1
|
Liu F, Zhang Y, Zeng M, Duan F, Wang J. Quantified low voltage electrostatic field: The effects of intensity on cherry tomato preservation and mechanism. Food Chem 2025; 463:141100. [PMID: 39244993 DOI: 10.1016/j.foodchem.2024.141100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/19/2024] [Accepted: 08/31/2024] [Indexed: 09/10/2024]
Abstract
Low voltage electrostatic field (LVEF), a novel non-thermal processing technology, shows promise for food preservation. However, the absence of clear definition and quantification of the core concept "low voltage" obstructs the effective application of LVEF. This study assessed the efficiency of various LVEF intensities (100, 200, 300 V) on cherry tomato preservation, revealing significant differences in preservation efficiency. Compared to the control, samples treated with different intensities showed varied reductions in weight loss (6.26-25.45 %), firmness changes (5.17-28.91 %), and decay incidence (47.91-70.89 %). Quantitative analysis elucidated that the differential preservation efficiency may arise from a dose-response relationship between electric field strength and hydrogen peroxide (H2O2) content, identifying an optimal H2O2 content range of 21.18-27.01 mmol kg-1 for the effective preservation of cherry tomatoes under LVEF. These findings highlight the importance of precise LVEF intensity control for effective food preservation and offer insights for developing optimal LVEF treatment intensities for diverse produce.
Collapse
Affiliation(s)
- Fengyi Liu
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Department of Packaging Engineering, Jiangnan University, 1800 Li Hu Avenue, Wuxi 214122, Jiangsu, China
| | - Yijie Zhang
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Department of Packaging Engineering, Jiangnan University, 1800 Li Hu Avenue, Wuxi 214122, Jiangsu, China
| | - Min Zeng
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Department of Packaging Engineering, Jiangnan University, 1800 Li Hu Avenue, Wuxi 214122, Jiangsu, China
| | - Fang Duan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Li Hu Avenue, Wuxi 214122, Jiangsu, China.
| | - Jun Wang
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Department of Packaging Engineering, Jiangnan University, 1800 Li Hu Avenue, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
2
|
Wang Y, Sun D, Zhang Y, Zhou Y, Jin R, Peng X, Li J. Preparation and Efficacy of Microemulsion Carvacrol-Based Fruit and Vegetable Cleaner and Its Application on Cherry Tomatoes. Foods 2025; 14:152. [PMID: 39856817 PMCID: PMC11764712 DOI: 10.3390/foods14020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/16/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Carvacrol, a natural plant compound with antibacterial, antioxidant, and various biological activities, serves as the basis for developing a micro-emulsion fruit and vegetable cleaner. The study found that carvacrol demonstrated a minimum inhibitory concentration (MIC) ranging between 0.25 and 0.5 mg/mL against four foodborne pathogenic bacteria and three spoilage fungi. The formulated cleaner, containing 67 mg/mL of carvacrol, demonstrated superior characteristics (a particle size of 228 nm, an absolute zeta potential of 21.4 mv, and a stability coefficient of 91.2%). Remarkably, the cleaner remained stable when stored at room temperature for at least 3 months. Its efficacy against pesticides ranged from 76% to 91%. The cleaning effectively inhibited microbial colonies and the decay rate of cherry tomatoes during storage at 4 °C. Furthermore, the cleaning treatment was found to minimize changes in color and hardness. Overall, this study provides evidence that a fruit and vegetable cleaner based on carvacrol enhances the safety of the food industry effectively.
Collapse
Affiliation(s)
- Yanshuo Wang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Dianjun Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yinghan Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yichong Zhou
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Ruyi Jin
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Xiaoli Peng
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Jian Li
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Green and Low-Carbon Processing Technology for Plant-Based Food of China National Light Industry Council, Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|
3
|
Wang X, Wang B, Jin B, Wang W, Zhu X, Liu W, Yang L, Wei X. AmiRNA Technology Enhances Tomato Disease Resistance by Suppressing Plant-Pathogen Interaction Pathways through Inhibiting TYLCV Replication. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26558-26571. [PMID: 39545825 DOI: 10.1021/acs.jafc.4c07332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Tomato yellow leaf curl virus disease has seriously threatened the quality and yield of tomatoes. In this study, we investigated the role of amiRNA technology in disease resistance in tomatoes (cherry tomato and large-fruited tomato) and analyzed the physiological and molecular mechanisms of disease resistance in transgenic plants. TYLCV contains six functional genes, of which the C1, C2, and V1 genes have more phosphorylation sites and glycosylation sites, and the protein structure is more complex. The virus replication was inhibited, the peroxidation of membrane lipids was reduced, and disease resistance was enhanced in all transgenic cherry tomato (J6) plants in which the C1, C2, and V1 genes were silenced, respectively. Similarly, silencing of the C1 gene enhanced disease resistance in large-fruited tomatoes. In conclusion, amiRNA technology hinders viral replication, leading to reduced activity of the tomato plant-pathogen interaction pathway and weakening tomato-virus interactions, thereby improving disease resistance.
