1
|
Luo X, Ren G, Yang Q, An Y, Zhang J, Shirshin EA, Xiong S, Hu Y. Investigation of the protective mechanisms of liquid nitrogen spray freezing and TGase cross-linking on the structural characteristics of surimi gels during frozen storage. Food Chem 2025; 484:144343. [PMID: 40267675 DOI: 10.1016/j.foodchem.2025.144343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/30/2025] [Accepted: 04/13/2025] [Indexed: 04/25/2025]
Abstract
This study explored the mechanism of liquid nitrogen spray freezing and transglutaminase cross-linking in maintaining surimi gels' structure during storage. Results revealed that structure changes were, on the one hand, related to the growth and recrystallization of ice crystals during storage. Low cross-linking gels with air freezing exhibited minimum value after 20 days of storage, with hardness decreasing by 38.02 %, while -80 °C liquid nitrogen spray freezing combined with 62.99 % cross-linked effectively preserved structure by maintaining uniform ice crystal distribution and preventing microstructural fractures, limiting the hardness decrease to 18.32 %. On the other hand, structure changes were closely associated with protein variations. There were 766 differential proteins identified in the CKb vs. CKa comparison. The enhanced texture retention of 62.99 % cross-linked during storage, in contrast to low cross-linked gel, was probably associated with higher concentrations of structural proteins like A0A3N0XRS8 and A0A3N0YCS0 as well as calcium-related proteins like A0A3N0XCW2 and A0A3N0Y0G9.
Collapse
Affiliation(s)
- Xiaoying Luo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Guoyan Ren
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Qin Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yueqi An
- College of Health Science and Engineering, Hubei University, Wuhan, Hubei 430062, China
| | - Juntao Zhang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Evgeny A Shirshin
- Department of Physics, M. V. Lomonosov Moscow State University, Leninskie gory 1/2, 119991 Moscow, Russia
| | - Shanbai Xiong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yang Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
2
|
Jiang X, He Y, Li X, Huang Y, Liu Y, Wang F. Triple gel enhancement, antioxidant and cryoprotective effects of the enzyme-assisted extracted surimi by-product proteins on unwashed silver carp surimi. Int J Biol Macromol 2025; 309:143167. [PMID: 40239785 DOI: 10.1016/j.ijbiomac.2025.143167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/05/2025] [Accepted: 04/13/2025] [Indexed: 04/18/2025]
Abstract
The limited gel-forming ability and poor storage stability of unwashed surimi hinder its large-scale industrial adoption, requiring targeted solutions. This study aimed to investigate the gel enhancement, antioxidant and cryoprotective effects of enzyme-assisted extracted surimi by-product proteins (EAE-SBPs) on unwashed surimi. The EAE-SBPs were characterized and then incorporated into surimi system to evaluate their influences on the quality of freeze-thaw (FT) treated raw surimi or surimi gel. The results revealed that EAE-SBPs exhibited triple cryoprotective activity (54.90 % yeast cell viability), antioxidant capacity (58.72 % DPPH radical scavenging rate), and gel-strengthening capability. Compared to controls, the raw surimi containing EAE-SBPs demonstrated significantly retarded reduction in protein Ca2+-ATPase activities, and mitigated increase in TBARS levels and protein carbonyl contents during FT process (p < 0.05). After 6 FT cycles, a significantly higher (p < 0.05) gel strength, water holding capacity, and structural integrity of gel network, as well as a more restricted water migration and ice crystal growth, were observed in the EAE-SBPs-added surimi gels than those in controls. These findings offer a knowledge on severing EAE-SBPs as a concurrent cryoprotectant, antioxidant and gel enhancer in unwashed surimi processing, ultimately contributing to the production of unwashed surimi with enhanced quality.
Collapse
Affiliation(s)
- Xiangyao Jiang
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, School of food science and bioengineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Yuxi He
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, School of food science and bioengineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Xianghong Li
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, School of food science and bioengineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Yiqun Huang
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, School of food science and bioengineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Yongle Liu
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, School of food science and bioengineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Faxiang Wang
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, School of food science and bioengineering, Changsha University of Science and Technology, Changsha 410114, China.
| |
Collapse
|
3
|
Zhu S, Zhang C, Liu Y, Jiang D, Zhao Q, Mao X, Hu X, Jiang B. Effect of protein oxidation on the quality of abalone ( Haliotis discus hannai) during frozen storage under different packaging conditions. Food Chem X 2025; 27:102357. [PMID: 40170690 PMCID: PMC11960662 DOI: 10.1016/j.fochx.2025.102357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 04/03/2025] Open
Abstract
This study investigated the effects of protein oxidation under vacuum packaging, ice-coating, air-permeable polyvinyl chloride and non-packaging on sensory quality of abalone during 24 weeks at -20 °C. During storage, carbonyl content of protein increased (1.64 to 3.12-4.13 nmol/mg), sulfhydryl content decreased (20.48-29.94 %), surface hydrophobicity increased (19.50-40.24 %) and Ca2+-ATPase activity decreased (21.13-54.93 %). Protein secondary structures was converted into random coils, UV absorption of chromogenic groups reduced indicated tertiary structure and functional degradation. Compared to others, vacuum packaging decreased carbonyl content (3.41-24.46 %) and slowed down the oxidation process among 9 ∼ 19w, while ice-coating increased L* value (4.12-12.75 %) and maintained freshness among 8 ∼ 19w. The L* value (r = -0.89) and centrifugal loss (r = 0.95) were significantly correlated with carbonyl content, and hardness (r = -0.70) was significantly correlated with surface hydrophobicity (p < 0.01). Thus, 0 ∼ 8w is the effective period in protein degradation regulation considering oxidation indicators and quality control by WHC trend.
Collapse
Affiliation(s)
- Siyuan Zhu
- College of Food Science and Engineering, Dalian Ocean University, 52 Heishi Jiao Street, Dalian 116023, China
| | - Chen Zhang
- College of Food Science and Engineering, Dalian Ocean University, 52 Heishi Jiao Street, Dalian 116023, China
| | - Yijun Liu
- College of Food Science and Engineering, Dalian Ocean University, 52 Heishi Jiao Street, Dalian 116023, China
| | - Dan Jiang
- College of Food Science and Engineering, Dalian Ocean University, 52 Heishi Jiao Street, Dalian 116023, China
| | - Qiancheng Zhao
- College of Food Science and Engineering, Dalian Ocean University, 52 Heishi Jiao Street, Dalian 116023, China
| | - Xiqin Mao
- Dalian Center for Certification and Food and Drug Control, No.888A Huanghe Road, Shahekou District, Dalian 116021, China
| | - Xia Hu
- Dalian Product Quality Inspection and Testing Institute Co., Ltd., No.68-2 Wansui Road Shahekou District, Dalian 116021, China
| | - Bohai Jiang
- Dalian Center for Certification and Food and Drug Control, No.888A Huanghe Road, Shahekou District, Dalian 116021, China
| |
Collapse
|
4
|
de Oliveira Meira ACF, de Morais LC, Andrade BF, Setter C, Veríssimo LAA, de Carvalho CWP, Ramos EM, de Resende JV. Application of cellulose nanofibers as cryoprotective in frozen storage of chicken surimi-like material. Int J Biol Macromol 2025; 292:139160. [PMID: 39732224 DOI: 10.1016/j.ijbiomac.2024.139160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
The application of cellulose nanofibers (CNF) as cryoprotectants in frozen foods has rarely been explored. In this study, the cryoprotective effect of CNF (2, 4 and 6 % w/w) on mechanically separated chicken meat (MSCM) surimi-like material was investigated, during frozen storage (5 and 60 days) under temperature fluctuation. Surimi-like without cryopreservation agents was more susceptible to protein oxidation due to ice recrystallization. The addition of 2 % w/w CNF attenuated the oxidation of myofibrillar proteins to the same extent as adding commercial cryoprotectants (sucrose, sorbitol and sodium tripolyphosphate). The surimi-like material containing 2 % CNF exhibited a high concentration of salt-soluble proteins (9.6 ± 1.1 mg/g), lower protein carbonylation (1.9 ± 0.3 nmol/mg) and few changes in the secondary structure of the myofibrillar proteins. In addition, this treatment minimized the percentage of water loss by thawing and cooking (30.2 ± 2.2 %), generating gels with a high water holding capacity (86.8 ± 1.6 %) and microstructure that was more homogeneous and less porous compared to the control (without cryoprotectants) and other treatments containing CNF. The cryoprotective efficacy of CNF was evident in surimi-like material, being an alternative compound to commercial cryoprotectants.
Collapse
Affiliation(s)
| | | | - Bruna Fernandes Andrade
- Federal University of Lavras, Department of Food Science, Lavras, Minas Gerais 37200-900, Brazil
| | - Carine Setter
- Federal University of Lavras, Department of Engineering, Lavras, Minas Gerais 37200-900, Brazil
| | | | | | - Eduardo Mendes Ramos
- Federal University of Lavras, Department of Food Science, Lavras, Minas Gerais 37200-900, Brazil
| | - Jaime Vilela de Resende
- Federal University of Lavras, Department of Food Science, Lavras, Minas Gerais 37200-900, Brazil.
| |
Collapse
|
5
|
Hemmati S. Expanding the cryoprotectant toolbox in biomedicine by multifunctional antifreeze peptides. Biotechnol Adv 2025:108545. [PMID: 40023203 DOI: 10.1016/j.biotechadv.2025.108545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/07/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
The global cryopreservation market size rises exponentially due to increased demand for cell therapy-based products, assisted reproductive technology, and organ transplantation. Cryoprotectants (CPAs) are required to reduce ice-related damage, osmotic cell injury, and protein denaturation. Antioxidants are needed to hamper membrane lipid peroxidation under freezing stress, and antibiotics are added to the cryo-solutions to prevent contamination. The vitrification process for sized organs requires a high concentration of CPA, which is hardly achievable using conventional penetrating toxic CPAs like DMSO. Antifreeze peptides (AFpeps) are biocompatible CPAs leveraging inspiration from nature, such as freeze-tolerant and freeze-avoidant organisms, to circumvent logistic limitations in cryogenic conditions. This study aims to introduce the advances of AFpeps with cell-penetrating, antioxidant, and antimicrobial characteristics. We herein revisit the placement of AFpeps in the biobanking of cancer cells, immune cells, stem cells, blood cells, germ cells (sperms and oocytes), and probiotics. Implementing low-immunogenic AFpeps for allograft cryopreservation minimizes HLA mismatching risk after organ transplantation. Applying AFpeps to formulate bioinks with optimal rheology in extrusion-based 3D cryobiopriners expedites the bench-to-beside transition of bioprinted scaffolds. This study advocates that the fine-tuned synthetic or insect-derived AFpeps, forming round blunt-shape crystals, are biomedically broad-spectrum, and cell-permeable AFpeps from marine and plant sources, which result in sharp ice crystals, are appropriate for cryosurgery. Perspectives of the available room for developing peptide mimetics in favor of higher activity and stability and peptide-functionalized nanoparticles for enhanced delivery are delineated. Finally, antitumor immune activation by cryoimmunotherapy as an autologous in-vivo tumor lysate vaccine has been illustrated.
