1
|
de Souza CJF, da Silva CS, Ramos AV, Garcia-Rojas EE, Pierucci APTR. Microencapsulation of sacha inchi oil using tannic acid, yeast cells and xanthan gum as wall materials. Int J Biol Macromol 2025; 305:141227. [PMID: 39978491 DOI: 10.1016/j.ijbiomac.2025.141227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 02/07/2025] [Accepted: 02/16/2025] [Indexed: 02/22/2025]
Abstract
This study investigated the encapsulation of sacha inchi oil using complex coacervation of recovered yeast cells and xanthan gum via double emulsion. Turbidimetric analysis revealed interactions between yeast cells (YC) and tannic acid (TA), which increased turbidity to a 1:3 YC:XG ratio suggesting that TA could be a promising crosslinking agent for enhancing coacervation. Optimal encapsulation efficiency was achieved at a core-to-wall ratio of 1:1 in a core solution concentration of 1 % relative to the total polymer concentration. Under these conditions, the microparticles exhibited an average particle size of 72.44 ± 1.83 μm, with low water activity and water solubility. Morphological analysis suggests that the microcapsules showed a heterogeneous structure formed by different layers of wall material, potentially making them suitable for use in food matrices. The use of TA to form TA-YC:XG microcapsules improved the oxidative stability (39.84 ± 0.43 meqO2/kg of peroxide value after six simulated months) of the microcapsules and slowed down oil release (approximately 20 % in simulated gastric fluid) during the in vitro digestion test. These finds highlight the potential of microencapsulation using recovered yeast cells as a strategy to enhance encapsulation efficiency and protect against oxidation and digestion challenges. This approach opens new possibilities for the use of sacha inchi oil as a food ingredient.
Collapse
Affiliation(s)
- Clitor Júnior Fernandes de Souza
- Program in Food, Nutrition and Health (PPGANS), School of Health Sciences, Federal University of Grande Dourados, Avenue Dourados-Itahum, Km 12, Dourados, MS 79804-970, Brazil; Josué de Castro Nutrition Institute, Federal University of Rio de Janeiro, Health Sciences Center, 373 Carlos Chagas Filho Avenue, Unit J, 21941-902 Rio de Janeiro, Brazil.
| | - Caroline Santos da Silva
- Program in Food, Nutrition and Health (PPGANS), School of Health Sciences, Federal University of Grande Dourados, Avenue Dourados-Itahum, Km 12, Dourados, MS 79804-970, Brazil
| | - Andresa Viana Ramos
- Nanotechnology Engineering Department, Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Edwin Elard Garcia-Rojas
- Agroindustrial Engineering and Technology Laboratory (LETA), Fluminense Federal University (UFF), Av. dos Trabalhadores, 420, Volta Redonda, RJ 27255-125, Brazil
| | - Anna Paola Trindade Rocha Pierucci
- Josué de Castro Nutrition Institute, Federal University of Rio de Janeiro, Health Sciences Center, 373 Carlos Chagas Filho Avenue, Unit J, 21941-902 Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Cai Y, Xu P, Huang R, Huang J, Zhan J, Su J, You R, Lu Y. Biomacromolecular composite microspheres based on sodium alginate and tremella fuciformis polysaccharide for enhanced protection and delivery of camellia oil: A comprehensive study in simulated digestion. Int J Biol Macromol 2025; 310:143481. [PMID: 40286972 DOI: 10.1016/j.ijbiomac.2025.143481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 04/08/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
This study presents the development of a novel polysaccharide biomolecule composite microsphere system based on sodium alginate (SA) and tremella fuciformis polysaccharide (TFP) for the encapsulation and controlled release of camellia oil (CO). The system leverages the synergistic properties of these two bioactive biopolymers to enhance the protection and bioavailability of CO during simulated digestion. The microspheres, characterized by their spherical structure and uniform particle size distribution, were comprehensively evaluated for stability, elemental composition, and thermal stability using techniques such as scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA). The results confirmed a significant improvement in the elemental composition and surface properties of the microspheres due to the incorporation of CO, which enhanced their stability. In simulated digestion experiments, the microspheres demonstrated excellent gastric acid tolerance and intestinal release, achieving a high encapsulation efficiency of 99.59 % and an oil loading capacity of 80.67 %, effectively protecting and targeting the release of CO. Moreover, the microspheres exhibited significant antibacterial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Overall, the SA/TFP/CO microspheres represent an ideal delivery system for CO, demonstrating considerable potential in the fields of food science and biomedicine.
Collapse
Affiliation(s)
- Yuanhong Cai
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Peipei Xu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Runbing Huang
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Jiayi Huang
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Junhua Zhan
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Junpeng Su
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Ruiyun You
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Yudong Lu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian 350117, China.
| |
Collapse
|
3
|
Redjeki SG, Hulwana AF, Aulia RN, Maya I, Chaerunisaa AY, Sriwidodo S. Sacha Inchi ( Plukenetia volubilis): Potential Bioactivity, Extraction Methods, and Microencapsulation Techniques. Molecules 2025; 30:160. [PMID: 39795216 PMCID: PMC11722189 DOI: 10.3390/molecules30010160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/13/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
Sacha inchi (Plukenetia volubilis L.), an oilseed native to the Peruvian rainforest, has garnered attention for its valuable components and its potential applications in the food, pharmaceutical, and nutraceutical industries. Sacha inchi oil is rich in fatty acids, particularly omega-3, omega-6, and omega-9, along with antioxidants such as tocopherols, which collectively contribute to cardiovascular health, antioxidant, anti-inflammatory, antiproliferative, and neuroprotective effects. The susceptibility of the oil to oxidation poses significant challenges for both storage and processing, making it essential to employ microencapsulation technologies to preserve its integrity and extend shelf life. This paper aims to provide a review of the therapeutic potential, extraction methods, and microencapsulation strategies for enhancing the oil's stability and bioavailability. Optimizing both extraction processes and encapsulation strategies would enhance the oil's stability and bioavailability, enabling it to be more effectively utilized in functional foods and therapeutic applications across the nutraceutical and pharmaceutical fields.