Collapse
Affiliation(s)
- Xian Wang
- Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
- Gansu Key Lab of Crop Genetic & Germplasm Enhancement, Lanzhou 730070, China
| | - Baoqiang Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
- Gansu Key Lab of Crop Genetic & Germplasm Enhancement, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Baoxia Jin
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
- Gansu Key Lab of Crop Genetic & Germplasm Enhancement, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Weijie Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
- Gansu Key Lab of Crop Genetic & Germplasm Enhancement, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaolin Zhu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
- Gansu Key Lab of Crop Genetic & Germplasm Enhancement, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Wenyu Liu
- Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Ling Yang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xiaohong Wei
- Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
- Gansu Key Lab of Crop Genetic & Germplasm Enhancement, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
4
|
Sun R, Chen S, Chen X, Liu X, Zhang F, Wu J, Su L. Enzymatic treatment to improve permeability and quality of cherry tomatoes for production of dried products. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2718-2727. [PMID: 37997286 DOI: 10.1002/jsfa.13156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/02/2023] [Accepted: 11/23/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Cherry tomatoes are nutritious and favored by consumers. Processing them into dried cherry tomatoes can prolong their storage life and improve their flavor. The pretreatment of tomato pericarp is crucial for the subsequent processing. However, the traditional physical and chemical treatments of tomato pericarp generally cause nutrient loss and environmental pollution. RESULTS In this study, a novel enzymatic method for cherry tomatoes was performed using mixed enzymes containing cutinase, cellulase and pectinase. Results showed that the pericarp permeability of cherry tomatoes was effectively improved due to enzymatic treatment. Changes in the microscopic structure and composition of the cuticle were revealed. After treatment with different concentrations of enzymes, cherry tomatoes exhibited higher pericarp permeability and sensory quality to varying degrees. The lycopene content and total polyphenol content significantly increased 2.4- and 1.45-fold, respectively. In addition, the satisfactory effect of the six-time reuse of enzymes on cherry tomatoes could still reach the same level as the initial effect, which effectively reduced the cost of production. CONCLUSIONS This study revealed for the first time that a mixed enzymatic treatment consisting of cutinase, pectinase and cellulase could effectively degrade the cuticle, enhance the pericarp permeability and improve the quality of cherry tomatoes, with the advantages of being mildly controllable and environmentally friendly, providing a new strategy for the processing of dried cherry tomatoes. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ruyu Sun
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Shiheng Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Xiaoqian Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Xiaqing Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Fengshan Zhang
- Shangdong Huatai Paper Co. Ltd & Shangdong Yellow Triangle Biotechnology Industry Research Institute Co. Ltd, Dongying, China
| | - Jing Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Lingqia Su
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| |
Collapse
|
5
|
Diot A, Groth G, Blanchet S, Chervin C. Responses of animals and plants to physiological doses of ethanol: a molecular messenger of hypoxia? FEBS J 2024; 291:1102-1110. [PMID: 38232057 DOI: 10.1111/febs.17056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/11/2023] [Accepted: 12/28/2023] [Indexed: 01/19/2024]
Abstract
Our viewpoint is that ethanol could act as a molecular messenger in animal and plant organisms under conditions of hypoxia or other stresses and could elicit physiological responses to such conditions. There is evidence that both animal and plant organisms have endogenous levels of ethanol, but reports on the changes induced by this alcohol at physiological levels are sparse. Studies have shown that ethanol has different effects on cell metabolism at low and high concentrations, resembling a hormetic response. Further studies have addressed the potential cellular and molecular mechanisms used by organisms to sense changes in physiological concentrations of ethanol. This article summarizes the possible mechanisms by which ethanol may be sensed, particularly at the cell membrane level. Our analysis shows that current knowledge on this subject is limited. More research is required on the effects of ethanol at very low doses, in plants and animals at both molecular and physiological levels. We believe that further research on this topic could lead to new discoveries in physiology and may even help us understand metabolic adjustments related to climate change. As temperatures rise more frequently, dissolved oxygen levels drop, leading to hypoxic conditions and consequently, an increase in cellular ethanol levels.