Collapse
Affiliation(s)
- Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
6
|
Xu A, Zhang S, Huan C, Gao S, Wang H, Gao Z, Wu R, Wang Z, Meng X. Storage Quality Improvement of Duck Breast Meat: Role of Ultrasound-Assisted Slightly Acidic Electrolyzed Water. Foods 2025; 14:534. [PMID: 39942127 PMCID: PMC11817808 DOI: 10.3390/foods14030534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
This study evaluated the effects of ultrasound-assisted slightly acidic electrolyzed water (SAEW) treatment on duck breast meat storage quality. The impact of different treatments-ultrasound combined with SAEW, SAEW alone, ultrasound combined with water, and water-alone treatment-on the freshness, texture, protein oxidation, and microbiological diversity of the meat was assessed under vacuum packaging at 4 °C. The results demonstrated that the ultrasound-SAEW combination significantly slowed pH decline, inhibited total volatile basic nitrogen (TVB-N) formation, and preserved the redness (a*) and texture of duck breast meat. Additionally, carbonyl and total sulfhydryl measurements indicated that the combined treatment delayed protein oxidation. 16S rDNA analysis showed that combined treatment reduced the microbial abundance, particularly Pseudomonas and Candida. After 9 days of storage, the total viable count (TVC) of the treated duck breast meat remained within the GB 16869-2005 microbial contamination threshold for fresh meat (5.56 log10 CFU/g). These findings highlight the effectiveness of ultrasound-assisted SAEW in extending the shelf life and maintaining the quality of duck breast meat.
Collapse
Affiliation(s)
- Anqi Xu
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, College of Tourism and Culinary Science, Yangzhou University, Yangzhou 225127, China; (A.X.); (S.Z.); (C.H.); (S.G.); (H.W.)
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; (R.W.); (Z.G.)
- Laboratory of Processing Technology Integration for Chinese-Style Meat and Vegetable Dishes, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- School of Food and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Siyi Zhang
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, College of Tourism and Culinary Science, Yangzhou University, Yangzhou 225127, China; (A.X.); (S.Z.); (C.H.); (S.G.); (H.W.)
| | - Chuanming Huan
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, College of Tourism and Culinary Science, Yangzhou University, Yangzhou 225127, China; (A.X.); (S.Z.); (C.H.); (S.G.); (H.W.)
| | - Sumin Gao
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, College of Tourism and Culinary Science, Yangzhou University, Yangzhou 225127, China; (A.X.); (S.Z.); (C.H.); (S.G.); (H.W.)
| | - Hengpeng Wang
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, College of Tourism and Culinary Science, Yangzhou University, Yangzhou 225127, China; (A.X.); (S.Z.); (C.H.); (S.G.); (H.W.)
| | - Ziwu Gao
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; (R.W.); (Z.G.)
- Laboratory of Processing Technology Integration for Chinese-Style Meat and Vegetable Dishes, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruiyun Wu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; (R.W.); (Z.G.)
- Laboratory of Processing Technology Integration for Chinese-Style Meat and Vegetable Dishes, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhenyu Wang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; (R.W.); (Z.G.)
- Laboratory of Processing Technology Integration for Chinese-Style Meat and Vegetable Dishes, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiangren Meng
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, College of Tourism and Culinary Science, Yangzhou University, Yangzhou 225127, China; (A.X.); (S.Z.); (C.H.); (S.G.); (H.W.)
| |
Collapse
|
7
|
Jiang W, Yang F, Cai D, Du J, Wu M, Cai X, Chen X, Wang S. Peptidomics & Molecular Simulation-Based Specific Screening of Antifreeze Peptides from Evynnis japonica Scale and the Action Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2634-2644. [PMID: 39804014 DOI: 10.1021/acs.jafc.4c09419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
This study aims to explore the cryoprotective mechanisms of food-derived hydrolyzed peptides and develop novel cryoprotectants to enhance the quality of frozen foods. Evynnis japonica scale antifreeze peptides (Ej-AFP) were prepared using enzymatic hydrolysis, which had a 4-fold increase in protection efficiency for surimi compared to traditional cryoprotectants. Furthermore, Ej-AFP was able to control 63.60% of the ice crystals to sizes below 600 μm2. Three antifreeze peptide sequences were purified by using ice-affinity techniques and peptidomics. These sequences demonstrated a 21.75% enhancement in antifreeze activity and an increase of 1 °C in thermal hysteresis activity compared to Ej-AFP. Molecular simulation-elucidated ice-binding surface interacts with ice crystals through hydrogen bonds, while the nonice-binding surface disrupts the orderly arrangement of water molecules. This results in a tightly structured hydration layer around the peptide, increasing the curvature of the ice crystal surface and thereby demonstrating significant antifreeze activity in controlling ice crystal growth.
Collapse
Affiliation(s)
- Wenting Jiang
- College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P.R.China
| | - Fujia Yang
- College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P.R.China
- Marine and Agricultural Biotechnology Laboratory, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, P.R.China
| | - Dongna Cai
- College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P.R.China
| | - Jia Du
- College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P.R.China
| | - Manman Wu
- College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P.R.China
| | - Xixi Cai
- College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P.R.China
| | - Xu Chen
- College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P.R.China
| | - Shaoyun Wang
- College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P.R.China
| |
Collapse
|
8
|
Lin Y, Zhang L, Tang W, Ren J, Mo Y, Guo X, Lin L, Ding Y. Synergistic cryoprotective effects of mannan oligosaccharides and curdlan on the grass carp surimi. Food Chem X 2025; 25:102250. [PMID: 39974524 PMCID: PMC11838123 DOI: 10.1016/j.fochx.2025.102250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/21/2025] Open
Abstract
The cryoprotective effects of mannan oligosaccharides (MOS) and curdlan (CU) on the quality of grass carp surimi after freeze-thaw cycles (FTCs) were assessed using the response surface methodology. The optimal contents of MOS (6.79 %, w/w) and CU (0.45 %, w/w) produced minimum thawing losses and the highest gel strength of surimi after five times FTCs. MOS, CU, and their mixture demonstrated cryoprotective effects on grass carp surimi. Compared to MOS or CU alone, MOS-CU displayed synergistic cryoprotective effects, as evidenced by the better prevention of thawing losses of surimi, the superior retardation of the aggregation and denaturation of MP, the amelioration of the gel strength and WHC of surimi gel. Moreover, the MOS-CU mixture demonstrated cryoprotective effects equivalent to those of commercial cryoprotectant on grass carp surimi from zero to five times FTCs and even outperformed CC after seven times FTCs.
Collapse
Affiliation(s)
- Yanxin Lin
- College of Food Science and Engineering, National Engineering Research Center for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lingzhi Zhang
- College of Food Science and Engineering, National Engineering Research Center for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha 410004, China
| | - Wanting Tang
- College of Food Science and Engineering, National Engineering Research Center for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jing Ren
- College of Food Science and Engineering, National Engineering Research Center for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yijie Mo
- College of Food Science and Engineering, National Engineering Research Center for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiao Guo
- College of Food Science and Engineering, National Engineering Research Center for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lizhong Lin
- College of Food Science and Engineering, National Engineering Research Center for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yuqin Ding
- College of Food Science and Engineering, National Engineering Research Center for Rice and By-product Deep Processing, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
9
|
Yan S, Ding Y, Du Z, Xu Y, Yu D, Wang B, Xia W. Oxidative regulation and cytoprotective effects of γ-polyglutamic acid on surimi sol subjected to freeze-thaw process. Food Chem 2024; 461:140824. [PMID: 39146683 DOI: 10.1016/j.foodchem.2024.140824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/22/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
Frozen surimi sol incline to protein oxidation, but the quality control strategies based on oxidation remain limited. Hence, the antioxidant and cryoprotective effects of γ-polyglutamic acid (γ-PGA) on freeze-thawed salt-dissolved myofibrillar protein (MP) sol were investigated. Results showed that γ-PGA could effectively regulate protein oxidation of MP sol during freeze-thawing with lower carbonyl contents and less oxidative cross-linking. Meanwhile, γ-PGA primely maintained sol protein structures, showing reduction of 15.28% of salt soluble protein contents at γ-PGA addition of 0.04% under unoxidized condition. Additionally, compared to the control group without oxidation treatment, cooking loss of heat-induced gel with 0.04% γ-PGA decreased by 47.19%, while gel strength obviously increased by 57.22% respectively. Overall, moderate γ-PGA addition (0.04%) could inhibit protein oxidation of sol, further improving frozen stability of sol through hydrogen bonds and hydrophobic interaction, but excessive γ-PGA was adverse to sol quality due to severe cross-linking between γ-PGA and MP.
Collapse
Affiliation(s)
- Sunjie Yan
- State Key Laboratory of Food Science and Resources, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China
| | - Yuxin Ding
- State Key Laboratory of Food Science and Resources, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China
| | - Zhiyin Du
- State Key Laboratory of Food Science and Resources, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China
| | - Yanshun Xu
- State Key Laboratory of Food Science and Resources, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China.
| | - Dawei Yu
- State Key Laboratory of Food Science and Resources, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China
| | - Bin Wang
- State Key Laboratory of Food Science and Resources, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Resources, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu 214122, China
| |
Collapse
|
10
|
Guo J, Zhang M, Law CL, Luo Z. 3D printing technology for prepared dishes: printing characteristics, applications, challenges and prospects. Crit Rev Food Sci Nutr 2024; 64:11437-11453. [PMID: 37480290 DOI: 10.1080/10408398.2023.2238826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Prepared dishes are popular convenience foods that meet the needs of consumers who pursue delicious tastes while saving time and effort. As a new technology, food 3D printing (also known as food additive manufacturing technology) has great advantage in the production of personalized food. Applying food 3D printing technology in the production of prepared dishes provides the solution to microbial contamination, poor nutritional quality and product standardization. This review summarizes the problems faced by the prepared dishes industry in traditional food processing, and introduces the characteristics of prepared dishes and 3D printing technology. Food additives are suitable for 3D prepared dishes and novel 3D printing technologies are also included in this review. In addition, the challenges and possible solutions of the application of food 3D printing technology in the field of prepared dishes are summarized and explored. Food additives with advantages in heat stability, low temperature protection and bacteriostasis help to accelerate the application of 3D printing in prepared dishes industry. The combination of 3D printing technology with heat-assisted sources (microwave, laser) and non-heat-assisted sources (electrolysis, ultrasound) provides the possibility for the development of customized prepared dishes in the future, and also promotes more 3D food printing technologies for commercial use. It is noteworthy that these technologies are still at research stage, and there are challenges for the formulation design, the stability of printed ink storage, as well as implementation of customized nutrition for the elderly and children.
