1
|
Zhong J, Xie H, Wang Y, Xiong H, Zhao Q. Nanofibrillated cellulose derived from rice bran, wheat bran, okara as novel dietary fibers: Structural, physicochemical, and functional properties. Int J Biol Macromol 2024; 273:132902. [PMID: 38852734 DOI: 10.1016/j.ijbiomac.2024.132902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/28/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Affiliation(s)
- Junbai Zhong
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Hexiang Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Yufeng Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Hua Xiong
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Qiang Zhao
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China.
| |
Collapse
|
2
|
He L, Kang Q, Zhang Y, Chen M, Wang Z, Wu Y, Gao H, Zhong Z, Tan W. Glycyrrhizae Radix et Rhizoma: The popular occurrence of herbal medicine applied in classical prescriptions. Phytother Res 2023. [PMID: 37196671 DOI: 10.1002/ptr.7869] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 04/14/2023] [Accepted: 04/25/2023] [Indexed: 05/19/2023]
Abstract
Glycyrrhizae Radix et Rhizoma is a well-known herbal medicine with a wide range of pharmacological functions that has been used throughout Chinese history. This review presents a comprehensive introduction to this herb and its classical prescriptions. The article discusses the resources and distribution of species, methods of authentication and determination chemical composition, quality control of the original plants and herbal medicines, dosages use, common classical prescriptions, indications, and relevant mechanisms of the active content. Pharmacokinetic parameters, toxicity tests, clinical trials, and patent applications are discussed. The review will provide a good starting point for the research and development of classical prescriptions to develop herbal medicines for clinical use.
Collapse
Affiliation(s)
- Luying He
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Qianming Kang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Man Chen
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zefei Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yonghui Wu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Hetong Gao
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Luo M, Wang C, Wang C, Xie C, Hang F, Li K, Shi C. Effect of alkaline hydrogen peroxide assisted with two modification methods on the physicochemical, structural and functional properties of bagasse insoluble dietary fiber. Front Nutr 2023; 9:1110706. [PMID: 36712504 PMCID: PMC9875377 DOI: 10.3389/fnut.2022.1110706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
Bagasse is one of major by-product of sugar mills, but its utilization is limited by the high concentration of lignin. In this study, the optimal alkaline hydrogen peroxide (AHP) treatment conditions were determined by the response surface optimization method. The results showed that the lignin removal rate was 62.23% and the solid recovery rate was 53.76% when bagasse was prepared under optimal conditions (1.2% H2O2, 0.9% NaOH, and 46°C for 12.3 h), while higher purity of bagasse insoluble dietary fiber (BIDF) was obtained. To further investigate the modification effect, AHP assisted with high-temperature-pressure cooking (A-H) and enzymatic hydrolysis (A-E) were used to modify bagasse, respectively. The results showed that the water holding capacity (WHC), oil holding capacity (OHC), bile salt adsorption capacity (BSAC), and nitrite ion adsorption capacity (NIAC) were significantly improved after A-H treatment. With the A-E treatment, cation exchange capacity (CEC) and BSAC were significantly increased, while WHC, OHC, and glucose adsorption capacity (GAC) were decreased. Especially, the highest WHC, OHC, BSAC and NIAC were gained by A-H treatment compared to the A-E treatment. These changes in the physicochemical and functional properties of bagasse fiber were in agreement with the microscopic surface wrinkles and pore structure, crystallinity and functional groups. In summary, the A-H modification can effectively improve the functional properties of bagasse fiber, which potentially can be applied further in the food industry.
