1
|
Xiao J, Li Y, Niu L, Chen R, Tang J, Tong Z, Xiao C. Effect of Adding Fermented Proso Millet Bran Dietary Fiber on Micro-Structural, Physicochemical, and Digestive Properties of Gluten-Free Proso Millet-Based Dough and Cake. Foods 2023; 12:2964. [PMID: 37569233 PMCID: PMC10419140 DOI: 10.3390/foods12152964] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
The increasing demand for functional foods has pushed the food industry to produce fiber-enriched products. In this study, rheological, microstructural, physicochemical, and functional characteristics were investigated for whole proso millet dough and cake, fortified with fermented proso millet bran dietary fiber flour (F-DF). Results showed that proso millet flour is less absorbent and stable than the control group. Adding proso millet flour and F-DF reduced the elasticity of the dough and increased its hardness, but had no significant effect on viscosity, cohesion, and resilience. The microstructure analysis exhibited an unformed continuous network formation in proso millet dough. Analyses suggested that proso millet flour combined with the fermented dietary fiber group had significantly higher total phenol content (0.46 GAE mg/g), DPPH• scavenging activity (66.84%), and ABTS•+ scavenging activity (87.01%) than did the other group. In addition, F-DF led to a significant reduction in the predicted released glucose contents of reformulated cakes. In summary, cakes prepared with the involvement of whole proso millet flour and F-DF exhibited less adverse sensory impact and possessed the potential to decrease postprandial blood glucose levels resulting purely from cake consumption.
Collapse
Affiliation(s)
- Jing Xiao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (J.X.); (Y.L.); (L.N.); (R.C.); (J.T.)
| | - Yinxia Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (J.X.); (Y.L.); (L.N.); (R.C.); (J.T.)
| | - Li Niu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (J.X.); (Y.L.); (L.N.); (R.C.); (J.T.)
| | - Ronghui Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (J.X.); (Y.L.); (L.N.); (R.C.); (J.T.)
| | - Jiayu Tang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (J.X.); (Y.L.); (L.N.); (R.C.); (J.T.)
| | - Zongbo Tong
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, China;
| | - Chunxia Xiao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (J.X.); (Y.L.); (L.N.); (R.C.); (J.T.)
| |
Collapse
|
2
|
Torres-Vargas OL, Gaytan-Martinez M, Fernanda CC, Millán-Malo BM, Rodriguez-Garcia M. Changes in the physicochemical properties of isolated starch and plantain ( Musa AAB Simmonds) flours for early maturity stage. Heliyon 2023; 9:e18939. [PMID: 37600412 PMCID: PMC10432965 DOI: 10.1016/j.heliyon.2023.e18939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023] Open
Abstract
This work focuses on the study of the physicochemical changes that take place during the first stage of ripening of plantain, with particular attention to the changes in the orthorhombic and hexagonal nanocrystals present in this starch, and its relation shift with resistance starch. Significant changes were observed in the proximal analysis of plantain flour. A gradual increase in moisture content was attributed to the high content of crystalline structures and molecules that can be removed by drying. Water activity increased with ripening, which was attributed to the hygroscopic nature of the flours. The protein content increased, and the carbohydrate content decreased, indicating the progress of biochemical reactions. The changes in the fat content are consistent with the hydrolysis and resynthesis of lipids during the ripening process. The obtained results indicate a significant influence of the ripening stage on the physicochemical properties of flour and starch of plantain, which is associated with the occurrence of a climacteric peak on the 4th day of ripening. The hydration properties of plantain flour decreased significantly during the ripening days, consistent with the occurrence of a climacteric peak. Water holding capacity (WHC) and water binding capacity (WBC) were affected by the degree of digestion of native starch granules and protein denaturation during fruit ripening. Scanning electron microscopes (SEM) showed that during ripening the surface of the isolated starches do not suffer any significative damage. X-ray diffraction patterns were used to identify crystalline structures and to study the changes in the crystalline structures. These results showed that the starch contains orthorhombic and hexagonal nanocrystals, which play and important role and which show small structural damage during ripening reflected in a decrease in their relative crystallinity. This is the first time that these nanocrystals have been studied and considered in the ripening process. Differential scanning calorimetry was used to study the thermal transition in isolated starch. The results indicated that the gelatinization of starch corresponds to the solvation of orthorhombic and hexagonal nanocrystals, and that during ripening there is a decrease in the enthalpy reflecting some crystal structural damage. Pasting properties were studied using a Starch cell for flours and isolated starches, indicating that the pasting profile is governed by intrinsic and extrinsic factors. The resistant starch does not show significant changes at this stage of maturation. This starch is the one with the highest resistant starch content reported in the literature (38%). It was hypothesized that the resistant starch is directly related to the amount of whole starch granules, and more importantly, directly related to the number concentration of orthorhombic and hexagonal nanocrystals. Therefore, knowledge of the physicochemical and nutritional properties of plantain and flour at each stage of ripening allows better selection according to industrial applications.