Collapse
Affiliation(s)
- Jia Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, China
| | - Chung Lim Law
- Department of Chemical and Environmental Engineering, University of Nottingham, Semenyih, Malaysia
| | - Zhenjiang Luo
- R&D center, Haitong Ninghai Foods Co., Ltd, Ninghai, China
| |
Collapse
|
11
|
Xiao N, Tian Z, Zhang Q, Xu H, Yin Y, Liu S, Shi W. Cryoprotective effect of epigallocatechin gallate replacing sucrose on Hypophythalmichthys molitrix surimi during frozen storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6649-6656. [PMID: 38529727 DOI: 10.1002/jsfa.13489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND The present study aimed to investigate the cryoprotective effect of epigallocatechin gallate (EGCG) replacing sucrose on surimi during frozen storage. Substitution or partial substitution of 0.1% EGCG for sucrose (1.5%) was added to surimi, and the surimi samples without and with commercial cryoprotectants (4% sucrose and 4% sorbitol) were used as the control group. RESULTS The results obtained suggest that, with the increase in frozen storage time, the structural performance of surimi protein gradually weakened (e.g. the decrease in the surface hydrophobicity, the increase in the total sulfhydryl and solubility, and the protein myosin heavy chain bands became shallow) and surimi gel quality gradually deteriorated (e.g. the decrease in water-holding capacity, gel strength and all texture profile attributes). However, compared with the other three group surimi samples during the frozen period, the surimi proteins with partial replacement of sucrose by EGCG had a higher total sulfhydryl group content and solubility of proteins, as well as lower surface hydrophobicity of protein, suggesting that the addition of EGCG as a partial substitute for sucrose can enhance the antifreeze ability of surimi. Meanwhile, the surimi gel with the partial replacement of sucrose by EGCG had a higher water retention capacity, gel strength and texture attributes (e.g. hardness, springiness, cohesiveness, chewiness, and resilience), indicating that the addition of EGCG as a partial substitute for sucrose can inhibit the deterioration of surimi gel quality. CONCLUSION Overall, EGCG partially replacing sucrose can play an alternative cryoprotectant with a lower sweetness to prevent the quality of surimi from deteriorating. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Naiyong Xiao
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang, China
| | - Zhihang Tian
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai, China
| | - Qiang Zhang
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai, China
| | - Huiya Xu
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai, China
| | - Yantao Yin
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Wenzheng Shi
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
12
|
Zhu X, He D, Chen Y, Duan X, Li Y, Yuan Y, Zhan F, Li B, Teng Y. Adenosine monophosphate boosts the cryoprotection of ultrasound-assisted freezing to frozen surimi: Insights into protein structures and gelling behaviors. Food Chem 2024; 450:139343. [PMID: 38631212 DOI: 10.1016/j.foodchem.2024.139343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/22/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
Ultrasound-assisted freezing (UAF) is a clean technique for meat cryoprotections; however, its effectiveness is still limited compared to conventional cryoprotectants, e.g., sugars, polyols, especially at high dosages. To resolve this problem, a synergistic cryoprotection strategy was developed in this study. Adenosine monophosphate (AMP), an adenosine-type food additive, was introduced into frozen surimi at a considerably reduced content (0.08%), yet substantially enhanced the efficiency of UAF to comparable levels of commercial cryoprotectant (4% sucrose with 4% sorbitol). Specifically, UAF/AMP treatment retarded denaturation of surimi myofibrillar protein (MP) during 60-day frozen storage, as evidenced by its increased solubility, Ca2+-ATPase activity, sulfhydryl content, declined surface hydrophobicity, particle size, and stabilized protein conformation. Gels of UAF/AMP-treated surimi also demonstrated more stabilized microstructures, uniform water distributions, enhanced mechanical properties and water-holding capacities. This study provided a feasible approach to boost the cryoprotective performance of UAF, thus expanding its potential applications in frozen food industry.
Collapse
Affiliation(s)
- Xiangwei Zhu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China
| | - Diheng He
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China
| | - Yingying Chen
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China
| | - Xinyu Duan
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, United States
| | - Yue Yuan
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, United States
| | - Fuchao Zhan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongxin Teng
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China.; School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
13
|
Zhang S, Song Z, Gu J, Guo X, Wan Y, Tian H, Wang X. Effect of Soy Protein Isolate on the Quality Characteristics of Silver Carp Surimi Gel during Cold Storage. Foods 2024; 13:2370. [PMID: 39123561 PMCID: PMC11311264 DOI: 10.3390/foods13152370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
This study mainly investigated the effect of soy protein isolate (SPI) on the gel quality of silver carp surimi under different storage conditions (storage temperatures of 4 °C, -20 °C, and -40 °C, and storage times of 0, 15, and 30 d). The results found that 10% SPI could inhibit the growth of ice crystals, improve the water distribution, enhance the water holding capacity of the gels, and strengthen the interaction between surimi and proteins. Compared to the control group, the composite silver carp surimi gel exhibited superior quality in texture, chemical interactions, and rheological properties during cold storage. Fourier transform infrared spectroscopy revealed an increasing trend in α-helix and β-turn content and a decreasing trend of β-sheet and random coil content. As storage time increased, the gel deterioration during cold storage inhibitory effect of the treatment group was superior to the control group, with the best results observed at -40 °C storage conditions. Overall, SPI was a good choice for maintaining the quality of silver carp surimi gel during cold storage, which could significantly reduce the changes in the textural properties during cold storage with improved water holding capacity.
Collapse
Affiliation(s)
- Songxing Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.Z.); (Z.S.); (J.G.)
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China
| | - Zeyu Song
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.Z.); (Z.S.); (J.G.)
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China
| | - Junhao Gu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.Z.); (Z.S.); (J.G.)
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China
| | - Xueqian Guo
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 201306, China;
| | - Yangling Wan
- Wilmar Shanghai Biotechnology Research and Development Center Co., Ltd., Shanghai 200120, China;
| | - Huaixiang Tian
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xichang Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (S.Z.); (Z.S.); (J.G.)
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China
| |
Collapse
|
14
|
Sun Q, Kong B, Zheng O, Liu S, Dong X. Tracking protein aggregation behaviour and emulsifying properties induced by structural alterations in common carp (Cyprinus carpio) myofibrillar protein during long-term frozen storage. Int J Biol Macromol 2024; 264:130171. [PMID: 38360237 DOI: 10.1016/j.ijbiomac.2024.130171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
The effect of ultrasound-assisted immersion freezing (UIF), air freezing (AF), and immersion freezing (IF) on the protein structure, aggregation, and emulsifying properties of common carp (Cyprinus carpio) myofibrillar protein during frozen storage were evaluated in the present study. The result showed that, compared with AF and IF samples, UIF sample had higher reactive/total sulfhydryl, protein solubility, and lower protein turbidity (P < 0.05), indicating that UIF was beneficial to inhibit protein oxidation and aggregation induced by frozen storage. UIF inhibited the alteration of secondary structure and tertiary structure during frozen storage. Meanwhile, UIF sample had higher emulsifying activity index, and smaller emulsion droplet diameter than AF and IF samples (P < 0.05), suggesting that UIF was beneficial for maintaining the emulsifying properties of protein during storage. In general, UIF is a potential and effective method to suppress the decrease in protein emulsifying properties during long-term frozen storage.
Collapse
Affiliation(s)
- Qinxiu Sun
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Ouyang Zheng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Xiuping Dong
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
15
|
Meng Z, Liu Y, Xi Y, Dong Y, Cai C, Zhu Y, Li Q. The Protection of Quinoa Protein on the Quality of Pork Patties during Freeze-Thaw Cycles: Physicochemical Properties, Sensory Quality and Protein Oxidative. Foods 2024; 13:522. [PMID: 38397499 PMCID: PMC10887504 DOI: 10.3390/foods13040522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
The present study investigated the impact of quinoa protein (QP) on the physicochemical properties, sensory quality, and oxidative stability of myofibrillar protein (MP) in pork patties during five freeze-thaw (F-T) cycles. It was observed that repeated F-T cycles resulted in a deterioration of pork patty quality; however, the incorporation of QP effectively mitigated these changes. Throughout the F-T cycles, the sensory quality of the QP-treated group consistently surpassed that of the control group. After five F-T cycles, the thiobarbituric acid reactive substance (TBARS) content in the control group was measured at 0.423 mg/kg, whereas it significantly decreased to 0.347 mg/kg in the QP-treated group (p < 0.05). Furthermore, QP inclusion led to a decrease in pH and an increase in water-holding capacity (WHC) within pork patties. Following five F-T cycles, Ca2+-ATPase activity exhibited a significant increase of 11.10% in the QP-treated group compared to controls (p < 0.05). Additionally, supplementation with QP resulted in elevated total sulfhydryl content and reduced carbonyl content, Schiff base content, and dityrosine content within myofibrillar proteins (MPs), indicating its inhibitory effect on MP oxidation. In particular, after five F-T cycles, total sulfhydryl content reached 58.66 nmol/mL for the QP-treated group significantly higher than that observed for controls at 43.65 nmol/mL (p < 0.05). While carbonyl content increased from 2.37 nmol/mL to 4.63 nmol/mL between the first and fifth F-T cycle for controls; it only rose from 2.15 nmol/mL to 3.47 nmol/mL in the QP-treated group. The endogenous fluorescence levels were significantly higher (p < 0.05) in the QP-treated group compared to controls. In conclusion, the addition of QP enhanced the quality of pork patties and effectively inhibited the oxidative denaturation of MP during F-T cycles.