Collapse
Affiliation(s)
- Alice Diot
- Laboratoire de Recherche en Sciences Végétales (UMR5546), Université de Toulouse, CNRS, UPS, Toulouse-INP, Castanet-Tolosan, France
- CNRS, Station d'Ecologie Théorique et Expérimentale (UAR 2029), Moulis, France
| | - Georg Groth
- Institute of Biochemical Plant Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Bioeconomy Science Center (BioSC), Jülich, Germany
| | - Simon Blanchet
- CNRS, Station d'Ecologie Théorique et Expérimentale (UAR 2029), Moulis, France
| | - Christian Chervin
- Laboratoire de Recherche en Sciences Végétales (UMR5546), Université de Toulouse, CNRS, UPS, Toulouse-INP, Castanet-Tolosan, France
| |
Collapse
|
6
|
Meng F, Li Y, Li S, Chen H, Shao Z, Jian Y, Mao Y, Liu L, Wang Q. Carotenoid biofortification in tomato products along whole agro-food chain from field to fork. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Liu Y, Yang C, Wang Q, Zhang J, Zhang L. Identification and confirmation of key compounds causing cooked off-flavor in heat-treated tomato juice. J Food Sci 2022; 87:2515-2526. [PMID: 35590478 DOI: 10.1111/1750-3841.16168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 12/01/2022]
Abstract
Cooked off-flavor produced by heat treatment greatly limited the acceptability of commercial tomato juice. To screen and identify the cooked off-flavor compounds, gas chromatography-mass spectrometry-olfactometry (GC-MS-O), aroma extract dilution analysis (AEDA), gas chromatography-mass spectrometry (GC-MS), and odor activity value (OAV) calculation were applied simultaneously. The results showed that there were 17 aroma-active compounds in tomato juice samples. Among them, three newly formed sulfur-containing compounds (dimethyl sulfide, dimethyl trisulfide, and methional) and 1-octen-3-one, which exhibited cooked corn/potato, onion, and mushroom odor, were proved to be responsible for the cooked off-flavor in heat-treated tomato juice (HTJ) by omission experiments and electronic nose analysis. The three newly formed sulfur-containing compounds were further confirmed to be the key compounds responsible for the cooked off-flavor in four different tomato cultivars that were commonly consumed in the market. PRACTICAL APPLICATION: Tomato is one of the most popular vegetables in the world and tomato juice is an important part of the tomato industry. However, the cooked off-flavor of tomato juice after sterilization severely restricts its industrial development. This study analyzed and compared the changes of aroma compounds before and after sterilization, and identified and confirmed the major off-flavor components. This work could provide fundamental information for the prevention of cooked off-flavor.
Collapse
Affiliation(s)
- Yuanyuan Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Cheng Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Qun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jian Zhang
- College of Food, Shihezi University, Shihezi, Xinjiang, China
| | - Lianfu Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,College of Food, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
8
|
Leng F, Wang C, Sun L, Li P, Cao J, Wang Y, Zhang C, Sun C. Effects of Different Treatments on Physicochemical Characteristics of ‘Kyoho’ Grapes during Storage at Low Temperature. HORTICULTURAE 2022; 8:94. [DOI: 10.3390/horticulturae8020094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Low temperature storage is widely used to maintain the postharvest quality of table grape. However, grape clusters easily undergo deterioration without treatment during the storage time. The main goal of this study was to evaluate the effect of postharvest 1-methylcyclopropene (1-MCP), calcium chloride (1%) and ethanol (16%), and the combination of 1-MCP with calcium chloride and ethanol treatments on maintenance of quality of table grapes ‘Kyoho’ (Vitis vinifera × Vitis labrusca) under 5 °C and 0 °C storage. Changes in decay incidence, weight loss, rachis browning and quality indexes of grape clusters were investigated. The results were as follows: all treatments significantly reduced the decay incidence, weight loss, rachis browning at both low temperatures storage; 1-MCP had positive effect for reducing the decay incidence in early stage, but no effect in late stage; there are no significant variations of taste and color quality indexes under two low temperatures storage, regardless of the treatments. Overall findings suggested that the combination of 1-MCP with calcium chloride and ethanol treatment is suitable for short-term 0 °C storage, while for long-term 0 °C storage, calcium chloride (1%) and ethanol (16%) treatment should be selected.