Collapse
Affiliation(s)
- Olga L. Torres-Vargas
- Universidad Del Quindío, Facultad de Ciencias Agroindustriales, Grupo de Investigación en Ciencias Agroindustriales, Quindío, Armenia, Colombia
| | - Marcela Gaytan-Martinez
- Programa de Posgrado en Alimentos Del Centro de La República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Centro Universitario, Cerro de Las Campanas S/N, Santiago de Querétaro, Querétaro, C.P. 76010, Mexico
| | - Castro-Campos Fernanda
- Programa de Posgrado en Alimentos Del Centro de La República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Centro Universitario, Cerro de Las Campanas S/N, Santiago de Querétaro, Querétaro, C.P. 76010, Mexico
| | - Beatriz M. Millán-Malo
- Departamento de Nanotecnología, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro, C. P 76230, Mexico
| | - M.E. Rodriguez-Garcia
- Departamento de Nanotecnología, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro, C. P 76230, Mexico
| |
Collapse
|
3
|
Hernandez-Hernandez O, Julio-Gonzalez LC, Doyagüez EG, Gutiérrez TJ. Potentially Health-Promoting Spaghetti-Type Pastas Based on Doubly Modified Corn Starch: Starch Oxidation via Wet Chemistry Followed by Organocatalytic Butyrylation Using Reactive Extrusion. Polymers (Basel) 2023; 15:polym15071704. [PMID: 37050319 PMCID: PMC10097208 DOI: 10.3390/polym15071704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
Extruded spaghetti-type pasta systems were obtained separately either from native or oxidized starch prepared via wet chemistry with the aim of evaluating the effect of oxidation modification of starch. In addition to this, the butyrylation reaction (butyrate (Bu) esterification-short-chain fatty acid) using native or oxidized starch was analyzed under reactive extrusion (REx) conditions with and without the addition of a green food-grade organocatalyst (l(+)-tartaric acid) with the purpose of developing potentially health-promoting spaghetti-type pasta systems in terms of increasing its resistant starch (RS) values. These would be due to obtaining organocatalytic butyrylated starch or not, or the manufacture of a doubly modified starch (oxidized-butyrylated-starch oxidation followed by organocatalytic butyrylation) or not. To this end, six pasta systems were developed and characterized by solid-state 13C cross-polarization magic angle spinning nuclear magnetic resonance (CP MAS NMR) spectroscopy, degree of substitution (DS), attenuated total reflectance Fourier transform infrared (ATR/FTIR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), pancreatic digestion, free Bu content analysis and in vitro starch digestibility. The results obtained here suggest that starch oxidation hydrolytically degrades starch chains, making them more susceptible to enzymatic degradation by α-amylase. However, the oxidized starch-based pasta systems, once esterified by Bu mainly on the amylose molecules (doubly modified pasta systems) increased their RS values, and this was more pronounced with the addition of the organocatalyst (maximum RS value = ~8%). Interestingly, despite the checked chemical changes that took place on the molecular structure of starch upon butyrylation or oxidation reactions in corn starch-based spaghetti-type pasta systems, and their incidence on starch digestibility, the orthorhombic crystalline structure (A-type starch) of starch remained unchanged.