Collapse
Affiliation(s)
- Zhiming Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (Z.M.); (Y.L.); (Y.X.); (Y.D.); (Q.L.)
| | - Ying Liu
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (Z.M.); (Y.L.); (Y.X.); (Y.D.); (Q.L.)
| | - Yueyang Xi
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (Z.M.); (Y.L.); (Y.X.); (Y.D.); (Q.L.)
| | - Yingying Dong
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (Z.M.); (Y.L.); (Y.X.); (Y.D.); (Q.L.)
| | - Chunbo Cai
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China;
| | - Yingchun Zhu
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (Z.M.); (Y.L.); (Y.X.); (Y.D.); (Q.L.)
| | - Qi Li
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (Z.M.); (Y.L.); (Y.X.); (Y.D.); (Q.L.)
| |
Collapse
|
16
|
Du Y, Lan J, Zhong R, Shi F, Yang Q, Liang P. Insight into the effect of large yellow croaker roe phospholipids on the physical properties of surimi gel and their interaction mechanism with myofibrillar protein. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1347-1356. [PMID: 37814156 DOI: 10.1002/jsfa.13029] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/23/2023] [Accepted: 10/10/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND The present study aimed to investigate the effects of large yellow croaker roe phospholipids (LYCRPLs) on the physical properties of surimi gels and to clarify their interaction mechanism with myofibrillar proteins (MPs) in terms of chemical forces and the spatial conformation. RESULTS LYCRPLs could improve the gel strength, textural properties, rheological properties and water-holding capacity of surimi gels. Moreover, the interaction mechanism between LYCRPLs with MPs was revealed through intermolecular forces, Fourier transform infrared spectroscopy and ultraviolet visible absorption spectroscopy. The findings demonstrated that LYCRPLs enhanced the surface hydrophobicity and particle size of MPs, facilitating expansion and cross-linking of MPs. CONCLUSION These results provide a theoretical basis for improving the characteristics of surimi gels and thus facilitate the application of LYCRPLs in the aquatic food industry. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yanyu Du
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministry Education, Engineering Research Center Fujian Taiwan Special Marine Food Processing & Nutrition, Fuzhou, China
| | - Jiaojiao Lan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministry Education, Engineering Research Center Fujian Taiwan Special Marine Food Processing & Nutrition, Fuzhou, China
| | - Rongbin Zhong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministry Education, Engineering Research Center Fujian Taiwan Special Marine Food Processing & Nutrition, Fuzhou, China
| | - Feifei Shi
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministry Education, Engineering Research Center Fujian Taiwan Special Marine Food Processing & Nutrition, Fuzhou, China
| | - Qian Yang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministry Education, Engineering Research Center Fujian Taiwan Special Marine Food Processing & Nutrition, Fuzhou, China
| | - Peng Liang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministry Education, Engineering Research Center Fujian Taiwan Special Marine Food Processing & Nutrition, Fuzhou, China
| |
Collapse
|
17
|
Xia X, Li J, Liang R, Li Y, Ma X, Yang Y, Lozano-Ojalvo D. Effects of unfolding treatment assisted glycation on the IgE/IgG binding capacity and antioxidant activity of ovomucoid. Food Funct 2024; 15:196-207. [PMID: 38047408 DOI: 10.1039/d3fo04035f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Ovomucoid is the immune-dominant allergen in the egg white of hens. Due to its structure based on nine disulfide bonds as well as its resistance to heat and enzymatic hydrolysis, the allergenicity of this food protein is difficult to decrease by technological processes. We sought to reduce its allergenicity through the Maillard reaction. The unfolding of ovomucoid with L-cysteine-mediated reduction was used to increase accessibility to conformational and linear epitopes by modifying the secondary and tertiary structures of the allergen. Glycation with different saccharides revealed the beneficial effect of maltose glycation on the IgG-binding capacity reduction. By determining the better glycation conditions of unfolded ovomucoid, we produced ovomucoid with reduced IgE binding capacity due to the glycation sites (K17, K112, K129, and K164) on epitopes. Moreover, after simulated infant and adult gastrointestinal digestion, the unfolded plus glycated ovomucoid showed higher ABTS˙+ scavenging activity, O2˙- scavenging activity, ˙OH scavenging activity, Fe2+ chelating activity, and a FRAP value; in particular, for ˙OH scavenging activity, there was a sharp increase of more than 100%.
Collapse
Affiliation(s)
- Xian Xia
- School of Public Health, Zunyi Medical University, Zunyi 563000, China.
| | - Jiangdong Li
- School of Public Health, Zunyi Medical University, Zunyi 563000, China.
| | - Rui Liang
- School of Public Health, Zunyi Medical University, Zunyi 563000, China.
| | - Yi Li
- School of Public Health, Zunyi Medical University, Zunyi 563000, China.
| | - Xiaojuan Ma
- School of Public Health, Zunyi Medical University, Zunyi 563000, China.
- Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi 563000, China
| | - Ying Yang
- Department of Dermatology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Daniel Lozano-Ojalvo
- Instituto de Investigaciónen Ciencias de la Alimentación (CIAL, CSIC), Madrid 28049, Spain
| |
Collapse
|
18
|
Nikoo M, Regenstein JM, Yasemi M. Protein Hydrolysates from Fishery Processing By-Products: Production, Characteristics, Food Applications, and Challenges. Foods 2023; 12:4470. [PMID: 38137273 PMCID: PMC10743304 DOI: 10.3390/foods12244470] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Fish processing by-products such as frames, trimmings, and viscera of commercial fish species are rich in proteins. Thus, they could potentially be an economical source of proteins that may be used to obtain bioactive peptides and functional protein hydrolysates for the food and nutraceutical industries. The structure, composition, and biological activities of peptides and hydrolysates depend on the freshness and the actual composition of the material. Peptides isolated from fishery by-products showed antioxidant activity. Changes in hydrolysis parameters changed the sequence and properties of the peptides and determined their physiological functions. The optimization of the value of such peptides and the production costs must be considered for each particular source of marine by-products and for their specific food applications. This review will discuss the functional properties of fishery by-products prepared using hydrolysis and their potential food applications. It also reviews the structure-activity relationships of the antioxidant activity of peptides as well as challenges to the use of fishery by-products for protein hydrolysate production.
Collapse
Affiliation(s)
- Mehdi Nikoo
- Department of Pathobiology and Quality Control, Artemia and Aquaculture Research Institute, Urmia University, Urmia 57179-44514, Iran
| | - Joe M. Regenstein
- Department of Food Science, Cornell University, Ithaca, NY 14853-7201, USA;
| | - Mehran Yasemi
- Department of Fisheries, Institute of Agricultural Education and Extension, Agricultural Research, Education, and Extension Organization (AREEO), Tehran 19858-13111, Iran;
| |
Collapse
|
19
|
Yin T, Park JW. Comprehensive review: by-products from surimi production and better utilization. Food Sci Biotechnol 2023; 32:1957-1980. [PMID: 37860730 PMCID: PMC10581993 DOI: 10.1007/s10068-023-01360-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/15/2023] [Accepted: 05/29/2023] [Indexed: 10/21/2023] Open
Abstract
Over 1 million MT of surimi is produced globally, which theoretically would generate approximate 2 million MT of solid by-products and more than 1 million MT of wash water. Utilization of the by-products has increasingly become interested based on their nutritional, economical, and environmental issues. Surimi by-products represent an important source of valuable compounds such as functional protein, collagen, gelatin, fish oil, peptides, minerals, and enzymes. Better utilization of the by-products would make the surimi industry sustainable and profitable. This review paper characterizes sources and composition of the solid by-products and wash water generated from the surimi production as well as factors related to extraction and processing techniques. In addition, the potential food applications are explored including specialty foods and snacks, flavor ingredients, bioactive ingredients, and functional ingredients. Moreover, an outlook summarizing the challenges and prospects on the utilization of surimi by-products is provided.
Collapse
Affiliation(s)
- Tao Yin
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei People’s Republic of China
- National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei Province 430070 People’s Republic of China
| | - Jae W. Park
- Oregon State University Seafood Research and Education Center, 2001 Marine Drive #253, Astoria, OR 97103 USA
| |
Collapse
|
20
|
Qian YF, Lin T, Xie J, Yang SP. Effect of modified atmosphere packaging with different gas mixtures on the texture and muscle proteins of Pacific white shrimp ( Litopenaeus vannamei) during cold storage. FOOD SCI TECHNOL INT 2023; 29:809-817. [PMID: 35996328 DOI: 10.1177/10820132221121170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, the effect of modified atmosphere packaging with different gas mixtures on texture and muscle properties of Pacific white shrimp (Litopenaeus vannamei) during refrigerated storage was studied via texture profile, water holding capacity (WHC), protein properties (Ca2+-ATPase, TCA-soluble peptides, myofibrillar/sarcoplasmic protein content), and microbial counts. The results showed that the antibacterial effect of Modified atmosphere packaging (MAP) was correlated with the increase of CO2 with the presence of low level of O2. Though MAP without O2 had a higher whiteness value but also had higher bacterial counts and total volatile basic nitrogen (TVB-N) values compared with other MAP-groups. In general, a gas composition of 80% CO2 + 5%O2 + 15% N2 treatment had lowest microbial counts and reduced TVB-N values by 22.85% in comparison with the control on day 10. However, MAP was found to have a complicated impact on muscle protein and texture of shrimp. 60% CO2 + 5% O2 + 35% N2 and 40% CO2 + 5% O2 + 55% N2 had an advantage in maintaining springiness and the content of myofibrillar/sarcoplasmic proteins. The correlation analysis showed that WHC had stronger relationship with springiness, resilience, myofibrillar protein content. Therefore, regarding the texture and protein properties, the concentration of CO2 in MAP for Pacific white shrimp should not be higher than 60%.
Collapse
Affiliation(s)
- Yun-Fang Qian
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Ting Lin
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| | - Sheng-Ping Yang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
21
|
Guan W, Liu T, Yan W, Cai L. The impact of ice slurry as a medium on oxidation status and flesh quality of shrimp (Litopenaeus vannamei) during refrigeration storage. J Food Sci 2023; 88:4918-4927. [PMID: 37905712 DOI: 10.1111/1750-3841.16817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/19/2023] [Accepted: 10/12/2023] [Indexed: 11/02/2023]
Abstract
Oxidation of lipid and protein is a major reason of flesh quality deterioration during storage. In this work, cold storage (CS) and flake ice (FI) storage, as traditional strategies for live shrimp (Litopenaeus vannamei) sedation and refrigerated storage, showed remarkable oxidation damage of lipid and protein in shrimp flesh during storage. In contrast, ice slurry (IS), with good heat exchange capacity and contactability, stunned shrimp in a sudden and thus relieved antemortem stress, which resulted in reducing the reactive oxygen species and reactive nitrogen species accumulation, and the oxidation damage risk in flesh. Additionally, IS, as a storage medium acted an oxygen barrier, further inhibited the oxidation of lipid and myofibrillar protein (MP), as revealed by the lower thiobarbituric acid reactive substances level, carbonyl (CO) derives content, total disulfide bond (S-S) content, and the higher total sulfhydryl (SH) content in shrimp flesh during storage, compared with CS and FI. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis electrophoretogram pattern of MP also suggested better preservation of myosin heavy chain, myosin light chain, actin, and tropomyosin in IS, whereas these proteins degraded in CS and FI. Consequently, IS prevented the formation of cross-linking caused by oxidation in MP, leading to improved shrimp flesh quality during refrigerated storage, as demonstrated by the better maintained hardness, springiness, and water-holding capacity compared to CS and FI.