Collapse
Affiliation(s)
- Sarah Gustia Redjeki
- Undergraduate Program in Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (S.G.R.); (A.F.H.)
| | - Alfa Fildzah Hulwana
- Undergraduate Program in Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (S.G.R.); (A.F.H.)
| | - Rizqa Nurul Aulia
- Master Program in Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (R.N.A.); (I.M.)
| | - Ira Maya
- Master Program in Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (R.N.A.); (I.M.)
| | - Anis Yohana Chaerunisaa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| | - Sriwidodo Sriwidodo
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| |
Collapse
|
4
|
Rashid MHU, Yi EKJ, Amin NDM, Ismail MN. An Empirical Analysis of Sacha Inchi (Plantae: Plukenetia volubilis L.) Seed Proteins and Their Applications in the Food and Biopharmaceutical Industries. Appl Biochem Biotechnol 2024; 196:4823-4836. [PMID: 37979081 DOI: 10.1007/s12010-023-04783-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Sacha Inchi (Plukenetia volubilis L.) is a plant native in the Amazon rainforest in South America known for its edible seeds, which are rich in lipids, proteins, vitamin E, polyphenols, minerals, and amino acids. Rural communities in developing nations have been using this plant for its health benefits, including as a topical cream for rejuvenating and revitalising skin and as a treatment for muscle pain and rheumatism. Although Sacha Inchi oil has been applied topically to soften skin, treat skin diseases, and heal wounds, its protein-rich seeds have not yet received proper attention for extensive investigation. Proteins in Sacha Inchi seeds are generally known to have antioxidant and antifungal activities and are extensively used nowadays in making protein-rich food alternatives worldwide. Notably, large-scale use of seed proteins has begun in nanoparticle and biofusion technologies related to the human health-benefitting sector. To extract and identify their proteins, the current study examined Sacha Inchi seeds collected from the Malaysian state of Kedah. Our analysis revealed a protein concentration of 73.8 ± 0.002 mg/g of freeze-dried seed flour. Employing liquid chromatography-tandem mass spectrometry (LC-MS/MS) and PEAKS studio analysis, we identified 217 proteins in the seed extract, including 152 with known proteins and 65 unknown proteins. This study marks a significant step towards comprehensively investigating the protein composition of Sacha Inchi seeds and elucidating their potential applications in the food and biopharmaceutical sectors. Our discoveries not only enhance our knowledge of Sacha Inchi's nutritional characteristics but also pave the way for prospective research and innovative advancements in the realms of functional food and health-related domains.
Collapse
Affiliation(s)
- Mohammad Harun Ur Rashid
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia (USM), 11900, Penang, Malaysia
| | - Erica Kok Jia Yi
- International Medical University Malaysia, Kuala Lumpur, Malaysia
| | - Nor Datiakma Mat Amin
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia (USM), 11900, Penang, Malaysia
- Natural Products Division, Forest Research Institute of Malaysia (FRIM), 52109, Kepong, Selangor, Malaysia
| | - Mohd Nazri Ismail
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia (USM), 11900, Penang, Malaysia.
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia (USM), 11800, Penang, Malaysia.
| |
Collapse
|
5
|
Rengifo E, Rios-Mera JD, Huamaní P, Vela-Paredes R, Vásquez J, Saldaña E, Siche R, Tello F. Fish Burgers Fortified with Microencapsulated Sacha Inchi Oil: Effects on Technological and Sensory Properties. Foods 2024; 13:1004. [PMID: 38611310 PMCID: PMC11011811 DOI: 10.3390/foods13071004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 04/14/2024] Open
Abstract
The long-chain omega-3 fatty acids alpha linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) have proven health benefits, but it is not common to find them together in a processed food product. This could lead to healthier and more functional food products, which may have positive implications for consumer health and well-being. This work aimed to fortify a model burger manufactured with fillets of an Amazonian fish (boquichico, Prochilodus nigricans) by adding microencapsulated sacha inchi oil (Plukenetia volubilis, rich in ALA) (MSIO) produced by spray-drying. MSIO was incorporated into the burgers at different levels (0, 3, 4, 5, and 6%). The burgers were characterized by their proximal composition, cooking losses, texture profile, lipid oxidation, sensory profile, overall liking, and fatty acid profile. The results showed that adding MSIO up to concentrations of 5% or 6% increased the instrumental hardness, chewiness, and lipid oxidation in the burgers. However, fortifying the burgers with 3% MSIO was possible without affecting the burgers' sensory properties and overall liking. Regarding the fatty acid profile, the burgers with 3% MSIO had a higher content of polyunsaturated fatty acids, with the ALA, EPA, and DHA types of fatty acids. Therefore, we recommend using this fortification concentration, but future studies should be carried out to improve the oxidative stability of MSIO and the burgers.
Collapse
Affiliation(s)
- Estefany Rengifo
- Departamento de Ingeniería de Alimentos, Facultad de Industrias Alimentarias, Universidad Nacional de la Amazonía Peruana, Iquitos 16002, Peru; (E.R.); (P.H.); (R.V.-P.); (J.V.)
| | - Juan D. Rios-Mera
- Instituto de Investigación de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Jaén, Jaén 06800, Peru;
| | - Patricia Huamaní
- Departamento de Ingeniería de Alimentos, Facultad de Industrias Alimentarias, Universidad Nacional de la Amazonía Peruana, Iquitos 16002, Peru; (E.R.); (P.H.); (R.V.-P.); (J.V.)
| | - Rafael Vela-Paredes
- Departamento de Ingeniería de Alimentos, Facultad de Industrias Alimentarias, Universidad Nacional de la Amazonía Peruana, Iquitos 16002, Peru; (E.R.); (P.H.); (R.V.-P.); (J.V.)
| | - Jessy Vásquez
- Departamento de Ingeniería de Alimentos, Facultad de Industrias Alimentarias, Universidad Nacional de la Amazonía Peruana, Iquitos 16002, Peru; (E.R.); (P.H.); (R.V.-P.); (J.V.)
| | - Erick Saldaña
- Sensory Analysis and Consumer Study Group, Escuela Profesional de Ingeniería Agroindustrial, Universidad Nacional de Moquegua, Moquegua 18001, Peru;
| | - Raúl Siche
- Escuela de Ingeniería Agroindustrial, Facultad de Ciencias Agropecuarias, Universidad Nacional de Trujillo, Trujillo 13011, Peru;
| | - Fernando Tello
- Departamento de Ingeniería de Alimentos, Facultad de Industrias Alimentarias, Universidad Nacional de la Amazonía Peruana, Iquitos 16002, Peru; (E.R.); (P.H.); (R.V.-P.); (J.V.)