Collapse
Affiliation(s)
| | | | - Elisa G Doyagüez
- Centro de Química Orgánica "Lora Tamayo" (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Tomy J Gutiérrez
- Grupo de Materiales Compuestos Termoplásticos (CoMP), Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Facultad de Ingeniería, Universidad Nacional de Mar del Plata (UNMdP) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Colón 10850, Mar del Plata B7608FLC, Argentina
| |
Collapse
|
4
|
Fu J, Xiao J, Tu S, Sheng Q, Yi G, Wang J, Sheng O. Plantain flour: A potential anti-obesity ingredient for intestinal flora regulation and improved hormone secretion. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1027762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
IntroductionDevelopment of functional food ingredients with anti-obesity is a growing interest in the global food industry. Plantain (Musa spp. AAB), a special type of cooking/starchy banana, is widely growing in African and Latin American countries. The flour made from unripe plantain pulp, which is considered as a natural source of indigestible carbohydrates such as resistant starch (RS), could be used in the formulation of diverse functional foods due to its anti-obesity properties. However, the mechanisms underlying the anti-obesity properties of plantain flour are not explored.MethodsIn this study, we investigated the changes in serum hormone levels, liver transcriptome profiles, and the modulation of gut microbiota in high-fat-fed Sprague-Dawley (SD) rats. The male SD rats were divided into six groups, viz. two control groups [non-obese (NC) or obese (OC)] which were not given the supplementation, one positive control (PC) group which received orlistat supplementation (60 mg/kg body weight/day), and three groups of obese rats which were supplemented with unripe plantain flour (UPF) at a dosage (body weight/day) of 1.25 g/kg (low-dose, LD), 2.50 g/kg (intermediate-dose, MD) or 5.0 g/kg (high-dose, HD).Results and discussionIt was found that UPF supplementation could lower the insulin levels of the obese rats. Moreover, UPF supplementation had a positive impact on gut microbiota, decreasing the relative abundances of Blautia, Parasutterella and Fusicatenibacter which were closely related to obesity, and increasing the relative abundances of probiotics (Allobaculum, Romboutsia, Staphylococcus, and Bacteroides). The spearman correlation analysis revealed that UPF supplementation reduced the relative abundance of Parasutterella and possibly decreased the blood sugar levels, leading to a decrease in the relative abundances of Blautia and Fusicatenibacter and a subsequent decrease in insulin levels. Furthermore, transcriptomic analysis of the liver tissues displayed that the peroxisome proliferator activated receptor-1α (PPAR) and AMP-activated protein kinase (AMPK) signaling pathway genes (Pparaa, Cpt1a, Prkaa1, Prkab1, Prkaa2, and Ppargc1a) were upregulated in those groups supplemented with UPF. These results indicated that UPF could mediate the glucolipid metabolism in the obese rats. Taken together, our findings suggested that the anti-obesity properties of UPF could be achieved by decreasing the insulin levels, positive-regulating of the gut microbiota composition as well as altering gene expression related to glucolipid metabolism.
Collapse
|
5
|
Structure-digestibility relationship from noodles based on organocatalytically esterified regular and waxy corn starch obtained by reactive extrusion using sodium propionate. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Udomkun P, Masso C, Swennen R, Romuli S, Innawong B, Fotso Kuate A, Akin‐Idowu PE, Alakonya A, Vanlauwe B. Comparative study of physicochemical, nutritional, phytochemical, and sensory properties of bread with plantain and soy flours partly replacing wheat flour. Food Sci Nutr 2022; 10:3085-3097. [PMID: 36171793 PMCID: PMC9469869 DOI: 10.1002/fsn3.2907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 11/12/2022] Open
Abstract
Plantain flour (PLF) and soy flour (SF) were used to substitute wheat flour (10% and 20% w/w) in composite bread. Physicochemical, phytochemical, and sensory properties were investigated. Partial substitution by PLF significantly increased (p < .05) starch, amylose, ascorbic acid, and potassium content in bread samples. In contrast, a significant improvement (p < .05) in protein, fat, amylopectin, and calcium content was observed with SF substitution. Composite bread with PLF and SF together lowered the hydrolysis index (HI) and glycemic index (GI) as compared with whole wheat flour. The molar phytate to minerals (iron, zinc, and calcium) ratio in all composite loaves was lower than reported critical values, except for phytate to iron. Significant differences (p < .05) were found in color, specific volume, and texture characteristics of loaves made from partial substitution with PLF and SF. Sensory evaluation revealed that bread with 10% PLF exhibited better scores for appearance and willingness to pay than the control. In contrast, SF negatively affected (p < .05) the appearance, texture, color, overall acceptance, and willingness to pay. The trade-off analysis indicated that PLF can be utilized to produce bread that meets consumers' demands, while incorporating SF as an alternative high-nutrient density bread will be beneficial to health.