Collapse
Affiliation(s)
- Weiliang Guan
- Department of Food Science, Guangxi University, Nanning, Guangxi, China
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
| | - Tianyu Liu
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
| | - Weibing Yan
- Zhejiang Hongye Equipment Technology Co., Ltd., Taizhou, China
| | - Luyun Cai
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Zheng C, Chen M, Chen Y, Qu Y, Shi W, Shi L, Qiao Y, Li X, Guo X, Wang L, Wu W. Preparation of polysaccharide-based nanoparticles by chitosan and flaxseed gum polyelectrolyte complexation as carriers for bighead carp (Aristichthys nobilis) peptide delivery. Int J Biol Macromol 2023; 249:126121. [PMID: 37541467 DOI: 10.1016/j.ijbiomac.2023.126121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 07/07/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Polysaccharide-based nanoparticles formed by the polyelectrolyte complexation between chitosan (CS) and flaxseed gum (FG) was developed in this work, and it was further used as a carrier for bighead carp peptide (BCP) delivery. The CS molecular weight (MW) of 50 kDa and CS/FG mass ratio of 1:2 at pH 3.5 were optimal conditions for the NP preparation, with the minimum particle size (∼155.1 nm) and the maximum BCP encapsulation efficiency (60.3 %). The BCP-loaded CS/FG NPs exhibited the smallest particle size (175.8 nm). Both CS/FG NPs and CS/FG-BCP NPs exhibited roughly uniform spherical shape. FT-IR spectra confirmed the existence of hydrogen bonds and electrostatic interactions in the nanoparticles. The BCP-loaded NPs displayed a higher thermal stability than BCP. Moreover, the release of BCP was controllable and dose-dependent, following a first-order kinetics model. These findings suggested that our CS/FG NPs are a promising carrier for bioactive peptide delivery.
Collapse
Affiliation(s)
- Changliang Zheng
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Mengting Chen
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yashu Chen
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yinghong Qu
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Wenzheng Shi
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Liu Shi
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yu Qiao
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xin Li
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xiaojia Guo
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Lan Wang
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Wenjin Wu
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| |
Collapse
|
23
|
Li H, Wang Q, Li W, Xia X. Cryoprotective Effect of NADES on Frozen-Thawed Mirror Carp Surimi in Terms of Oxidative Denaturation, Structural Properties, and Thermal Stability of Myofibrillar Proteins. Foods 2023; 12:3530. [PMID: 37835183 PMCID: PMC10572836 DOI: 10.3390/foods12193530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Quality degradation due to the formation and growth of ice crystals caused by temperature fluctuations during storage, transportation, or retailing is a common problem in frozen surimi. While commercial antifreeze is used as an ingredient in frozen surimi, its high sweetness does not meet the contemporary consumer demand for low sugar and low calories. Therefore, the development of new green antifreeze agents to achieve an enhanced frozen-thawed stability of surimi has received more attention. The aim of this study was to develop a cryoprotectant (a mixture of citric acid and trehalose) to enhance the frozen-thawed stability of surimi by inhibiting the oxidative denaturation and structural changes of frozen-thawed mirror carp (Cyprinus carpio L.) surimi myofibrillar protein (MP). The results showed that the amounts of free amine, sulfhydryl, α-helix, intrinsic fluorescence intensity, and thermal stability in the control significantly decreased after five F-T cycles, while the Schiff base fluorescence intensity, amounts of disulfide bonds and surface hydrophobicity significantly increased (p < 0.05). Compared to sucrose + sorbitol (SS), the natural deep eutectic solvents (NADES) effectively inhibited protein oxidation. After five F-T cycles, the α-helix content and Ca2+-ATPase activity of the NADES samples were 4.32% and 80.0%, respectively, higher, and the carbonyl content was 17.4% lower than those of the control. These observations indicate that NADES could inhibit oxidative denaturation and enhance the structural stability of MP.
Collapse
Affiliation(s)
| | | | | | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (H.L.); (Q.W.); (W.L.)
| |
Collapse
|
24
|
Kong C, Duan C, Zhang Y, Shi C, Luo Y. Changes in Lipids and Proteins of Common Carp ( Cyprinus carpio) Fillets under Frozen Storage and Establishment of a Radial Basis Function Neural Network (RBFNN). Foods 2023; 12:2741. [PMID: 37509833 PMCID: PMC10379316 DOI: 10.3390/foods12142741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/11/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Storage via freezing remains the most effective approach for fish preservation. However, lipid oxidation and protein denaturation still occur during storage, along with nutritional loss. The extent of lipid alteration and protein denaturation are associated with human health defects. To precisely predict common carp (Cyprinus carpio) nutritional quality change during frozen storage, here, we first determined lipid oxidation and hydrolysis and protein denaturation of common carp fillets during 17 weeks of frozen preservation at 261 K, 253 K, and 245 K. Results showed that the content of thiobarbituric acid reactive substances (TBARS) and free fatty acids (FFA) were significantly increased. However, salt-soluble protein (SSP) content, Ca2+-ATPase activity, and total sulfhydryl (SH) content kept decreasing during frozen storage, with SSP content decreasing by 64.82%, 38.14%, and 11.24%, respectively, Ca2+-ATP enzyme activity decreasing to 12.50%, 18.52%, and 28.57% Piμmol/mg/min, and SH values decreasing by 70.71%, 64.92%, and 56.51% at 261 K, 253 K, and 245 K, respectively. The values at 261 K decreased more than that at 253 K and 245 K (p < 0.05). Ca2+-ATPase activity was positively correlated (r = 0.96) with SH content. Afterwards, based on the results of the above chemical experiments, we developed a radial basis function neural network (RBFNN) to predict the modification of lipid and protein of common carp fillets during frozen storage. Results showed that all the relative errors of experimental and predicted values were within ±10%. In summary, the quality of common carp can be well protected at 245 K, and the established RBFNN could effectively predict the quality of the common carp under frozen conditions at 261-245 K.
Collapse
Affiliation(s)
- Chunli Kong
- School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Caiping Duan
- School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yixuan Zhang
- School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Ce Shi
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
25
|
Inhibition mechanism of membrane-separated silver carp hydrolysates on ice crystal growth obtained through experiments and molecular dynamics simulation. Food Chem 2023; 414:135695. [PMID: 36809728 DOI: 10.1016/j.foodchem.2023.135695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/04/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
The membrane-separated silver carp hydrolysates (>10 kD, 3-10 kD and < 3 kD) displayed abilities to mitigate oxidation and denaturation of myofibrillar protein and cryoprotective activities for frozen surimi. However, the mechanism of the membrane-separated fractions on ice crystal growth in the system is still unknown. Therefore, the cryoprotective activities (recrystallization inhibition, RI and thermal hysteresis activity, THA) of the fractions were investigated and the mechanism was explored by molecular dynamics (MD) simulation to predict the probable binding sites and model the possible interactions between the peptides and water/ice. The fractions < 3 kD displayed remarkable RI activity, with significantly higher THA (0.60 ± 0.13 °C) and lower amount of ice nuclei (4.74 ± 0.53%) than that of fractions > 10 kD and 3-10 kD. The results of MD simulation certified that the main peptides in the fractions < 3 kD interacted firmly with water molecules and inhibited growth of ice crystals with mechanism compatible with Kelvin effect. Hydrophilic and hydrophobic amino acid residues in the membrane-separated fractions offered synergistic effects on the inhibition of ice crystals.
Collapse
|
26
|
Wang C, Rao J, Li X, He D, Zhang T, Xu J, Chen X, Wang L, Yuan Y, Zhu X. Chickpea protein hydrolysate as a novel plant-based cryoprotectant in frozen surimi: Insights into protein structure integrity and gelling behaviors. Food Res Int 2023; 169:112871. [PMID: 37254320 DOI: 10.1016/j.foodres.2023.112871] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/07/2023] [Accepted: 04/19/2023] [Indexed: 06/01/2023]
Abstract
Chickpea protein (CP) and its enzymatic hydrolysates are one of the most widely consumed pulse ingredients manifesting versatile applications in food industry, such as binders, emulsifiers, and meat protein substitutes. Other than those well-known functionalities, however, the use of CP as a cryoprotectant remained unexplored. In this study, we prepared the chickpea protein hydrolysate (CPH) and investigated its cryoprotective effects to frozen surimi in terms of the protein structure integrity and gelling behaviors. Results indicated that CPH could inhibit myofibrillar protein (MP) denaturation and oxidation during the freeze-thaw cycling, as evidenced by their increased solubility, Ca2+-ATPase activity, sulfhydryl concentration, and declined content of disulfide bonds, carbonyl concentration and surface hydrophobicity. Freezing-induced changes on MP secondary structures were also retarded. Moreover, gels prepared from CPH-protected frozen surimi demonstrated more stabilized microstructure, uniform water distribution, enhanced elasticity, gel strength and water holding capacity. The CPH alone, at a reducing addition content of 4% (w/w), exhibited comparable cryoprotective performance to that of the commercial formulation (4% sucrose and 4% sorbitol). Therefore, this study provides scientific insights for development of pulse proteins as novel and high-performance food cryoprotectants.
Collapse
Affiliation(s)
- Chao Wang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Junhui Rao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Xueyin Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Diheng He
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Ting Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Jianteng Xu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Xi Chen
- Key Laboratory of Bulk Grain and Oil Deep Processing Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lan Wang
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China
| | - Yue Yuan
- Center for Nanophase Materials and Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States
| | - Xiangwei Zhu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
27
|
Shang S, Wang Y, Jiang P, Fu B, Dong X, Qi L. Progress in the application of novel cryoprotectants for the stabilization of myofibrillar proteins. Crit Rev Food Sci Nutr 2023; 64:9756-9770. [PMID: 37222573 DOI: 10.1080/10408398.2023.2215874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In this review, the physicochemical and conformational changes of myofibrillar proteins (MPs) of freeze-induced mince-based aquatic foods were comprehensively summarized in depth. Studies have demonstrated that temperature fluctuation and long-time freezing negatively affect food quality, resulting in texture alteration, drip fluid, flavor degradation, and nutrition loss due to MPs denaturation, aggregation, and oxidation. Attempts have been made in ice-recrystallization inhibition, freezing point depression, and ice shape and growth control for better cryopreservation. Moreover, to further minimize the quality deterioration, cryoprotectants were acknowledged to reduce the denaturation and aggregation of the MPs effectively. Recently, interest in novel functional ingredients, including oligosaccharides, protein hydrolysates, and natural polyphenols demonstrated excellent cryoprotective effects while avoiding health concerns and undesirable flavor caused by traditional sugar-based or phosphates-based cryoprotectants. Therefore, the present review provides a systematic overview of these low molecular weight multifunctional substances with a particular sequence and highlights their underlying mechanism in the inhibition of ice recrystallization the stabilization of MPs.