| |
Collapse
|
6
|
Mu J, Hu R, Tang Y, Dong W, Zhang Z. Microencapsulation of green coffee oil by complex coacervation of soy protein isolate, sodium casinate and polysaccharides: Physicochemical properties, structural characterisation, and oxidation stability. Int J Biol Macromol 2024; 256:128064. [PMID: 37967606 DOI: 10.1016/j.ijbiomac.2023.128064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 09/20/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023]
Abstract
This study developed a combination method between protein-polysaccharide complex coacervation and freezing drying for the preparation of green coffee oil (GCO) encapsulated powders. Different combinations of soy protein isolate, sodium caseinate, sodium carboxymethylcellulose, and sodium alginate were utilised as wall materials. The occurrence of complexation between the biopolymers were compared to the final emulsion of the individual protein and confirmed by fourier transform infrared spectrometry and X-ray diffraction. The mean diameter and estimated PDI of GCO microcapsules were 72.57-295.00 μm and 1.47-2.02, respectively. Furthermore, the encapsulation efficiency of GCO microcapsules was between 61.47 and 90.01 %. Finally, oxidation kinetics models of GCO and its microcapsules demonstrated that the zero-order model of GCO microcapsules was found to have a higher fit, which could better reflect the quality changes of GCO microcapsules during storage. Different combinations of proteins and polysaccharides exhibited effective oxidative stability against single proteins because of polysaccharide addition. This research revealed that soy protein isolate, sodium caseinate combined with polysaccharides can be used as a promising microencapsulating agent for microencapsulation of GCO, especially with sodium carboxymethylcellulose and sodium alginate, and provided useful information for the potential use of GCO in the development of powder food.
Collapse
Affiliation(s)
- Jingyi Mu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China; College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
| | - Rongsuo Hu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, Hainan 571533, China
| | - Yumei Tang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, Hainan 571533, China
| | - Wenjiang Dong
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, Hainan 571533, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops of Hainan Province, Wanning, Hainan 571533, China; National Center of Important Tropical Crops Engineering and Technology Research, Wanning, Hainan 571533, China.
| | - Zhenzhen Zhang
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China.
| |
Collapse
|
7
|
Rodríguez-Cortina A, Hernández-Carrión M. Microcapsules of Sacha Inchi seed oil (Plukenetia volubilis L.) obtained by spray drying as a potential ingredient to formulate functional foods. Food Res Int 2023; 170:113014. [PMID: 37316081 DOI: 10.1016/j.foodres.2023.113014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/16/2023]
Abstract
Sacha Inchi seed oil (SIO) is rich in omega 3, 6, and 9 fatty acids with important health benefits, but is temperature sensitive. Spray drying is a technology that improves the long-term stability of bioactive compounds. This work aimed to study the effect of three different homogenization techniques on some physical properties and bioavailability of microcapsules of Sacha Inchi seed oil (SIO) emulsions obtained by spray drying. Emulsions were formulated with SIO (5%, w/w), maltodextrin:sodium caseinate as wall material (10%, w/w; 85:15), Tween 20 (1%, w/w) and Span 80 (0.5%, w/w) as surfactants and water up to 100% (w/w). Emulsions were prepared using high-speed (Dispermat D-51580, 18,000 rpm, 10 min), conventional (Mixer K-MLIM50N01, Turbo speed, 5 min), and ultrasound probe (Sonics Materials VCX 750, 35% amplitude, 750 W, 30 min) homogenization. SIO microcapsules were obtained in a Mini Spray B-290 (Büchi) using two inlet temperatures of the drying air (150 and 170 °C). Moisture, density, dissolution rate, hygroscopicity, drying efficiency (EY), encapsulation efficiency (EE), loading capacity, and oil release in digestive fluids in vitro were studied. Results showed that the microcapsules obtained by spray-drying had low moisture values and high encapsulation yield and efficiency values (greater than 50% and 70%, respectively). The thermogravimetric analysis indicates that heat protection was assured, enhancing the shelf life and the ability to withstand thermal food processing. Results suggest that spray-drying encapsulation could be a suitable technology to successfully microencapsulate SIO and enhance the absorption of bioactive compounds in the intestine. This work highlights the use of Latin American biodiversity and spray drying technology to ensure the encapsulation of bioactive compounds. This technology represents an opportunity for the development of new functional foods, improving the safety and quality of conventional foods.
Collapse
Affiliation(s)
- A Rodríguez-Cortina
- Universidad de los Andes, Department of Chemical and Food Engineering. Grupo de Diseño de Productos y Procesos (GDPP). Bogotá, Colombia
| | - M Hernández-Carrión
- Universidad de los Andes, Department of Chemical and Food Engineering. Grupo de Diseño de Productos y Procesos (GDPP). Bogotá, Colombia.
| |
Collapse
|
8
|
Khann B, Polpanich D, Opaprakasit P, Wongngam Y, Thananukul K, Kaewsaneha C. Fabrication of Sacha Inchi Oil-Loaded Microcapsules Employing Natural-Templated Lycopodium clavatum Spores and Their Pressure-Stimuli Release Behavior. ACS OMEGA 2023; 8:20937-20948. [PMID: 37323417 PMCID: PMC10268288 DOI: 10.1021/acsomega.3c01698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023]
Abstract
Polymeric particles have attracted vast attention for use in various fields, especially as drug carriers and cosmetics, due to their excellent ability to protect active ingredients from the environment until reaching a target site. However, these materials are commonly produced from conventional synthetic polymers, which impose adverse effects on the environment due to their non-degradable nature, leading to waste accumulation and pollution in the ecosystem. This work aims to utilize naturally occurring Lycopodium clavatum spores to encapsulate sacha inchi oil (SIO), which contains active compounds with antioxidant activity, by applying a facile passive loading/solvent diffusion-assisted method. Sequential chemical treatments by acetone, potassium hydroxide, and phosphoric acid were employed to remove native biomolecules from the spores before encapsulation effectively. These are mild and facile processes compared to other synthetic polymeric materials. Scanning electron microscopy and Fourier-transform infrared spectroscopy revealed the clean, intact, and ready-to-use microcapsule spores. After the treatments, the structural morphology of the treated spores remained significantly unchanged compared to the untreated counterparts. With an oil/spore ratio of 0.75:1.00 (SIO@spore-0.75), high encapsulation efficiency and capacity loading values of 51.2 and 29.3%, respectively, were obtained. Using antioxidant assay (DPPH), the IC50 of SIO@spore-0.75 was 5.25 ± 3.04 mg/mL, similar to that of pure SIO (5.51 ± 0.31 mg/mL). Under pressure stimuli (1990 N/cm3, equivalent to a gentle press), a high amount of SIO was released (82%) from the microcapsules within 3 min. At an incubation time of 24 h, cytotoxicity tests showed a high cell viability of 88% at the highest concentration of the microcapsules (10 mg/mL), reflecting biocompatibility. The prepared microcapsules have a high potential for cosmetic applications, especially as functional scrub beads in facial washing products.