Collapse
Affiliation(s)
| | - Cargele Masso
- International Institute of Tropical Agriculture (IITA)YaoundéCameroon
| | - Rony Swennen
- International Institute of Tropical Agriculture (IITA)KampalaUganda
- Department of BiosystemsKU LeuvenHeverleeBelgium
| | - Sebastian Romuli
- Institute of Agricultural Engineering, Tropics and Subtropics GroupUniversity of HohenheimStuttgartGermany
| | - Bhundit Innawong
- Department of Food TechnologyFaculty of Engineering and Industrial TechnologySilpakorn UniversityNakhon PathomThailand
| | | | | | - Amos Alakonya
- International Maize and Wheat Improvement Center (CIMMYT)TexcocoMexico
| | - Bernard Vanlauwe
- International Institute of Tropical Agriculture (IITA)NairobiKenya
| |
Collapse
|
7
|
Garcia-Valle DE, Bello-Pérez LA, Agama-Acevedo E, Tovar J, Aguirre-Cruz A, Alvarez-Ramirez J. Effect of the preparation method on structural and in vitro digestibility properties of type II resistant starch-enriched wheat semolina pasta. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Bringas‐González V, Bello‐Pérez LA, Contreras‐Oliva A, López‐Espíndola M, Herrera‐Corredor JA. Plantain and amaranth flours as sources of polyphenols and dietary fiber for bread formulations. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Valeria Bringas‐González
- Colegio de Postgraduados, Campus Córdoba, Postgrado en Innovación Agroalimentaria Sustentable Amatlán de los Reyes Mexico
| | | | - Adriana Contreras‐Oliva
- Colegio de Postgraduados, Campus Córdoba, Postgrado en Innovación Agroalimentaria Sustentable Amatlán de los Reyes Mexico
| | - Mirna López‐Espíndola
- Colegio de Postgraduados, Campus Córdoba, Postgrado en Innovación Agroalimentaria Sustentable Amatlán de los Reyes Mexico
| | - José Andrés Herrera‐Corredor
- Colegio de Postgraduados, Campus Córdoba, Postgrado en Innovación Agroalimentaria Sustentable Amatlán de los Reyes Mexico
| |
Collapse
|
9
|
Chang L, Yang M, Zhao N, Xie F, Zheng P, Simbo J, Yu X, Du SK. Structural, physicochemical, antioxidant and in vitro digestibility properties of banana flours from different banana varieties (Musa spp.). FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
10
|
Comprehensive Utilization of Thinned Unripe Fruits from Horticultural Crops. Foods 2021; 10:foods10092043. [PMID: 34574153 PMCID: PMC8467360 DOI: 10.3390/foods10092043] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
Fruit thinning is a cultivation technique that is widely applied in horticulture in order to obtain high-quality horticultural crops. This practice results in the discarding of a large number of thinned unripe fruits in orchards each year, which produces a great waste of agricultural resources and causes soil pollution that may be an important reservoir for pest and plant diseases. Current studies showed that bioactive compounds such as polyphenols, organic acids, monosaccharides and starches are present in unripe fruits. Therefore, we reviewed the bioactive components obtained from thinned unripe fruits, their revalorization for the food industry, their beneficial effects for human health and the methods for obtaining these components. We also performed a calculation of the costs and benefits of obtaining these bioactive compounds, and we proposed future research directions. This review provides a reference for the effective utilization and industrial development of thinned unripe fruits obtained from horticultural crops. Furthermore, revalorizing the waste from this cultural practice may increase the economic benefits and relieve the environmental stress.