Collapse
Affiliation(s)
- Shan Shang
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, National Engineering Research Center of Seafood, State Key Laboratory of Marine Food Processing and Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Yueyue Wang
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, National Engineering Research Center of Seafood, State Key Laboratory of Marine Food Processing and Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Pengfei Jiang
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, National Engineering Research Center of Seafood, State Key Laboratory of Marine Food Processing and Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Baoshang Fu
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, National Engineering Research Center of Seafood, State Key Laboratory of Marine Food Processing and Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Xiuping Dong
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, National Engineering Research Center of Seafood, State Key Laboratory of Marine Food Processing and Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Libo Qi
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, National Engineering Research Center of Seafood, State Key Laboratory of Marine Food Processing and Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
28
|
Liu Z, Yang W, Wei H, Deng S, Yu X, Huang T. The mechanisms and applications of cryoprotectants in aquatic products: An overview. Food Chem 2023; 408:135202. [PMID: 36525728 DOI: 10.1016/j.foodchem.2022.135202] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Frozen storage technology has been widely used for the preservation of Aquatic products. However, ice crystals formation, lipid oxidation and protein denaturation still easily causes aquatic products deterioration. Cryoprotectants are a series of food additives that could efficiently prolong the shelf life and guarantee the acceptability of frozen aquatic products. This review comprehensively illustrated the mechanism of protein denaturation caused by the ice crystal formation and lipid oxidation. The cryoprotective mechanism of various kinds of antifreeze agents (saccharides, phosphates, antifreeze proteins and peptides) and these cryoprotective structure-activity relationship, application efficiency on the quality of aquatic products were also discussed. Moreover, the advantages and disadvantages of each cryoprotectant are also prospected. Compared with others, antifreeze peptides show higher commercial and application values. While, lots of scientific research works are still required to develop novel antifreeze agent as a versatile ingredient with commercial value, applicable in the aquatic products preservation industry.
Collapse
Affiliation(s)
- Zhenlei Liu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Wenge Yang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang, Ningbo, Zhejiang Province 315211, China
| | - Huamao Wei
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Shanggui Deng
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, Zhejiang 316000, China
| | - Xunxin Yu
- Zhejiang Tianhe Aquatic Products Co., Ltd., Wenling, Zhejiang 317500, China
| | - Tao Huang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang, Ningbo, Zhejiang Province 315211, China.
| |
Collapse
|
29
|
Zhang H, Li X, Sun S, Wang Y, Li Z, Kang H, Peng X. Effects of carboxymethyl chitosan on the oxidation stability and gel properties of myofibrillar protein from frozen pork patties. Int J Biol Macromol 2023; 234:123710. [PMID: 36801276 DOI: 10.1016/j.ijbiomac.2023.123710] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/19/2023] [Accepted: 02/11/2023] [Indexed: 02/19/2023]
Abstract
The effect of carboxymethyl chitosan (CMCH) on the oxidation stability and gel properties of myofibrillar protein (MP) from frozen pork patties was investigated. The results showed that CMCH could inhibit the denaturation of MP induced by freezing. Compared with the control group, the protein solubility was significantly (P < 0.05) increased, while the carbonyl content, the loss of sulfhydryl groups, and the surface hydrophobicity were decreased, respectively. Meanwhile, the incorporation of CMCH could alleviate the influence of frozen storage on water mobility and reduce the water loss. With the increased concentration of CMCH, the whiteness, strength, and water-holding capacity (WHC) of MP gels were significantly improved, in which the maximum value was at addition level of 1 %. In addition, CMCH inhibited the decrease in the maximum elastic (G') value and loss factor (tan δ) value of samples. By scanning electron microscopy (SEM) observation, CMCH stabilized the microstructure of the gel and maintained the relative integrity of the gel tissue. These findings suggest that CMCH could be used as a cryoprotectant to maintain the structural stability of MP in pork patty during frozen storage.
Collapse
Affiliation(s)
- Huiyun Zhang
- Food and Bioengineering Department, Henan University of Science and Technology, Luoyang, Henan 471003, China.
| | - Xinling Li
- Food and Bioengineering Department, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Shuoshuo Sun
- Food and Bioengineering Department, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Yuantu Wang
- Food and Bioengineering Department, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Ziyan Li
- Food and Bioengineering Department, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Huaibin Kang
- Food and Bioengineering Department, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Xinyan Peng
- College of Life Science, Yantai University, Yantai, Shandong 264025, China
| |
Collapse
|
30
|
Liu C, Feng R, Li J, Hu Z, Xu Y, Xia W, Jiang Q. The migration and loss of water in emulsified surimi gels prepared with different phase states of lipids: Effect of freeze-thawing treatments. J Food Sci 2023; 88:1253-1267. [PMID: 36789876 DOI: 10.1111/1750-3841.16506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/13/2023] [Accepted: 01/31/2023] [Indexed: 02/16/2023]
Abstract
The freeze-thawing (FT) stability generally correlates well with the economic value and acceptability of frozen surimi-based products. However, quality changes of emulsified surimi gels under FT conditions are still unclear. Therefore, the gel properties of samples with different phase states of lipids (lard, lard + soybean oil, and soybean oil) were investigated at FT conditions. Results showed that the soybean oil evidently improved the rheological behaviors of sols/gels compared to the lard group. The moisture content of samples with different lipids decreased by 2.40%-2.71% after 4 FT cycles. With increasing FT cycles, the water-holding capacity decreased accompanied by the increase of cooking loss. Spin-spin relaxation spectra and hydrogen proton density images proved the occurrence of water migration of gels during these processes. Better gel integrity was observed in samples consisting of soybean oil, where the proportion of pores was lower than those with lard regardless of FT treatments. Additionally, the intermolecular forces of gels also changed under FT treatments. There results suggested that the lipids with different phase states affected the migration and loss of water in emulsified surimi gels under FT cycles. PRACTICAL APPLICATION: The quality changes of heating-induced surimi gel products under frozen storage have been ignored, especially the emulsified surimi gels. This study discloses the changes of the gel properties in emulsified gel products with different phase states of lipids after FT treatments, which provides critical insights into the quality improvement of this novel emulsified surimi product during processing, storage, and transportation.
Collapse
Affiliation(s)
- Cikun Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Ruonan Feng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jun Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhongliang Hu
- Taizhou Anjoy Food Share Co. Ltd., Taizhou, Jiangsu, China
| | - Yanshun Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Qixing Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
31
|
Bioactivity Evaluation of Peptide Fractions from Bighead Carp (Hypophthalmichthys nobilis) Using Alcalase and Hydrolytic Enzymes Extracted from Oncorhynchus mykiss and Their Potential to Develop the Edible Coats. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-022-02986-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
32
|
Sousa TCDA, Silva ELL, Ferreira VCDS, Madruga MS, Silva FAPD. Oxidative stability of green weakfish (Cynoscion virescens) by-product surimi and surimi gel enhanced with a Spondias mombin L. waste phenolic-rich extract during cold storage. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
33
|
Influence of sodium chloride and sodium pyrophosphate on the physicochemical and gelling properties of silver carp myofibrillar proteins sol subjected to freeze-thaw cycles. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
34
|
Food Protein-Derived Antioxidant Peptides: Molecular Mechanism, Stability and Bioavailability. Biomolecules 2022; 12:biom12111622. [PMID: 36358972 PMCID: PMC9687809 DOI: 10.3390/biom12111622] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/22/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
The antioxidant activity of protein-derived peptides was one of the first to be revealed among the more than 50 known peptide bioactivities to date. The exploitation value associated with food-derived antioxidant peptides is mainly attributed to their natural properties and effectiveness as food preservatives and in disease prevention, management, and treatment. An increasing number of antioxidant active peptides have been identified from a variety of renewable sources, including terrestrial and aquatic organisms and their processing by-products. This has important implications for alleviating population pressure, avoiding environmental problems, and promoting a sustainable shift in consumption. To identify such opportunities, we conducted a systematic literature review of recent research advances in food-derived antioxidant peptides, with particular reference to their biological effects, mechanisms, digestive stability, and bioaccessibility. In this review, 515 potentially relevant papers were identified from a preliminary search of the academic databases PubMed, Google Scholar, and Scopus. After removing non-thematic articles, articles without full text, and other quality-related factors, 52 review articles and 122 full research papers remained for analysis and reference. The findings highlighted chemical and biological evidence for a wide range of edible species as a source of precursor proteins for antioxidant-active peptides. Food-derived antioxidant peptides reduce the production of reactive oxygen species, besides activating endogenous antioxidant defense systems in cellular and animal models. The intestinal absorption and metabolism of such peptides were elucidated by using cellular models. Protein hydrolysates (peptides) are promising ingredients with enhanced nutritional, functional, and organoleptic properties of foods, not only as a natural alternative to synthetic antioxidants.
Collapse
|
35
|
Li Z, Wang Q, Li S, Chang Y, Zheng X, Cao H, Zheng Y. Usage of nanocrystalline cellulose as a novel cryoprotective substance for the Nemipterus virgatus surimi during frozen storage. Food Chem X 2022; 16:100506. [DOI: 10.1016/j.fochx.2022.100506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022] Open
|
36
|
Du X, Wang B, Li H, Liu H, Shi S, Feng J, Pan N, Xia X. Research progress on quality deterioration mechanism and control technology of frozen muscle foods. Compr Rev Food Sci Food Saf 2022; 21:4812-4846. [PMID: 36201389 DOI: 10.1111/1541-4337.13040] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 01/28/2023]
Abstract
Freezing can prolong the shelf life of muscle foods and is widely used in their preservation. However, inevitable quality deterioration can occur during freezing, frozen storage, and thawing. This review explores the eating quality deterioration characteristics (color, water holding capacity, tenderness, and flavor) and mechanisms (irregular ice crystals, oxidation, and hydrolysis of lipids and proteins) of frozen muscle foods. It also summarizes and classifies the novel physical-field-assisted-freezing technologies (high-pressure, ultrasound, and electromagnetic) and bioactive antifreeze (ice nucleation proteins, antifreeze proteins, natural deep eutectic solvents, carbohydrate, polyphenol, phosphate, and protein hydrolysates), regulating the dynamic process from water to ice. Moreover, some novel thermal and nonthermal thawing technologies to resolve the loss of water and nutrients caused by traditional thawing methods were also reviewed. We concluded that the physical damage caused by ice crystals was the primary reason for the deterioration in eating quality, and these novel techniques promoted the eating quality of frozen muscle foods under proper conditions, including appropriate parameters (power, time, and intermittent mode mentioned in ultrasound-assisted techniques; pressure involved in high-pressure-assisted techniques; and field strength involved in electromagnetic-assisted techniques) and the amounts of bioactive antifreeze. To obtain better quality frozen muscle foods, more efficient technologies and substances must be developed. The synergy of novel freezing/thawing technology may be more effective than individual applications. This knowledge may help improve the eating quality of frozen muscle foods.