Collapse
Affiliation(s)
- Bunthoeurn Khann
- School
of Integrated Science and Innovation, Sirindhorn
International Institute of Technology (SIIT), Thammasat University, Pathum Thani 12121, Thailand
| | - Duangporn Polpanich
- National
Nanotechnology Center (NANOTEC), National
Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum
Thani 12120, Thailand
| | - Pakorn Opaprakasit
- School
of Integrated Science and Innovation, Sirindhorn
International Institute of Technology (SIIT), Thammasat University, Pathum Thani 12121, Thailand
| | - Yodsathorn Wongngam
- National
Nanotechnology Center (NANOTEC), National
Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum
Thani 12120, Thailand
| | - Kamonchanok Thananukul
- School
of Integrated Science and Innovation, Sirindhorn
International Institute of Technology (SIIT), Thammasat University, Pathum Thani 12121, Thailand
| | - Chariya Kaewsaneha
- School
of Integrated Science and Innovation, Sirindhorn
International Institute of Technology (SIIT), Thammasat University, Pathum Thani 12121, Thailand
| |
Collapse
|
9
|
Xiao S, Ahn DU. Co-encapsulation of fish oil with essential oils and lutein/curcumin to increase the oxidative stability of fish oil powder. Food Chem 2023; 410:135465. [PMID: 36641907 DOI: 10.1016/j.foodchem.2023.135465] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/12/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
The oxidation-resistant and multi-functional fish oil powders were produced by co-encapsulating fish oil with essential oils, lutein, and curcumin. The ovalbumin/alginate complex was used as the wall, and the wall-to-oil ratio was fixed at 1:1 based on yield, oil recovery, and internalization efficiency (IE). Surface oil was removed to better understand the characteristics of the fish oil powders. Scanning electron microscopy (SEM) results indicated that the freeze-dried fish oil powders had irregular shapes with visible pores on the surface. Covalent bonds and electrostatic interactions within the ovalbumin/alginate complex were detected through FTIR. The garlic essential oil-added sample showed the strongest oxidative stability throughout the storage period (30 days). This work showed that fish oil had been encapsulated successfully and multi-functional fish oil powders could be produced by dissolving lipophilic bioactive compounds in fish oil before encapsulation.
Collapse
Affiliation(s)
- Shulan Xiao
- Department of Animal Science, Iowa State University, Ames, IA 50011, United States; Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, United States.
| | - Dong Uk Ahn
- Department of Animal Science, Iowa State University, Ames, IA 50011, United States.
| |
Collapse
|
10
|
Chen Q, Dong L, Li Y, Liu Y, Xia Q, Sang S, Wu Z, Xiao J, Liu L, Liu L. Research advance of non-thermal processing technologies on ovalbumin properties: The gelation, foaming, emulsification, allergenicity, immunoregulation and its delivery system application. Crit Rev Food Sci Nutr 2023; 64:7045-7066. [PMID: 36803106 DOI: 10.1080/10408398.2023.2179969] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Ovalbumin (OVA) is the most abundant protein in egg white, with excellent functional properties (e.g., gelling, foaming, emulsifying properties). Nevertheless, OVA has strong allergenicity, which is usually mediated by specific IgE thus results in gut microbiota dysbiosis and causes atopic dermatitis, asthma, and other inflammation actions. Processing technologies and the interactions with other active ingredients can influence the functional properties and allergic epitopes of OVA. This review focuses on the non-thermal processing technologies effects on the functional properties and allergenicity of OVA. Moreover, the research advance about immunomodulatory mechanisms of OVA-mediated food allergy and the role of gut microbiota in OVA allergy was summarized. Finally, the interactions between OVA and active ingredients (such as polyphenols and polysaccharides) and OVA-based delivery systems construction are summarized. Compared with traditional thermal processing technologies, novel non-thermal processing techniques have less damage to OVA nutritional value, which also improve OVA properties. OVA can interact with various active ingredients by covalent and non-covalent interactions during processing, which can alter the structure or allergic epitopes to affect OVA/active components properties. The interactions can promote OVA-based delivery systems construction, such as emulsions, hydrogels, microencapsulation, nanoparticles to encapsulate bioactive components and monitor freshness for improving foods quality and safety.
