peige Qin
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Wenli Zhu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Lizhen Han
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Xiaowan Zhang
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Bing Zhao
- Center for Multi-Omics Research, State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, Henan University, Kaifeng, 475004, Henan, China
| | - Xuebin Zhang
- Center for Multi-Omics Research, State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, Henan University, Kaifeng, 475004, Henan, China
| | - Minghua Lu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China.
| |
Collapse
|