Collapse
Affiliation(s)
- Xin Du
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Bo Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Haijing Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shuo Shi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jia Feng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Nan Pan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
37
|
Zhang Y, Bai G, Jin G, Wang Y, Wang J, Puolanne E, Cao J. Role of low molecular additives in the myofibrillar protein gelation: underlying mechanisms and recent applications. Crit Rev Food Sci Nutr 2022; 64:3604-3622. [PMID: 36239320 DOI: 10.1080/10408398.2022.2133078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Understanding mechanisms of myofibrillar protein gelation is important for development of gel-type muscle foods. The protein-protein interactions are largely responsible for the heat-induced gelation. Exogenous additives have been extensively applied to improve gelling properties of myofibrillar proteins. Research has been carried out to investigate effects of different additives on protein gelation, among which low molecular substances as one of the most abundant additives have been recently implicated in the modifications of intermolecular interactions. In this review, the processes of myosin dissociation under salt and the subsequent interaction via intermolecular forces are elaborated. The underlying mechanisms focusing on the role of low molecular additives in myofibrillar protein interactions during gelation particularly in relation to modifications of the intermolecular forces are comprehensively discussed, and six different additives i.e. metal ions, phosphates, amino acids, hydrolysates, phenols and edible oils are involved. The promoting effect of low molecular additives on protein interactions is highly attributed to the strengthened hydrophobic interactions providing explanations for improved gelation. Other intermolecular forces i.e. covalent bonds, ionic and hydrogen bonds could also be influenced depending on varieties of additives. This review can hopefully be used as a reference for the development of gel-type muscle foods in the future.
Collapse
Affiliation(s)
- Yuemei Zhang
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Genpeng Bai
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Guofeng Jin
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Ying Wang
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Jinpeng Wang
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Eero Puolanne
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Jinxuan Cao
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
38
|
Zhang L, Li Q, Bao Y, Tan Y, Lametsch R, Hong H, Luo Y. Recent advances on characterization of protein oxidation in aquatic products: A comprehensive review. Crit Rev Food Sci Nutr 2022; 64:1572-1591. [PMID: 36122384 DOI: 10.1080/10408398.2022.2117788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In addition to microbial spoilage and lipid peroxidation, protein oxidation is increasingly recognized as a major cause for quality deterioration of muscle-based foods. Although protein oxidation in muscle-based foods has attracted tremendous interest in the past decade, specific oxidative pathways and underlying mechanisms of protein oxidation in aquatic products remain largely unexplored. The present review covers the aspects of the origin and site-specific nature of protein oxidation, progress on the characterization of protein oxidation, oxidized proteins in aquatic products, and impact of protein oxidation on protein functionalities. Compared to meat protein oxidation, aquatic proteins demonstrate a less extent of oxidation on aromatic amino acids and are more susceptible to be indirectly oxidized by lipid peroxidation products. Different from traditional measurement of protein carbonyls and thiols, proteomics-based strategy better characterizes the targeted oxidation sites within proteins. The future trends using more robust and accurate targeted proteomics, such as parallel reaction monitoring strategy, to characterize protein oxidation in aquatic products are also given.
Collapse
Affiliation(s)
- Longteng Zhang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Qian Li
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Yulong Bao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yuqing Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - René Lametsch
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
39
|
Du Y, Hong J, Xu S, Wang Y, Wang X, Yan J, Lai B, Wu H. Iron‐chelating activity of large yellow croaker (
Pseudosciaena crocea
) roe hydrolysates. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Yi‐Nan Du
- School of Food Science and Technology Dalian Polytechnic University Dalian Liaoning China
| | - Jia‐Nan Hong
- School of Food Science and Technology Dalian Polytechnic University Dalian Liaoning China
| | - Shi‐Qi Xu
- School of Food Science and Technology Dalian Polytechnic University Dalian Liaoning China
| | - Yu‐Qiao Wang
- School of Food Science and Technology Dalian Polytechnic University Dalian Liaoning China
| | - Xue‐Chen Wang
- School of Food Science and Technology Dalian Polytechnic University Dalian Liaoning China
| | - Jia‐Nan Yan
- School of Food Science and Technology Dalian Polytechnic University Dalian Liaoning China
| | - Bin Lai
- School of Food Science and Technology Dalian Polytechnic University Dalian Liaoning China
- National Engineering Research Center of Seafood Dalian Liaoning China
- Collaborative Innovation Center of Seafood Deep Processing Dalian Liaoning China
| | - Hai‐Tao Wu
- School of Food Science and Technology Dalian Polytechnic University Dalian Liaoning China
- National Engineering Research Center of Seafood Dalian Liaoning China
- Collaborative Innovation Center of Seafood Deep Processing Dalian Liaoning China
| |
Collapse
|
40
|
Zhu K, Zheng Z, Dai Z. Identification of antifreeze peptides in shrimp byproducts autolysate using peptidomics and bioinformatics. Food Chem 2022; 383:132568. [PMID: 35255363 DOI: 10.1016/j.foodchem.2022.132568] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/04/2022]
Abstract
In the present study, a novel method based on peptidomics and bioinformatic was applied to identification and characterization of antifreeze peptides (AFPs) from shrimp byproducts autolysate (SBPA). According to the results of in silico prediction and high peptide structural inflexibility, DEYEESGPGIVH and EQICINFCNEK were picked as potential AFP-1 and AFP-2, respectively. The outcomes of DSC determination indicated that TH of synthesized AFP-1 and AFP-2 (10 mg/mL) were 1.37 °C and 1.57 °C, respectively. Besides, 0.1 %-3 % AFPs showed significant cryoprotection in shrimp muscle after 3 and 6 freeze-thaw cycles, evidenced by higher SSP content, Ca2+-ATPase activity, sulfhydryl content and lower surface hydrophobicity than control; while the higher concentration resulted in better protection against freeze induced denaturation. Both AFP-1&2 showed favorable hydrogen bonding affinity which facilitated ice binding and ice crystal growth inhibition. This work could provide new ideals for identification and characterization of AFPs.
Collapse
Affiliation(s)
- Kai Zhu
- The Joint Key Laboratory of Aquatic Products Processing of Zhejiang Province, 310012 Hangzhou, China; Institute of Seafood, Zhejiang Gongshang University, 310012 Hangzhou, China
| | - Zhenxiao Zheng
- The Joint Key Laboratory of Aquatic Products Processing of Zhejiang Province, 310012 Hangzhou, China; Institute of Seafood, Zhejiang Gongshang University, 310012 Hangzhou, China
| | - Zhiyuan Dai
- The Joint Key Laboratory of Aquatic Products Processing of Zhejiang Province, 310012 Hangzhou, China; Institute of Seafood, Zhejiang Gongshang University, 310012 Hangzhou, China.
| |
Collapse
|
41
|
Zhu K, Yan W, Dai Z, Zhang Y. Astaxanthin Extract from Shrimp ( Trachypenaeus curvirostris) By-Products Improves Quality of Ready-to-Cook Shrimp Surimi Products during Frozen Storage at -18 °C. Foods 2022; 11:foods11142122. [PMID: 35885365 PMCID: PMC9323547 DOI: 10.3390/foods11142122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 01/27/2023] Open
Abstract
The effects of astaxanthin extract (AE) from shrimp by-products on the quality and sensory properties of ready-to-cook shrimp surimi products (RC-SSP) during frozen storage at −18 °C were investigated. Changes in 2-thiobarbituric acid reactive substances (TBARS) value, sulfhydryl groups, carbonyls, salt-soluble protein content, textural properties, color, and sensory quality over specific storage days were evaluated. The AE from shrimp by-products contained 4.49 μg/g tocopherol and 23.23 μg/g astaxanthin. The shrimp surimi products supplemented with 30 g/kg AE had higher redness values and greater overall acceptability and texture properties after cooking (p < 0.05). AE showed higher oxidative stability in RC-SSP than the control, as evidenced by lower TBARS and carbonyl content, and higher sulfhydryl and salt-soluble protein content. AE from shrimp by-products had positive effects on the antioxidant activity and color difference of RC-SSP, and could be used as a potential multifunctional additive for the development of shrimp surimi products.
Collapse
|
42
|
de Albuquerque Sousa TC, Ferreira VCDS, da Silva Araújo ÍB, da Silva FAP. Natural Additives as Quality Promoters in Surimi: a Brief Review. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2022.2092434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Thamyres César de Albuquerque Sousa
- Postgraduate Program in Agrifood Technology, Center for Human, Social and Agrarian Sciences, Federal University of Paraíba, Bananeiras, Brazil
| | - Valquiria Cardoso da Silva Ferreira
- Postgraduate Program in Agrifood Technology, Center for Human, Social and Agrarian Sciences, Federal University of Paraíba, Bananeiras, Brazil
| | - Íris Braz da Silva Araújo
- Postgraduate Program in Agrifood Technology, Center for Human, Social and Agrarian Sciences, Federal University of Paraíba, Bananeiras, Brazil
| | - Fábio Anderson Pereira da Silva
- Postgraduate Program in Agrifood Technology, Center for Human, Social and Agrarian Sciences, Federal University of Paraíba, Bananeiras, Brazil
| |
Collapse
|
43
|
Zhang X, Zhang Y, Dong Y, Ding H, Chen K, Lu T, Dai Z. Study on the mechanism of protein hydrolysate delaying quality deterioration of frozen surimi. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Antioxidant Activities of Aqueous Extracts and Protein Hydrolysates from Marine Worm Hechong (Tylorrhynchus heterochaeta). Foods 2022; 11:foods11131837. [PMID: 35804653 PMCID: PMC9265576 DOI: 10.3390/foods11131837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 01/27/2023] Open
Abstract
Hechong (Tylorrhynchus heterochaeta) is an edible marine worm widely distributed in the estuary area. The objective of this study is to determine the antioxidant activities of extracts and protein hydrolysates from Hechong. Results showed that the aqueous extracts of steamed Hechong had the highest antioxidant values using the methods of DPPH, ABTS, and FRAP testing (76.29 μmol TE/g, 181.04 μmol TE/g, and 10.40 mmol Fe2+/100 g, respectively). Furthermore, protein hydrolysates of Hechong were observed significant antioxidant activities when compared to crude Hechong. The purification was carried out by DEAE-52 cellulose and Sephadex G-100 column chromatography. The microspatial structure of glycoprotein showed fibrous shapes and cracks with uniform distribution. The study has concluded that the extract and protein hydrolysates of Hechong have significant antioxidant activities, which is merited to be further investigated in the food and pharmaceutical fields.
Collapse
|
45
|
Dang M, Wang R, Jia Y, Du J, Wang P, Xu Y, Li C. The Antifreeze and Cryoprotective Activities of a Novel Antifreeze Peptide from Ctenopharyngodon idella Scales. Foods 2022; 11:foods11131830. [PMID: 35804646 PMCID: PMC9265620 DOI: 10.3390/foods11131830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study is to obtain new antifreeze peptides (AFPs) that are natural, safe, and high activity from Ctenopharyngodon idella scales. The optimal hydrolysis conditions were investigated, and chromatography-based isolation was conducted using thermal hysteresis activity (THA) as an index. Molecular dynamic simulation (MDs) was explored to reveal the antifreeze mechanism of the AFPs. The results showed that the optimal hydrolysis conditions were 4000 U/g papain enzyme for 60 °C at pH 5.0 and substrate concentration (1:10) for 3 h, as unveiled by single-factor experiment results. The AFPs documented a THA of 2.7 °C when the Th was 1.3 °C. Hydrophilic peptide, named GCFSC-AFPs, with a THA of 5.09 °C when the Th was 1.1 °C was obtained after a series isolation of gel filtration, ion exchange, and reversed-phase HPLC chromatography. The AFPs had a molecular weight of 1107.54~1554.72 Da with three main peptides in the amino acid sequence of VGPAGPSGPSGPQ, RGSPGERGESGPAGPSG, and VGPAGPSGPSGPQG, respectively. The survival rate of yeast with GCFSC-AFPs reached 84.4% following one week of exposure at −20 °C. MDs indicated that GCFSC-AFPs interfered with the ice-water interaction and thus inhibited the ice crystallization process. Our data suggested that the GCFSC-AFPs were a novel and potential antifreeze agent in the food industry.