Collapse
Affiliation(s)
- Qin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Lezhen Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Ying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Yahui Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Qiang Xia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Shangyuan Sang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Zufang Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Jianbo Xiao
- Department Analytic & Food Chemistry, Faculty of Science, University of Vigo, Vigo, Spain
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| |
Collapse
|
11
|
Cortés-Camargo S, Román-Guerrero A, Alvarez-Ramirez J, Alpizar-Reyes E, Velázquez-Gutiérrez SK, Pérez-Alonso C. Microstructural influence on physical properties and release profiles of sesame oil encapsulated into sodium alginate-tamarind mucilage hydrogel beads. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2023. [DOI: 10.1016/j.carpta.2023.100302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023] Open
|
12
|
Controlled Release of Vitamin U from Microencapsulated Brassica oleracea L. var. capitata Extract for Peptic Ulcer Treatment. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02965-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Rodrigues JB, Prata AS, Bollini HMA. Encapsulation of chia (
Salvia hispanica
) oil on an industrial scale to protect the omega‐3 against ultra‐high‐temperature (
UHT
) damage and lipid oxidation. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Juliana Burger Rodrigues
- Department of Food and Nutrition School of Food Engineering (FEA), University of Campinas (UNICAMP) Campinas São Paulo Brazil
| | - Ana Silvia Prata
- Department of Food Engineering School of Food Engineering (FEA), University of Campinas (UNICAMP) Campinas São Paulo Brazil
| | - Helena Maria André Bollini
- Department of Food and Nutrition School of Food Engineering (FEA), University of Campinas (UNICAMP) Campinas São Paulo Brazil
| |
Collapse
|
14
|
Rodríguez-Cortina A, Rodríguez-Cortina J, Hernández-Carrión M. Obtention of Sacha Inchi ( Plukenetia volubilis Linneo) Seed Oil Microcapsules as a Strategy for the Valorization of Amazonian Fruits: Physicochemical, Morphological, and Controlled Release Characterization. Foods 2022; 11:foods11243950. [PMID: 36553691 PMCID: PMC9777982 DOI: 10.3390/foods11243950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Sacha inchi seed oil (SIO) is a promising ingredient for the development of functional foods due to its large amount of high-value compounds; however, it is prone to oxidation. This work aimed to obtain SIO microcapsules using conventional and ultrasound probe homogenization and using spray- and freeze-drying technologies as effective approaches to improve the long-term stability of functional compounds. The application of ultrasound probe homogenization improved the rheological and emulsifying properties and decreased the droplet size and interfacial tension of emulsions. The microcapsules obtained by both drying technologies had low moisture (1.64-1.76) and water activity (0.03-0.11) values. Spray-dried microcapsules showed higher encapsulation efficiency (69.90-70.18%) compared to freeze-dried ones (60.02-60.16%). Thermogravimetric analysis indicated that heat protection was assured, enhancing the shelf-life. Results suggest that both drying technologies are considered effective tools to produce stable microcapsules. However, spray-drying technology is positioned as a more economical alternative to freeze-drying.
Collapse
Affiliation(s)
- Aureliano Rodríguez-Cortina
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| | - Jader Rodríguez-Cortina
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria—Agrosavia, Mosquera 250047, Colombia
| | - María Hernández-Carrión
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia
- Correspondence: ; Tel.: +57-1339-49-49 (ext. 1802)
| |
Collapse
|
15
|
Amani F, Azadi A, Rezaei A, Kharazmi MS, Jafari SM. Preparation of soluble complex carriers from Aloe vera mucilage/gelatin for cinnamon essential oil: Characterization and antibacterial activity. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Zhang L, Zhang M, Ju R, Mujumdar AS, Deng D. Recent advances in essential oil complex coacervation by efficient physical field technology: A review of enhancing efficient and quality attributes. Crit Rev Food Sci Nutr 2022; 64:3384-3406. [PMID: 36226715 DOI: 10.1080/10408398.2022.2132207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Although complex coacervation could improve the water solubility, thermal stability, bioavailability, antioxidant activity and antibacterial activity of essential oils (EOs). However, some wall materials (such as proteins and polysaccharides) with water solubility and hydrophobic nature limited their application in complex coacervation. In order to improve the properties of EO complex coacervates, some efficient physical field technology was proposed. This paper summarizes the application and functional properties of EOs in complex coacervates, formation and controlled-release mechanism, as well as functions of EO complex coacervates. In particular, efficient physical field technology as innovative technology, such as high pressure, ultrasound, cold plasma, pulsed electric fields, electrohydrodynamic atomization and microwave technology improved efficient and quality attributes of EO complex coacervates are reviewed. The physical fields could modify the gelling, structural, textural, emulsifying, rheological properties, solubility of wall material (proteins and polysaccharides), which improve the properties of EO complex coacervates. Overall, EOs complex coacervates possess great potential to be used in the food industry, including high bioavailability, excellent antioxidant capacity and gut microbiota in vivo, masking the sensation of off-taste or flavor, favorable antimicrobial capacity.
Collapse
Affiliation(s)
- Lihui Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, Jiangsu, China
| | - Ronghua Ju
- Agricultural and Forestry Products Deep Processing Technology and Equipment Engineering Center of Jiangsu Province, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| | - Dewei Deng
- Zhengzhou Xuemailong Food Flavor Co, Zhengzhou, Henan, China
| |
Collapse
|
17
|
Almond gum-sodium caseinate complexes for loading propolis extract: Characterization, antibacterial activity, release, and in-vitro cytotoxicity. Food Chem 2022; 405:134801. [DOI: 10.1016/j.foodchem.2022.134801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/13/2022] [Accepted: 10/26/2022] [Indexed: 11/22/2022]
|
18
|
Tao X, Shi H, Cao A, Cai L. Understanding of physicochemical properties and antioxidant activity of ovalbumin-sodium alginate composite nanoparticle-encapsulated kaempferol/tannin acid. RSC Adv 2022; 12:18115-18126. [PMID: 35874031 PMCID: PMC9245490 DOI: 10.1039/d2ra02708a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/09/2022] [Indexed: 11/21/2022] Open
Abstract