Collapse
Affiliation(s)
- Feng Leng
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Chengyang Wang
- Zhoushan Academy of Agriculture Sciences, Zhoushan 316000, China
| | - Liping Sun
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Pei Li
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Jinping Cao
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yue Wang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Changfeng Zhang
- Shandong Key Laboratory of Storage and Transportation Technology of Agricultural Products, Shandong Institute of Commerce and Technology, Jinan 250103, China
| | - Chongde Sun
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| |
Collapse
|
9
|
Zhu C, Wu S, Sun T, Zhou Z, Hu Z, Yu J. Rosmarinic Acid Delays Tomato Fruit Ripening by Regulating Ripening-Associated Traits. Antioxidants (Basel) 2021; 10:1821. [PMID: 34829692 PMCID: PMC8614985 DOI: 10.3390/antiox10111821] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 12/05/2022] Open
Abstract
Fruits are excellent sources of essential vitamins and health-boosting minerals. Recently, regulation of fruit ripening by both internal and external cues for the improvement of fruit quality and shelf life has received considerable attention. Rosmarinic acid (RA) is a kind of natural plant-derived polyphenol, widely used in the drug therapy and food industry due to its distinct physiological functions. However, the role of RA in plant growth and development, especially at the postharvest period of fruits, remains largely unknown. Here, we demonstrated that postharvest RA treatment delayed the ripening in tomato fruits. Exogenous application of RA decreased ripening-associated ethylene production and inhibited the fruit color change from green to red based on the decline in lycopene accumulation. We also found that the degradation of sucrose and malic acid during ripening was significantly suppressed in RA-treated tomato fruits. The results of metabolite profiling showed that RA application promoted the accumulation of multiple amino acids in tomato fruits, such as aspartic acid, serine, tyrosine, and proline. Meanwhile, RA application also strengthened the antioxidant system by increasing both the activity of antioxidant enzymes and the contents of reduced forms of antioxidants. These findings not only unveiled a novel function of RA in fruit ripening, but also indicated an attractive strategy to manage and improve shelf life, flavor, and sensory evolution of tomato fruits.
Collapse
Affiliation(s)
- Changan Zhu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China; (C.Z.); (S.W.); (T.S.); (Z.Z.); (J.Y.)
| | - Shaofang Wu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China; (C.Z.); (S.W.); (T.S.); (Z.Z.); (J.Y.)
| | - Ting Sun
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China; (C.Z.); (S.W.); (T.S.); (Z.Z.); (J.Y.)
| | - Zhiwen Zhou
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China; (C.Z.); (S.W.); (T.S.); (Z.Z.); (J.Y.)
| | - Zhangjian Hu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China; (C.Z.); (S.W.); (T.S.); (Z.Z.); (J.Y.)
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China; (C.Z.); (S.W.); (T.S.); (Z.Z.); (J.Y.)
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
| |
Collapse
|
10
|
Locali-Pereira AR, Guazi JS, Conti-Silva AC, Nicoletti VR. Active packaging for postharvest storage of cherry tomatoes: Different strategies for application of microencapsulated essential oil. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Chisenga SM, Tolesa GN, Workneh TS. Biodegradable Food Packaging Materials and Prospects of the Fourth Industrial Revolution for Tomato Fruit and Product Handling. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2020; 2020:8879101. [PMID: 33299850 PMCID: PMC7704214 DOI: 10.1155/2020/8879101] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/23/2020] [Accepted: 10/31/2020] [Indexed: 12/21/2022]
Abstract
The environment and food safety are major areas of concern influencing the development of biodegradable packaging for partial replacement of petrochemical-based polymers. This review is aimed at updating the recent advances in biodegradable packaging material and the role of virtual technology and nanotechnology in the tomato supply chain. Some of the common biodegradable materials are gelatin, starch, chitosan, cellulose, and polylactic acid. The tensile strength, tear resistance, permeability, degradability, and solubility are some of the properties defining the selection and utilization of food packaging materials. Biodegradable films can be degraded in soil by microbial enzymatic actions and bioassimilation. Nanoparticles are incorporated into blended films to improve the performance of packaging materials. The prospects of the fourth industrial revolution can be realized with the use of virtual platforms such as sensor systems in authentification and traceability of food and packaging products. There is a research gap on the development of a hybrid sensor system unit that can integrate sampling headspace (SHS), detection unit, and data processing of big data for heterogeneous tomato-derived volatiles. Principal component analysis (PCA), linear discriminant analysis (LDA), and artificial neutral network (ANN) are some of the common mathematical models for data interpretation of sensor systems.