Collapse
Affiliation(s)
- Meizhu Dang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430072, China; (M.D.); (R.W.); (Y.J.); (J.D.); (Y.X.)
- School of Energy and Intelligence Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450002, China;
| | - Ruifeng Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430072, China; (M.D.); (R.W.); (Y.J.); (J.D.); (Y.X.)
| | - Yangyang Jia
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430072, China; (M.D.); (R.W.); (Y.J.); (J.D.); (Y.X.)
| | - Jing Du
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430072, China; (M.D.); (R.W.); (Y.J.); (J.D.); (Y.X.)
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Ping Wang
- School of Energy and Intelligence Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450002, China;
| | - Yawei Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430072, China; (M.D.); (R.W.); (Y.J.); (J.D.); (Y.X.)
| | - Chunmei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430072, China; (M.D.); (R.W.); (Y.J.); (J.D.); (Y.X.)
- Correspondence: ; Tel./Fax: +86-87282966
| |
Collapse
|
46
|
Gao W, Wu X, Ye R, Zeng X, Brennan MA, Brennan CS, Ma J. Analysis of protein denaturation, and chemical visualisation, of frozen grass carp surimi containing soluble soybean polysaccharides. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wenhong Gao
- School of Food Science and Engineering South China University of Technology Guangzhou 510641 China
| | - Xinru Wu
- School of Food Science and Engineering South China University of Technology Guangzhou 510641 China
| | - Ruisen Ye
- Midea Household Appliance Division Midea Group Foshan 528311 China
| | - Xin‐an Zeng
- School of Food Science and Engineering South China University of Technology Guangzhou 510641 China
| | - Margaret A. Brennan
- Department of Wine, Food and Molecular Biosciences Lincoln University Lincoln 7647 Christchurch New Zealand
| | | | - Ji Ma
- School of Food Science and Engineering South China University of Technology Guangzhou 510641 China
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation‐Induced Emission South China University of Technology Guangzhou 510640 China
| |
Collapse
|
47
|
Asaithambi N, Singha P, Singh SK. Recent application of protein hydrolysates in food texture modification. Crit Rev Food Sci Nutr 2022; 63:10412-10443. [PMID: 35653113 DOI: 10.1080/10408398.2022.2081665] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The demand for clean labels has increased the importance of natural texture modifying ingredients. Proteins are unique compounds that can impart unique textural and structural changes in food. However, lack of solubility and extensive aggregability of proteins have increased the demand for enzymatically hydrolyzed proteins, to impart functional and structural modifications to food products. The review elaborates the recent application of various proteins, protein hydrolysates, and their role in texture modification. The impact of protein hydrolysates interaction with other food macromolecules, the effect of pretreatments, and dependence of various protein functionalities on textural and structural modification of food products with controlled enzymatic hydrolysis are explained in detail. Many researchers have acknowledged the positive effect of enzymatically hydrolyzed proteins on texture modification over natural protein. With enzymatic hydrolysis, various textural properties including foaming, gelling, emulsifying, water holding capacity have been effectively improved. It is evident that each protein is unique and imparts exceptional structural changes to different food products. Thus, selection of protein requires a fundamental understanding of its structure-substrate property relation. For wider applicability in the industrial sector, more studies on interactions at the molecular level, dosage, functionality changes, and sensorial attributes of protein hydrolysates in food systems are required.
Collapse
Affiliation(s)
- Niveditha Asaithambi
- Department of Food Process Engineering, National Institute of Technology (NIT) Rourkela, Rourkela, India
| | - Poonam Singha
- Department of Food Process Engineering, National Institute of Technology (NIT) Rourkela, Rourkela, India
| | - Sushil Kumar Singh
- Department of Food Process Engineering, National Institute of Technology (NIT) Rourkela, Rourkela, India
| |
Collapse
|
48
|
Zhang H, Zhang Y, Javed M, Cheng M, Xiong S, Liu Y. Gelatin hydrolysates from sliver carp (
Hypophthalmichthys molitrix
) improve the antioxidant and cryoprotective properties of unwashed frozen fish mince. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Haiping Zhang
- College of Food Science and Technology National R & D Branch Center for Conventional Freshwater Fish Processing Huazhong Agricultural University Wuhan Hubei Province 430070 China
| | - Yijun Zhang
- College of Food Science and Technology National R & D Branch Center for Conventional Freshwater Fish Processing Huazhong Agricultural University Wuhan Hubei Province 430070 China
| | - Miral Javed
- College of Food Science and Technology National R & D Branch Center for Conventional Freshwater Fish Processing Huazhong Agricultural University Wuhan Hubei Province 430070 China
| | - Mengying Cheng
- College of Food Science and Technology National R & D Branch Center for Conventional Freshwater Fish Processing Huazhong Agricultural University Wuhan Hubei Province 430070 China
| | - Shanbai Xiong
- College of Food Science and Technology National R & D Branch Center for Conventional Freshwater Fish Processing Huazhong Agricultural University Wuhan Hubei Province 430070 China
| | - Youming Liu
- College of Food Science and Technology National R & D Branch Center for Conventional Freshwater Fish Processing Huazhong Agricultural University Wuhan Hubei Province 430070 China
| |
Collapse
|
49
|
Yingchutrakul M, Wasinnitiwong N, Benjakul S, Singh A, Zheng Y, Mubango E, Luo Y, Tan Y, Hong H. Asian Carp, an Alternative Material for Surimi Production: Progress and Future. Foods 2022; 11:1318. [PMID: 35564045 PMCID: PMC9101759 DOI: 10.3390/foods11091318] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/19/2022] Open
Abstract
Asian carp is a general designation for grass carp, silver carp, bighead carp, and black carp. These fish species belong to the family Cyprinidae. In 2018, more than 18.5 million tons of Asian carp were produced globally. Asian carp can be used for producing surimi, a stabilized myofibrillar protein concentrate that can be made into a wide variety of products such as imitation crab sticks, fish balls, fish cakes, fish tofu, and fish sausage. Surimi is usually made from marine fish, but Asian carp have been widely used for surimi production in China. The quality of surimi is affected by various factors, including the processing methods and food additives, such as polysaccharides, protein, salt, and cryoprotectant. With an impending shortage of marine fish due to overfishing and depletion of fish stocks, Asian carp have a potential to serve as an alternative raw material for surimi products thanks to their high abundancy, less emissions of greenhouse gases from farming, desirable flesh color, and sufficient gel forming ability. The utilization of Asian carp in surimi production could also contribute to relieving the overflow of Asian carp in the United States.
Collapse
Affiliation(s)
- Manatsada Yingchutrakul
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (M.Y.); (N.W.); (E.M.); (Y.L.); (Y.T.)
| | - Naphat Wasinnitiwong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (M.Y.); (N.W.); (E.M.); (Y.L.); (Y.T.)
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90112, Thailand; (S.B.); (A.S.)
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90112, Thailand; (S.B.); (A.S.)
| | - Avtar Singh
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90112, Thailand; (S.B.); (A.S.)
| | - Yanyan Zheng
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
| | - Elliot Mubango
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (M.Y.); (N.W.); (E.M.); (Y.L.); (Y.T.)
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (M.Y.); (N.W.); (E.M.); (Y.L.); (Y.T.)
| | - Yuqing Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (M.Y.); (N.W.); (E.M.); (Y.L.); (Y.T.)
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (M.Y.); (N.W.); (E.M.); (Y.L.); (Y.T.)
- Center of Food Colloids and Delivery for Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
50
|
Walayat N, Liu J, Nawaz A, Aadil RM, López-Pedrouso M, Lorenzo JM. Role of Food Hydrocolloids as Antioxidants along with Modern Processing Techniques on the Surimi Protein Gel Textural Properties, Developments, Limitation and Future Perspectives. Antioxidants (Basel) 2022; 11:486. [PMID: 35326135 PMCID: PMC8944868 DOI: 10.3390/antiox11030486] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 12/26/2022] Open
Abstract
Texture is an important parameter in determining the quality characteristics and consumer acceptability of seafood and fish protein-based products. The addition of food-based additives as antioxidants (monosaccharides, oilgosaccharides, polysaccharides and protein hydrolysates) in surimi and other seafood products has become a promising trend at an industrial scale. Improvement in gelling, textural and structural attributes of surimi gel could be attained by inhibiting the oxidative changes, protein denaturation and aggregation with these additives along with new emerging processing techniques. Moreover, the intermolecular crosslinking of surimi gel can be improved with the addition of different food hydrocolloid-based antioxidants in combination with modern processing techniques. The high-pressure processing (HPP) technique with polysaccharides can develop surimi gel with better physicochemical, antioxidative, textural attributes and increase the gel matrix than conventional processing methods. The increase in protein oxidation, denaturation, decline in water holding capacity, gel strength and viscoelastic properties of surimi gel can be substantially improved by microwave (MW) processing. The MW, ultrasonication and ultraviolet (UV) treatments can significantly increase the textural properties (hardness, gumminess and cohesiveness) and improve the antioxidative properties of surimi gel produced by different additives. This study will review potential opportunities and primary areas of future exploration for high-quality surimi gel products. Moreover, it also focuses on the influence of different antioxidants as additives and some new production strategies, such as HPP, ultrasonication, UV and MW and ohmic processing. The effects of additives in combination with different modern processing technologies on surimi gel texture are also compared.
Collapse
Affiliation(s)
- Noman Walayat
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China;
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China;
| | - Asad Nawaz
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China;
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agricultural, Faisalabad 38000, Pakistan;
| | - María López-Pedrouso
- Departamento de Zooloxía, Xenética e Antropoloxía Física, Universidade de Santiago de Compostela, 15872 Santiago de Compostela, A Coruna, Spain
| | - José M. Lorenzo
- Centro Tecnolóxico da Carne de Galicia, Rúa Galicia No. 4, Parque Tecnolóxico de Galicia, 32900 San Cibrao das Vinas, Ourense, Spain;
- Facultade de Ciencias, Universidade de Vigo, 32004 Rua Doutor Temes Fernandez, Ourense, Spain
| |
Collapse
|