In this research, ovalbumin (OVA) and sodium alginate (SA) were used as the materials to prepare an OVA–SA composite carrier, which protected and encapsulated the hydrophobic kaempferol (KAE) and the hydrophilic tannic acid (TA) (OVA–SA, OVA–TA–SA, OVA–KAE–SA, and OVA–TA–KAE–SA). Results showed that the observation of small diffraction peaks in carriers proved the successful encapsulation of KAE/TA. The protein conformation of the composite nanoparticles changed. OVA–TA–SA composite nanoparticles had the highest α-helix content and the fewest random coils, so the protein structure of it had the strongest stability. OVA–TA–KAE–SA composite nanoparticles had the strongest system stability and thermal stability, which might be due to the synergistic effect of the two polyphenols, suggesting the encapsulation of KAE/TA increased the system stability and the thermal stability of OVA–SA composite nanoparticles. Additionally, the composite nanoparticles were endowed with antioxidant ability and antibacterial ability (against Staphylococcus aureus and Escherichia coli) in the order OVA–TA–SA > OVA–TA–KAE–SA > OVA–KAE–SA based on the difference in antibacterial diameter (D, mm) and square (S, mm2), indicating that polyphenols enhanced the antibacterial and antioxidant ability of OVA–SA composite nanoparticles, and the enhancement effect of TA was stronger than that of KAE. These results provide a theoretical basis for the application of OVA–SA composite nanoparticles in the delivery of bioactive compounds. Ovalbumin (OVA) and sodium alginate (SA) were used as materials to prepare an OVA–SA composite carrier, which encapsulated the hydrophobic kaempferol (KAE) and the hydrophilic tannic acid (TA) (OVA–SA, OVA–TA–SA, OVA–KAE–SA, and OVA–TA–KAE–SA).![]()
Collapse
Affiliation(s)
- Xiaoya Tao
- Ningbo Research Institute, College of Biosystems Engineering and Food Science, Zhejiang University Ningbo 315100 China +86 571 88982726 +86 571 88982726.,Institute for Innovative Development of Food Industry, Institute for Advanced Study, Shenzhen University Shenzhen 518060 China
| | - Hang Shi
- College of Food Science and Engineering, Bohai University Jinzhou 121013 China
| | - Ailing Cao
- Hangzhou Customs District Hangzhou 310007 China
| | - Luyun Cai
- Ningbo Research Institute, College of Biosystems Engineering and Food Science, Zhejiang University Ningbo 315100 China +86 571 88982726 +86 571 88982726
| |
Collapse
|
19
|
Amani F, Rezaei A, Damavandi MS, Doost AS, Jafari SM. Colloidal carriers of almond gum/gelatin coacervates for rosemary essential oil: Characterization and in-vitro cytotoxicity. Food Chem 2022; 377:131998. [PMID: 34999451 DOI: 10.1016/j.foodchem.2021.131998] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/04/2021] [Accepted: 11/25/2021] [Indexed: 11/04/2022]
Abstract
The potential of almond gum and gelatin complex coacervates as a colloidal carrier for rosemary essential oil (REO) was investigated along with in-vitro gastrointestinal release and cytotoxicity. The optimum formulation (1 gelatin:2 almond gum and 7% (w/w) REO) was selected based on encapsulation efficiency (43.6%) and encapsulation yield (99.3%). The particle size was 6.9 µm with a high negative zeta-potential (-37.3 mV). FTIR and XRD data revealed that REO was properly loaded within carriers and there were interactions between gelatin and almond gum. Thermal stability of REO was enhanced after complex coacervation according to TGA. REO released slowly from carriers under simulated gastrointestinal fluid. Cytotoxicity of pure REO and REO-loaded complexes was evaluated on 4 T1 cell lines. Encapsulation of REO caused a reduction in toxicity. Overall, coacervates of gelatin-almond gum could be a promising carrier to enhance the application of bioactives in the food and drug industry with low toxicity.
Collapse
Affiliation(s)
- Fateme Amani
- Department of Food Science and Technology, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, P.O. Box: 81746-73461, Isfahan, Iran
| | - Atefe Rezaei
- Department of Food Science and Technology, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, P.O. Box: 81746-73461, Isfahan, Iran.
| | - Mohammad Sadegh Damavandi
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Sedaghat Doost
- Particle and Interfacial Technology Group (PaInT), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Seid Mahdi Jafari
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain; Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
20
|
Characterization and controlled release of pequi oil microcapsules for yogurt application. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
New bio‐epoxy from sacha inchi oil by epoxidation reaction. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
22
|
Tang L, Chen YH, Wang Q, Wang XH, Wu QX, Ding ZF. Microencapsulation of functional ovalbumin and bovine serum albumin with polylysine-alginate complex for sustained protein vehicle's development. Food Chem 2022; 368:130902. [PMID: 34438176 DOI: 10.1016/j.foodchem.2021.130902] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/14/2022]
Abstract
Overcoming harsh gastric environment is still a challenging to bioactive proteins, microencapsulation provides one strategy in designing this protection barrier. In this work, bovine serum albumin and ovalbumin were chosen as model proteins, while polylysine-alginate complex was fabricated for microencapsulation purpose. Both of the protein-loaded microcapsules had regular internal microstructures. The model protein's embedding increased the thermal stability of the microcapsules. Both of the protein-loaded microcapsules had a slow release rate in simulated gastric fluids (pH 3.0), while a sustained release profile in simulated intestinal fluids (pH 6.4), indicating an excellent tolerance to the acidic gastric environment. The microencapsulation process was mild and had no influence on the protein's molecular weight, while a slight peak shifting occurred in the secondary structure of the released proteins. The developed microcapsules could be explored as a kind of vehicle for bioactive proteins applied in functional foods, health care products and medical formulations.
Collapse
Affiliation(s)
- Ling Tang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Yi-Hong Chen
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Qiong Wang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Xiao-Hui Wang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Qing-Xi Wu
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, China; Key Laboratory of Eco-engineering and Biotechnology of Anhui Province, Hefei, Anhui 230601, China; Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada.
| | - Zhi-Feng Ding
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
23
|
Ferreira S, Nicoletti VR. Use of a tubular heat exchanger to achieve complex coacervation in a semi-continuous process: Effects of capsules curing temperature and shear rate. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Cárdenas DM, Gómez Rave LJ, Soto JA. Biological Activity of Sacha Inchi ( Plukenetia volubilis Linneo) and Potential Uses in Human Health: A Review. Food Technol Biotechnol 2021; 59:253-266. [PMID: 34759758 PMCID: PMC8542186 DOI: 10.17113/ftb.59.03.21.6683] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/13/2021] [Indexed: 11/20/2022] Open
Abstract
Sacha inchi (Plukenetia volubilis Linneo) is an ancestral plant originating in the Amazon jungle that has been adopted as a food source due to its high nutritional value, which has gradually been recognized to have potential benefits for human health. Diverse prospective studies have evaluated the effect of consuming components from the plant, derivatives from its seeds, leaves and shell on preventing the risk of cardiovascular disease, chronic inflammatory disease, dermatitis and controlling tumor proliferation, especially given its recognized high content of essential fatty acids, phenolic compounds and vitamin E, showing antioxidant, hypolipidemic, immunomodulation and emollient activity, as well as the capacity to remove heavy metals from aqueous solutions. This review offers a complete description of the existing information on the use and biological activity of P. volubilis L., based on its essential lipid components and evidenced on its use in the field of human health, in prevention, therapeutic and nutritional contexts, along with industrial uses, making it a promising bioresource.