Collapse
Affiliation(s)
- Mengying Luo
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Cheng Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Chenshu Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Caifeng Xie
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China,Provincial and Ministerial Collaborative Innovation Center for Sugar Industry, Nanning, China
| | - Fangxue Hang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China,Provincial and Ministerial Collaborative Innovation Center for Sugar Industry, Nanning, China,*Correspondence: Fangxue Hang ✉
| | - Kai Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China,Provincial and Ministerial Collaborative Innovation Center for Sugar Industry, Nanning, China
| | - Changrong Shi
- Faculty of Science, Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
4
|
Yassin Z, Tan YL, SRV A, Monro J, Matia-Merino L, Lim K, Hardacre A, Mishra S, Goh KKT. Effects of Xanthan Gum, Lambda-Carrageenan and Psyllium Husk on the Physical Characteristics and Glycaemic Potency of White Bread. Foods 2022; 11:foods11101513. [PMID: 35627083 PMCID: PMC9140618 DOI: 10.3390/foods11101513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 01/03/2023] Open
Abstract
White bread contains a high proportion of easily digestible starch, which contributes to an undesirable rapid increase in blood glucose concentration. This study investigated the effects of nonstarch polysaccharides (NSP) -xanthan gum, lambda-carrageenan and psyllium husk on the physical functionality and glycaemic potency of white bread. The amount of water for each formulation was adjusted based on DoughLab set at a target torque value of ~500 FU for sufficient dough development. Adding NSP generally resulted in significantly increased loaf volumes and decreased hardness. The glycaemic potency (glycaemic glucose equivalents (GGE) g) of bread was found to be reduced with the addition of NSP at all levels (1, 3 and 5% w/w based on flour weight). Increasing the concentration of xanthan gum and lambda-carrageenan did not show any further decrease in the glycaemic potency. Notably, adding 5% w/w psyllium husk significantly reduced the glycaemic potency from ~49 GGE/100 g in the reference bread to 32 GGE/100 g. The reduction in the glycaemic potency was attributed to viscosity effects (for xanthan) and starch–NSP interactions (for psyllium husk). Overall, the 5% w/w psyllium husk bread sample was most promising in terms of both physical characteristics and its effect on in vitro glucose release.
Collapse
Affiliation(s)
- Zawanah Yassin
- Singapore Institute of Technology-Massey University Food Technology, Dover Campus, 10 Dover Drive, Singapore 138683, Singapore; (Z.Y.); (Y.L.T.)
| | - Yin Li Tan
- Singapore Institute of Technology-Massey University Food Technology, Dover Campus, 10 Dover Drive, Singapore 138683, Singapore; (Z.Y.); (Y.L.T.)
| | - Akila SRV
- School of Food & Advanced Technology, Massey University, Private Bag 11222, Palmerston North 4410, New Zealand; (A.S.); (L.M.-M.); (A.H.)
- CSIRO, Agriculture and Food, 39 Kessels Road, Coopers Plains, QLD 4108, Australia
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand; (J.M.); (S.M.)
| | - John Monro
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand; (J.M.); (S.M.)
| | - Lara Matia-Merino
- School of Food & Advanced Technology, Massey University, Private Bag 11222, Palmerston North 4410, New Zealand; (A.S.); (L.M.-M.); (A.H.)
| | - Kaiyang Lim
- ES-TA Technology Pte Ltd., 21 Jalan Mesin, Singapore 368819, Singapore;
| | - Allan Hardacre
- School of Food & Advanced Technology, Massey University, Private Bag 11222, Palmerston North 4410, New Zealand; (A.S.); (L.M.-M.); (A.H.)
| | - Suman Mishra
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand; (J.M.); (S.M.)
| | - Kelvin Kim Tha Goh
- School of Food & Advanced Technology, Massey University, Private Bag 11222, Palmerston North 4410, New Zealand; (A.S.); (L.M.-M.); (A.H.)
- Correspondence:
| |
Collapse
|
5
|
Influence of starch physicochemical properties on biscuit-making quality of wheat lines with high-molecular-weight glutenin subunit (HMW-GS) absence. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
6
|
Developing psyllium fibre gel-based foods: Physicochemical, nutritional, optical and mechanical properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
Chen C, Shang C, Xin L, Xiang M, Wang Y, Shen Z, Jiao L, Ding F, Cui X. Beneficial Effects of Psyllium on the Prevention and Treatment of Cardiometabolic Diseases. Food Funct 2022; 13:7473-7486. [PMID: 35781477 DOI: 10.1039/d2fo00560c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cardiometabolic diseases are reaching epidemic proportions worldwide. Nevertheless, current therapeutic strategies are insufficient; thus, studying novel complementary and alternative medicines remains of the upmost importance. Psyllium has been used for...