Collapse
|
11
|
Espinosa-Solis V, Zamudio-Flores PB, Espino-Díaz M, Vela-Gutiérrez G, Rendón-Villalobos JR, Hernández-González M, Hernández-Centeno F, López-De la Peña HY, Salgado-Delgado R, Ortega-Ortega A. Physicochemical Characterization of Resistant Starch Type-III (RS3) Obtained by Autoclaving Malanga ( Xanthosoma sagittifolium) Flour and Corn Starch. Molecules 2021; 26:molecules26134006. [PMID: 34209163 PMCID: PMC8271965 DOI: 10.3390/molecules26134006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 11/16/2022] Open
Abstract
The feasibility of obtaining resistant starch type III (RS3) from malanga flour (Xanthosoma sagittifolium), as an unconventional source of starch, was evaluated using the hydrothermal treatment of autoclaving. The physicochemical characterization of RS3 made from malanga flour was carried out through the evaluation of the chemical composition, color attributes, and thermal properties. In addition, the contents of the total starch, available starch, resistant starch, and retrograded resistant starch were determined by in vitro enzymatic tests. A commercial corn starch sample was used to produce RS3 and utilized to compare all of the analyses. The results showed that native malanga flour behaved differently in most of the evaluations performed, compared to the commercial corn starch. These results could be explained by the presence of minor components that could interfere with the physicochemical and functional properties of the flour; however, the RS3 samples obtained from malanga flour and corn starch were similar in their thermal and morphological features, which may be related to their similarities in the content and molecular weight of amylose, in both of the samples. Furthermore, the yields for obtaining the autoclaved powders from corn starch and malanga flour were similar (≈89%), which showed that the malanga flour is an attractive raw material for obtaining RS3 with adequate yields, to be considered in the subsequent research.
Collapse
Affiliation(s)
- Vicente Espinosa-Solis
- Coordinación Académica Región Huasteca Sur, Universidad Autónoma de San Luis Potosí. Km 5, Carretera Tamazunchale-San Martín, Tamazunchale, San Luis Potosí C.P. 79960, Mexico;
| | - Paul Baruk Zamudio-Flores
- Centro de Investigación en Alimentación y Desarrollo, A.C. Unidad Cuauhtémoc, Fisiología y Tecnología de Alimentos de la Zona Templada, Avenida Rio Conchos s/n, Parque Industrial, Apartado postal 781, Ciudad Cuauhtémoc, Chihuahua C.P. 31570, Mexico;
- Correspondence: ; Tel.: +52-(625)-581-2920; Fax: +52-(625)-581-2921
| | - Miguel Espino-Díaz
- Centro de Investigación en Alimentación y Desarrollo, A.C. Unidad Cuauhtémoc, Fisiología y Tecnología de Alimentos de la Zona Templada, Avenida Rio Conchos s/n, Parque Industrial, Apartado postal 781, Ciudad Cuauhtémoc, Chihuahua C.P. 31570, Mexico;
| | - Gilber Vela-Gutiérrez
- Laboratorio de Investigación y Desarrollo de Productos Funcionales, Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Libramiento Norte Poniente 1150, Col. Lajas Maciel, Tuxtla Gutiérrez, Chiapas C.P. 29000, Mexico;
| | - J. Rodolfo Rendón-Villalobos
- Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Calle Ceprobi No. 8, Colonia San Isidro, Yautepec, Morelos C.P. 62731, Mexico;
| | - María Hernández-González
- Departamento de Ciencia y Tecnología de Alimentos, División de Ciencia Animal, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro 1923, Buenavista, Saltillo, Coahuila C.P. 23515, Mexico; (M.H.-G.); (F.H.-C.); (H.Y.L.-D.l.P.)
| | - Francisco Hernández-Centeno
- Departamento de Ciencia y Tecnología de Alimentos, División de Ciencia Animal, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro 1923, Buenavista, Saltillo, Coahuila C.P. 23515, Mexico; (M.H.-G.); (F.H.-C.); (H.Y.L.-D.l.P.)