Collapse
Affiliation(s)
- Denny M Cárdenas
- Universidad de Santander, Facultad de Ciencias Médicas y de la Salud, Grupo de Investigación BIOGEN, Avenida 4 calle 10N-61, 540001 Cúcuta, Colombia
| | - Lyz Jenny Gómez Rave
- Institución Universitaria Colegio Mayor de Antioquia, Facultad de Ciencias de la Salud, Masira Research Institute, Calle 70 No. 55-210, Bucaramanga, Colombia
| | - Javier Andrés Soto
- Universidad de Santander, Facultad de Ciencias Médicas y de la Salud, Grupo de Investigación BIOGEN, Avenida 4 calle 10N-61, 540001 Cúcuta, Colombia
| |
Collapse
|
25
|
The Improved Properties of Zein Encapsulating and Stabilizing Sacha Inchi Oil by Surfactant Combination of Lecithin and Tween 80. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02706-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
26
|
Microencapsulation of hemp seed oil by pea protein isolate−sugar beet pectin complex coacervation: Influence of coacervation pH and wall/core ratio. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106423] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Comunian TA, Drusch S, Brodkorb A. Advances of plant-based structured food delivery systems on the in vitro digestibility of bioactive compounds. Crit Rev Food Sci Nutr 2021; 62:6485-6504. [PMID: 33775182 DOI: 10.1080/10408398.2021.1902262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Food researchers are currently showing a growing interest in in vitro digestibility studies due to their importance for obtaining food products with health benefits and ensuring a balanced nutrient intake. Various bioactive food compounds are sensitive to the digestion process, which results in a lower bioavailability in the gut. The main objective of structured food delivery systems is to promote the controlled release of these compounds at the desired time/place, in addition to protecting them during digestion processes. This review provides an overview of the influence of structured delivery systems on the in vitro digestive behavior. The main delivery systems are summarized, the pros and cons of different structures are outlined, and examples of several studies that optimized the use of these structured systems are provided. In addition, we have reviewed the use of plant-based systems, which have been of interest to food researchers and the food industry because of their health benefits, improved sustainability as well as being an alternative for vegetarian, vegan and consumers suffering from food allergies. In this context, the review provides new insights and comprehensive knowledge regarding the influence of plant-based structured systems on the digestibility of encapsulated compounds and proteins/polysaccharides used in the encapsulation process.
Collapse
Affiliation(s)
- Talita A Comunian
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland.,Department of Food Technology and Food Material Science, Technische Universität Berlin, Berlin, Germany
| | - Stephan Drusch
- Department of Food Technology and Food Material Science, Technische Universität Berlin, Berlin, Germany
| | - André Brodkorb
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland
| |
Collapse
|
28
|
Complex Coacervates Formed between Whey Protein Isolate and Carboxymethylcellulose for Encapsulation of β-Carotene from Sacha Inchi Oil: Stability, In Vitro Digestion and Release Kinetics. FOOD BIOPHYS 2021. [DOI: 10.1007/s11483-021-09670-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
da Silva Soares B, de Carvalho CWP, Garcia-Rojas EE. Microencapsulation of Sacha Inchi Oil by Complex Coacervates using Ovalbumin-Tannic Acid and Pectin as Wall Materials. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02594-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Nguyen HC, Vuong DP, Nguyen NTT, Nguyen NP, Su CH, Wang FM, Juan HY. Aqueous enzymatic extraction of polyunsaturated fatty acid–rich sacha inchi (Plukenetia volubilis L.) seed oil: An eco-friendly approach. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109992] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
31
|
Otálora MC, Camelo R, Wilches-Torres A, Cárdenas-Chaparro A, Gómez Castaño JA. Encapsulation Effect on the In Vitro Bioaccessibility of Sacha Inchi Oil ( Plukenetia volubilis L.) by Soft Capsules Composed of Gelatin and Cactus Mucilage Biopolymers. Polymers (Basel) 2020; 12:polym12091995. [PMID: 32887385 PMCID: PMC7564295 DOI: 10.3390/polym12091995] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 12/12/2022] Open
Abstract
Sacha inchi (Plukenetia volubilis L.) seed oil is a rich source of polyunsaturated fatty acids (PUFAs) that are beneficial for human health, whose nutritional efficacy is limited because of its low water solubility and labile bioaccessibility (compositional integrity). In this work, the encapsulation effect, using blended softgels of gelatin (G) and cactus mucilage (CM) biopolymers, on the PUFAs’ bioaccessibility of P. volubilis seed oil was evaluated during in vitro simulated digestive processes (mouth, gastric, and intestinal). Gas chromatography–mass spectrometry (GC–MS) and gas chromatography with a flame ionization detector (GC–FID) were used for determining the chemical composition of P. volubilis seed oil both before and after in vitro digestion. The most abundant compounds in the undigested samples were α-linolenic, linoleic, and oleic acids with 59.23, 33.46, and 0.57 (g/100 g), respectively. The bioaccessibility of α-linolenic, linoleic, and oleic acid was found to be 1.70%, 1.46%, and 35.8%, respectively, along with the presence of some oxidation products. G/CM soft capsules are capable of limiting the in vitro bioaccessibility of PUFAs because of the low mucilage ratio in their matrix, which influences the enzymatic hydrolysis of gelatin, thus increasing the release of the polyunsaturated content during the simulated digestion.