Collapse
Affiliation(s)
- Chen Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Chang Shang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Laiyun Xin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
- First Clinical Medical School, Shandong University of Chinese Medicine, Shandong, 250355, China
| | - Mi Xiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Yuling Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zihuan Shen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Linke Jiao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fan Ding
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiangning Cui
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
8
|
Noguerol AT, Igual M, Pagán-Moreno MJ. Nutritional, Physico-Chemical and Mechanical Characterization of Vegetable Fibers to Develop Fiber-Based Gel Foods. Foods 2021; 10:foods10051017. [PMID: 34066936 PMCID: PMC8148593 DOI: 10.3390/foods10051017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 11/20/2022] Open
Abstract
The aim of this research was to evaluate the nutritional and physico-chemical properties of six different vegetable fibers and explore the possibility of using them as a thickener or gelling agent in food. To determine the technological, nutritional and physical parameters, the following analyses were carried out: water-holding capacity, water retention capacity, swelling, fat absorption capacity, solubility, particle size, moisture, hygroscopicity, pH, water activity, bulk density, porosity, antioxidant activity, phenolic compounds and mineral content. Gels were prepared at concentrations from 4% to 7% at 5 °C and analyzed at 25 °C before and after treatment at 65 °C for 20 min. A back extrusion test, texture profile analysis and rheology were performed and the pH value, water content and color were analyzed. As a result, all the samples generally showed significant differences in all the tested parameters. Hydration properties were different in all the tested samples, but the high values found for chia flour and citrus fiber are highlighted in functional terms. Moreover, chia flour was a source of minerals with high Fe, Mn and Cu contents. In gels, significant differences were found in the textural and rheological properties among the samples, and also due to the heat treatment used (65 °C, 20 min). As a result, chia flour, citrus, potato and pea fibers showed more appropriate characteristics for thickening. Moreover, potato fiber at high concentrations and both combinations of fibers (pea, cane sugar and bamboo fiber and bamboo, psyllium and citric fiber) were more suitable for gelling agents to be used in food products.
Collapse
|
9
|
Effect and mechanism of psyllium husk (Plantago ovata) on myofibrillar protein gelation. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110651] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
10
|
Cowley JM, Burton RA. The goo-d stuff: Plantago as a myxospermous model with modern utility. THE NEW PHYTOLOGIST 2021; 229:1917-1923. [PMID: 33220085 DOI: 10.1111/nph.17095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Mucilage, a gel-like layer formed around wetted seeds in a process called myxospermy, has importance as a proxy for studying cell wall polysaccharide biosynthesis and interactions and as a source of valuable health supplements and hydrocolloids. Arabidopsis thaliana has provided unrivalled insight into mucilage/cell wall synthesis, but its lack of commercial utility presents an opportunity to develop an alternative myxospermous model linking genetics, chemistry and functionality. Here, we discuss recent advances in the understanding of mucilage production, composition and properties of Plantago, a promising candidate as an alternative model with economic relevance. We outline how genomic/transcriptomic and chemical analysis advances could be made to strengthen Plantago's use as a model system, through challenging but achievable approaches.
Collapse
Affiliation(s)
- James M Cowley
- School of Agriculture, Food and Wine and ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Rachel A Burton
- School of Agriculture, Food and Wine and ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| |
Collapse
|
11
|
Extraction of dietary fibers from bagasse and date seed, and evaluation of their technological properties and antioxidant and prebiotic activity. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-020-00774-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Gamage HKAH, Chong RWW, Bucio-Noble D, Kautto L, Hardikar AA, Ball MS, Molloy MP, Packer NH, Paulsen IT. Changes in dietary fiber intake in mice reveal associations between colonic mucin O-glycosylation and specific gut bacteria. Gut Microbes 2020; 12:1802209. [PMID: 32991816 PMCID: PMC7781582 DOI: 10.1080/19490976.2020.1802209] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The colonic mucus layer, comprised of highly O-glycosylated mucins, is vital to mediating host-gut microbiota interactions, yet the impact of dietary changes on colonic mucin O-glycosylation and its associations with the gut microbiota remains unexplored. Here, we used an array of omics techniques including glycomics to examine the effect of dietary fiber consumption on the gut microbiota, colonic mucin O-glycosylation and host physiology of high-fat diet-fed C57BL/6J mice. The high-fat diet group had significantly impaired glucose tolerance and altered liver proteome, gut microbiota composition, and short-chain fatty acid production compared to normal chow diet group. While dietary fiber inclusion did not reverse all high fat-induced modifications, it resulted in specific changes, including an increase in the relative abundance of bacterial families with known fiber digesters and a higher propionate concentration. Conversely, colonic mucin O-glycosylation remained similar between the normal chow and high-fat diet groups, while dietary fiber intervention resulted in major alterations in O-glycosylation. Correlation network analysis revealed previously undescribed associations between specific bacteria and mucin glycan structures. For example, the relative abundance of the bacterium Parabacteroides distasonis positively correlated with glycan structures containing one terminal fucose and correlated negatively with glycans containing two terminal fucose residues or with both an N-acetylneuraminic acid and a sulfate residue. This is the first comprehensive report of the impact of dietary fiber on the colonic mucin O-glycosylation and associations of these mucosal glycans with specific gut bacteria.