Collapse
Affiliation(s)
- S. M. Chisenga
- School of Engineering, Bioresources Engineering, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - G. N. Tolesa
- School of Engineering, Bioresources Engineering, University of KwaZulu-Natal, Pietermaritzburg, South Africa
- Department of Food Science and Postharvest Technology, Haramaya Institute of Technology, Haramaya University, Dire Dawa, Ethiopia
| | - T. S. Workneh
- School of Engineering, Bioresources Engineering, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
12
|
He Q, Guo M, Jin TZ, Arabi SA, Liu D. Ultrasound improves the decontamination effect of thyme essential oil nanoemulsions against Escherichia coli O157: H7 on cherry tomatoes. Int J Food Microbiol 2020; 337:108936. [PMID: 33161345 DOI: 10.1016/j.ijfoodmicro.2020.108936] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 09/19/2020] [Accepted: 10/10/2020] [Indexed: 02/07/2023]
Abstract
Development of novel and effective decontamination technologies to ensure the microbiological safety of fresh produce has gained considerable attention, mainly driven by numerous outbreaks. This work presented the first approach regarding to the application of the previously reported hurdle technologies on the sanitization of artificially contaminated cherry tomatoes. Thyme (Thymus daenensis) essential oil nanoemulsion (TEON, 8.28 nm in diameter with a narrow size distribution) was formulated via ultrasonic nanoemulsification, showing remarkably improved antimicrobial activity against Escherichia coli (E. coli) O157:H7, compared to the coarse emulsion. The antimicrobial effect of ultrasound (US), thyme essential oil nanoemulsion (TEON) and the combination of both treatments was assessed against E. coli O157:H7. The remarkable synergistic effects of the combined treatments were achieved, which decontaminated the E. coli populations by 4.49-6.72 log CFU/g on the surface of cherry tomatoes, and led to a reduction of 4.48-6.94 log CFU/sample of the total inactivation. TEON combined with US were effective in reducing the presence of bacteria in wastewater, which averted the potential detrimental effect of cross-contamination resulted from washing wastewater in fresh produce industry. Moreover, the treatments did not noticeably alter the surface color and firmness of cherry tomatoes. Therefore, ultrasound combined with TEON is a promising and feasible alternative for the reduction of microbiological contaminants, as well as retaining the quality characteristics of cherry tomatoes.
Collapse
Affiliation(s)
- Qiao He
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Mingming Guo
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| | - Tony Z Jin
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
| | | | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
13
|
A Combination of Melatonin and Ethanol Treatment Improves Postharvest Quality in Bitter Melon Fruit. Foods 2020; 9:foods9101376. [PMID: 32992660 PMCID: PMC7601680 DOI: 10.3390/foods9101376] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 01/07/2023] Open
Abstract
Central composite design (CCD), utilized with three independent variables, verified that the optimal treatment conditions in bitter melon fruit were melatonin (MT) concentration of 120 µmol L−1, ethanol concentration of 6%, and immersing time of 10 min. Under optimal conditions, the experimental values of firmness, chilling injury (CI) index, and weight loss were shown as 27.81 N, 65.625%, and 0.815%, respectively. Moreover, the combined effect of MT and ethanol on CI and physiological quality in postharvest bitter melon fruit stored at 4 °C was investigated. It was found that the combined treatment contributed to the reduced CI symptoms and inhibited ion leakage and malondialdehyde (MDA) accumulation. Moreover, higher levels of chlorophyll, total soluble solids (TSSs), soluble sugar, soluble protein, and ascorbic acid (AsA) were observed in comparison with the control group. Furthermore, the synthesis of total phenols and flavonoids in bitter melon was greatly promoted. Therefore, the combination of MT and ethanol could have the potential for alleviating CI and maintaining postharvest quality for the duration of cold storage.
Collapse
|