Collapse
Affiliation(s)
- María Carolina Otálora
- Grupo de Investigación en Ciencias Básicas (NÚCLEO), Facultad de Ciencias e Ingeniería, Universidad de Boyacá, 150001 Tunja, Boyacá, Colombia;
- Correspondence: (M.C.O.); (J.A.G.C.)
| | - Robinson Camelo
- Grupo Química-Física Molecular y Modelamiento Computacional (QUIMOL), Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia (UPTC), 150001 Tunja, Boyacá, Colombia; (R.C.); (A.C.-C.)
| | - Andrea Wilches-Torres
- Grupo de Investigación en Ciencias Básicas (NÚCLEO), Facultad de Ciencias e Ingeniería, Universidad de Boyacá, 150001 Tunja, Boyacá, Colombia;
| | - Agobardo Cárdenas-Chaparro
- Grupo Química-Física Molecular y Modelamiento Computacional (QUIMOL), Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia (UPTC), 150001 Tunja, Boyacá, Colombia; (R.C.); (A.C.-C.)
| | - Jovanny A. Gómez Castaño
- Grupo Química-Física Molecular y Modelamiento Computacional (QUIMOL), Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia (UPTC), 150001 Tunja, Boyacá, Colombia; (R.C.); (A.C.-C.)
- Correspondence: (M.C.O.); (J.A.G.C.)
| |
Collapse
|
32
|
Wang L, Li T, Xin B, Liu Y, Zhang F. Preparation and characterization of wormwood-oil-contained microcapsules. J Microencapsul 2020; 37:324-331. [DOI: 10.1080/02652048.2020.1749320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Lei Wang
- School of Textiles and Fashion Engineering, Shanghai University of Engineering Science, Shanghai, China
| | - Tingxiao Li
- School of Textiles and Fashion Engineering, Shanghai University of Engineering Science, Shanghai, China
| | - Binjie Xin
- School of Textiles and Fashion Engineering, Shanghai University of Engineering Science, Shanghai, China
| | - Yan Liu
- School of Textiles and Fashion Engineering, Shanghai University of Engineering Science, Shanghai, China
| | - Fuli Zhang
- The Naval Medical Research Institute, Naval Medical Research Institute, Shanghai, China
| |
Collapse
|
33
|
Rao SQ, Xu GW, Zeng HW, Zheng XF, Hu Q, Wang QY, Yang ZQ, Jiao XA. Physicochemical and antibacterial properties of fabricated ovalbumin–carvacrol gel nanoparticles. Food Funct 2020; 11:5133-5141. [DOI: 10.1039/d0fo00755b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The applications of carvacrol are limited due to its poor stability, water solubility and high volatility. Herein we fabricated ovalbumin–carvacrol gel nanoparticles and then improved solubility, stability and antibacterial property of carvacrol.
Collapse
Affiliation(s)
- Sheng-qi Rao
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
- Postdoctoral Mobile Station of Biology
| | - Guang-wei Xu
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| | - Hua-wei Zeng
- Department of Bioengineering
- College of Life Science
- Huaibei Normal University
- Huaibei 235000
- China
| | - Xiang-feng Zheng
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| | - Qin Hu
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| | - Qing-yan Wang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology
- Nanning 530226
- China
| | - Zhen-quan Yang
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality
| | - Xin-an Jiao
- Postdoctoral Mobile Station of Biology
- College of Bioscience and Biotechnology
- Yangzhou University
- Yangzhou 225009
- China
| |
Collapse
|
34
|
Chasquibol NA, Gallardo G, Gómez-Coca RB, Trujillo D, Moreda W, Pérez-Camino MC. Glyceridic and Unsaponifiable Components of Microencapsulated Sacha Inchi ( Plukenetia huayllabambana L. and Plukenetia volubilis L.) Edible Oils. Foods 2019; 8:foods8120671. [PMID: 31842305 PMCID: PMC6963851 DOI: 10.3390/foods8120671] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/18/2022] Open
Abstract
Sacha inchi (Plukenetia huayllabambana L. and Plukenetia volubilis L.) edible oils were microencapsulated and the lipid fraction of the microparticles was characterized. Hi-cap®, Capsule®, Arabic gum, and the binary combination of Arabic gum + maltodextrin and the ternary combination of Arabic gum + maltodextrin + whey protein isolate, were used as coating materials for the encapsulation process using spray-drying. The surface and the total oils obtained from the microparticles were evaluated in terms of fatty acid composition, minor glyceride polar compounds, polymers, oxidized triglycerides, diglycerides, monoglycerides, and free fatty acids, along with their unsaponifiable components, sterols, and tocopherols. Differences between the original oils and the microencapsulated ones were determined. The most remarkable results included the presence of polymers when there were none in the original oils, the slight loss in ω3-fatty acids, up to 6%, the loss in tocopherols, in some of the cases around 30%, the maintaining of the phytosterol in their initial levels and the presence of cholesterol in the oils encapsulated with whey protein isolate.
Collapse
Affiliation(s)
- Nancy A. Chasquibol
- Center of Studies and Innovation of Functional Foods (CEIAF)-Faculty of Industrial Engineering, Institute of Scientific Research, IDIC, University of Lima, Avda. Javier Prado Este, 4600 Surco, Lima 15023, Peru;
| | - Gabriela Gallardo
- National Institute of Industrial Technology, INTI- Av. Gral. Paz 5445, San Martín, Buenos Aires B1650WAB, Argentina;
| | - Raquel B. Gómez-Coca
- Department of Characterization and Quality of Lipids, Instituto de la Grasa-CSIC, Ctra. Sevilla-Utrera km 1, Campus University Pablo de Olavide. Bg. 46, E-41013 Sevilla, Spain; (R.B.G.-C.); (D.T.); (W.M.)
| | - Diego Trujillo
- Department of Characterization and Quality of Lipids, Instituto de la Grasa-CSIC, Ctra. Sevilla-Utrera km 1, Campus University Pablo de Olavide. Bg. 46, E-41013 Sevilla, Spain; (R.B.G.-C.); (D.T.); (W.M.)
| | - Wenceslao Moreda
- Department of Characterization and Quality of Lipids, Instituto de la Grasa-CSIC, Ctra. Sevilla-Utrera km 1, Campus University Pablo de Olavide. Bg. 46, E-41013 Sevilla, Spain; (R.B.G.-C.); (D.T.); (W.M.)
| | - M. Carmen Pérez-Camino
- Department of Characterization and Quality of Lipids, Instituto de la Grasa-CSIC, Ctra. Sevilla-Utrera km 1, Campus University Pablo de Olavide. Bg. 46, E-41013 Sevilla, Spain; (R.B.G.-C.); (D.T.); (W.M.)
- Correspondence:
| |
Collapse
|