Collapse
Affiliation(s)
- Hasinika K. A. H. Gamage
- ARC Industrial Transformation Training Centre for Molecular Technologies in the Food Industry, Macquarie University, Sydney, Australia,Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Raymond W. W. Chong
- ARC Industrial Transformation Training Centre for Molecular Technologies in the Food Industry, Macquarie University, Sydney, Australia,Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Daniel Bucio-Noble
- ARC Industrial Transformation Training Centre for Molecular Technologies in the Food Industry, Macquarie University, Sydney, Australia,Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Liisa Kautto
- ARC Industrial Transformation Training Centre for Molecular Technologies in the Food Industry, Macquarie University, Sydney, Australia,Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Anandwardhan A. Hardikar
- Islet Biology and Diabetes, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | | | - Mark P. Molloy
- ARC Industrial Transformation Training Centre for Molecular Technologies in the Food Industry, Macquarie University, Sydney, Australia,Department of Molecular Sciences, Macquarie University, Sydney, Australia,Mark P. Molloy Bowel Cancer and Biomarker Research, Kolling Institute, The University of Sydney, Australia
| | - Nicolle H. Packer
- ARC Industrial Transformation Training Centre for Molecular Technologies in the Food Industry, Macquarie University, Sydney, Australia,Department of Molecular Sciences, Macquarie University, Sydney, Australia,Nicolle H. Packer
| | - Ian T. Paulsen
- ARC Industrial Transformation Training Centre for Molecular Technologies in the Food Industry, Macquarie University, Sydney, Australia,Department of Molecular Sciences, Macquarie University, Sydney, Australia,CONTACT Ian Paulsen Department of Molecular Sciences, Macquarie University, Australia
| |
Collapse
|
13
|
Effects of dietary fiber on the digestion and structure of gluten under different thermal processing conditions. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Wang H, Song W, Tao W, Zhang J, Zhang X, Zhao J, Yong J, Gao X, Guo L. Identification wild and cultivated licorice by multidimensional analysis. Food Chem 2020; 339:128111. [PMID: 33152888 DOI: 10.1016/j.foodchem.2020.128111] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/18/2020] [Accepted: 09/13/2020] [Indexed: 12/26/2022]
Abstract
Licorice is known as a botanical source in medicine and a sweetening agent in food products. Commercial licorice is from the source of wild and cultivated G. uralensis. It was recognized that the material basis of wild and cultivated licorice is different. This study systematically investigated the difference between them by multidimensional analysis technology. The results showed that the content of starch grain, total dietary fibre (TDF), and 11 secondary metabolite components was significantly different in wild and cultivated licorice. principal component analysis (PCA) and orthogonal partial least square (OPLS-DA) analyses showed that the wild and cultivated licorice samples could be clearly separated based on the acquired data of microscopic, macromolecular substance and secondary metabolite analysis. The main markers were starch grain, isoliquiritin apioside, liquirtin apioside and TDF. Additionally, NIR spectroscpy combined with PLS-DA has demonstrated a suitable, fast and nondestructive methodology for authentication of wild and cultivated licorice.
Collapse
Affiliation(s)
- Hanqing Wang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, PR China; Ningxia Research Center of Modern Hui Medicine Engineering and Technology, Ningxia Medical University, Yinchuan 750004, PR China; Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China
| | - Wen Song
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, PR China
| | - Weiwei Tao
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Juanhong Zhang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, PR China
| | - Xia Zhang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, PR China
| | - Jianjun Zhao
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, PR China
| | - Jingjiao Yong
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, PR China
| | - Xiaojuan Gao
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, PR China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, State Key Laboratory Breeding Base of Dao-di Herbs, Beijing 100700, PR China
| |
Collapse
|
15
|
He K, Zhang X, Li Y, Li B, Liu S. Water-insoluble dietary-fibers from Flammulina velutiper used as edible stabilizers for oil-in-water Pickering emulsions. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105519] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|