| | - Hayde Yajaira López-De la Peña
- Departamento de Ciencia y Tecnología de Alimentos, División de Ciencia Animal, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro 1923, Buenavista, Saltillo, Coahuila C.P. 23515, Mexico; (M.H.-G.); (F.H.-C.); (H.Y.L.-D.l.P.)
| | - René Salgado-Delgado
- Tecnológico Nacional de México/Instituto Tecnológico de Zacatepec, Posgrado-Departamento de Ingeniería Química y Bioquímica, Calzada Tecnológico 27, Zacatepec, Morelos C.P. 62780, Mexico;
| | - Adalberto Ortega-Ortega
- Facultad de Ciencias Agrotecnológicas, Universidad Autónoma de Chihuahua, Extensión Cuauhtémoc, Barrio de la Presa s/n, Ciudad Cuauhtémoc, Chihuahua C.P. 31510, Mexico;
| |
Collapse
|
12
|
Patiño-Rodríguez O, Bello-Pérez LA, Agama-Acevedo E, Pacheco-Vargas G. Effect of deep frying unripe mango kernel flour extrudate: Physicochemical, microstructural and starch digestibility characteristics. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Garcia-Valle DE, Bello-Perez LA, Tovar J. Addition of chickpea markedly increases the indigestible carbohydrate content in semolina pasta as eaten. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2869-2876. [PMID: 33155278 DOI: 10.1002/jsfa.10918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/06/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND There is a growing interest in increasing dietary fiber (DF) consumption because of the health benefits associated with this nutrient. Pulses are considered a good source of non-digestible carbohydrates. The aim of this study was to investigate the possibility of substituting semolina with chickpea flour to increase indigestible carbohydrate content without altering the texture of the pasta. RESULTS Pasta was prepared by extruding semolina-chickpea blends. The protein and DF content in the cooked pasta increased with the chickpea level, with an important contribution of resistant starch (RS) to the DF values. The optimum cooking time decreased as the chickpea content increased, which was related to the degree of starch gelatinization of the raw pasta. The in vitro digestible starch content decreased with the chickpea substitution level, concomitant with the increase in RS content. In general, the texture of the chickpea-containing pasta was similar to that of semolina pasta. CONCLUSIONS Pending acceptability studies on these pastas may grant their promotion as good fiber sources, probably helpful in the fight against obesity and diet-related non-communicable diseases. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - Juscelino Tovar
- Department of Food Technology Engineering and Nutrition, Lund University, Lund, Sweden
| |
Collapse
|
14
|
Technological, processing and nutritional aspects of chickpea (Cicer arietinum) - A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.044] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
Garcia‐Valle DE, Agama‐Acevedo E, Alvarez‐Ramirez J, Bello‐Perez LA. Semolina Pasta Replaced with Whole Unripe Plantain Flour: Chemical, Cooking Quality, Texture, and Starch Digestibility. STARCH-STARKE 2019. [DOI: 10.1002/star.201900097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Daniel E. Garcia‐Valle
- Centro de Desarrollo de Productos Bióticos Instituto Politécnico Nacional. Km. 8.5 Carr. Yautepec‐Jojutla Colonia San Isidro, Apartado Postal 24. Yautepec Morelos 62731 México
| | - Edith Agama‐Acevedo
- Centro de Desarrollo de Productos Bióticos Instituto Politécnico Nacional. Km. 8.5 Carr. Yautepec‐Jojutla Colonia San Isidro, Apartado Postal 24. Yautepec Morelos 62731 México
| | - Jose Alvarez‐Ramirez
- Departamento de Ingeniería de Procesos e Hidráulica Universidad Autónoma Metropolitana‐Iztapalapa Apartado Postal 55–534 Iztapalapa CDMX 09340 México
| | - Luis A. Bello‐Perez
- Centro de Desarrollo de Productos Bióticos Instituto Politécnico Nacional. Km. 8.5 Carr. Yautepec‐Jojutla Colonia San Isidro, Apartado Postal 24. Yautepec Morelos 62731 México
| |
Collapse
|