1
|
Khanzadeh M, Hoseinifar SH, Yazici M, Van Doan H. Fermentation of Sargassum ilicifolium with Probiotics (Lactobacillus plantarum and Saccharomyces cerevisiae) Enhances Growth, Immunity, and Gene Expression in Rainbow Trout Before and After Challenge with Streptococcus iniae. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10502-9. [PMID: 40088352 DOI: 10.1007/s12602-025-10502-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2025] [Indexed: 03/17/2025]
Abstract
This study investigates the effect of Sargassum ilicifolium algae fermentation using Lactobacillus plantarum and Saccharomyces cerevisiae probiotics on growth, immunity, gene expression, and digestive and antioxidant enzymes before and after challenge with Streptococcus iniae in trout. Trout (50.69 ± 1.33 g) were fed with different percentages of S. ilicifolium (SI) powder over an 8-week trial. The supplements included both unfermented (SI 0.5%, SI 1%, SI 2%) and fermented (FSI 0.5%, FSI 1%, FSI 2%) forms. A significant increase in white blood cells was observed in the group receiving 2% FSI compared to the control group (P < 0.05). All growth factors in trout notably increased with varying levels of fermented and unfermented S. ilicifolium powder compared to the control group (P < 0.05). Biochemical parameters including serum glutamic pyruvic transaminase, serum glutamic oxaloacetic transaminase, and alkaline phosphatase exhibited a notable rise before the challenge with S. iniae (P < 0.05). Immune parameters, including total immunoglobulin, lysozyme, complement 3, bactericidal activity, and nitroblue tetrazolium showed increases both before and after the challenge with S. iniae (P < 0.05). Additionally, the expression levels of the insulin-like growth factor-1, interleukin-6, tumor necrosis factor-alpha, and Ghrelin genes showed significant increases both before and after exposure (P < 0.05). Also, antioxidant enzymes and digestive enzymes increased significantly before and after exposure (P < 0.05). All levels of unfermented and fermented, except for SI 0.5%, showed significant increases compared to the control group following the challenge with S. iniae (P < 0.05). Overall, fermented and unfermented S. ilicifolium support growth and enhance immune, antioxidant, and digestive functions in rainbow trout effectively.
Collapse
Affiliation(s)
- Majid Khanzadeh
- Animal Biological Product Research Group, Academic Center for Education, Culture and Research (ACECR), Tehran Organization, Tehran, Iran.
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Metin Yazici
- Faculty of Marine Sciences and Technology, Iskenderun Technical University, Iskenderun, 31200, Turkey
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Faculty of Agriculture, Functional Feed Innovation Center (Funcfeed), Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
2
|
Li F, Li H, Li S, He Z. A review of Lycium ruthenicum Murray: Geographic distribution tracing, bioactive components, and functional properties. Heliyon 2024; 10:e39566. [PMID: 39524793 PMCID: PMC11550641 DOI: 10.1016/j.heliyon.2024.e39566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 10/01/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Lycium ruthenicum (LRM), endemic to Northwest China, is known as hei goji or black goji and is renowned for its rich bioactive compounds. This review analyzes LRM's geographic distribution and traceability and highlights challenges and future developments in geographical traceability. The work also focuses on LRM's bioactive constituents, especially on anthocyanins and polysaccharides, demonstrating a clear clue for understanding their updated extraction methods, identification, and diverse bioactive activities, including antioxidation, anti-inflammation, and immunomodulation, which is beneficial to developing novel functional foods and new medical materials. Moreover, the paper elucidates advances in the potential application of LRM in food preservation, packaging, and other domains. Notably, we figure out gaps in LRM research, such as traceability technology and the proven efficacy of biological activities. This study provides a foundation for future perspectives on developing nutraceuticals and functional foods, disease treatment supplements, and green food packaging materials by bridging these gaps.
Collapse
Affiliation(s)
- Fang Li
- College of Food Science, Southwest University, Chongqing, China
| | - Hongjun Li
- College of Food Science, Southwest University, Chongqing, China
- Chongqing Engineering Research Center of Regional Foods, Chongqing, China
| | - Shaobo Li
- Institute of Food Science and Technology CAAS, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhifei He
- College of Food Science, Southwest University, Chongqing, China
- Chongqing Engineering Research Center of Regional Foods, Chongqing, China
| |
Collapse
|
3
|
Qi K, Yi X, Li C. Effects of endogenous macronutrients and processing conditions on starch digestibility in wheat bread. Carbohydr Polym 2022; 295:119874. [DOI: 10.1016/j.carbpol.2022.119874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/25/2022]
|
4
|
Khemiri S, Nunes MC, Raymundo A, Smaali I. In vitro
starch digestibility and estimation of glycemic index in algae‐based couscous. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sheyma Khemiri
- University of Carthage INSAT, Laboratory of Protein Engineering and Bioactive Molecules (LR11ES24), BP 676, 1080, Cedex Tunisia
| | - M Cristiana Nunes
- LEAF – Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349‐017 Lisboa Portugal
| | - Anabela Raymundo
- LEAF – Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349‐017 Lisboa Portugal
| | - Issam Smaali
- University of Carthage INSAT, Laboratory of Protein Engineering and Bioactive Molecules (LR11ES24), BP 676, 1080, Cedex Tunisia
| |
Collapse
|
5
|
Sourdough Fermentation as a Tool to Improve the Nutritional and Health-Promoting Properties of Its Derived-Products. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cereal products are staple foods highly appreciated and consumed worldwide. Nonetheless, due to the presence of gluten proteins, and other co-existing compounds such as amylase-trypsin inhibitors and fermentable short-chain carbohydrates in those products, their preference by consumers has substantially decreased. Gluten affects the small gut of people with celiac disease, triggering a gut inflammation condition via auto-immune response, causing a cascade of health disorders. Amylase-trypsin inhibitors and fermentable short-chain carbohydrate compounds that co-exists with gluten in the cereal-based foods matrix have been associated with several gastrointestinal symptoms in non-celiac gluten sensitivity. Since the symptoms are somewhat overlapped, the relation between celiac disease and irritable bowel syndrome has recently received marked interest by researchers. Sourdough fermentation is one of the oldest ways of bread leavening, by lactic acid bacteria and yeasts population, converting cereal flour into attractive, tastier, and more digestible end-products. Lactic acid bacteria acidification in situ is a key factor to activate several cereal enzymes as well as the synthesis of microbial active metabolites, to positively influence the nutritional/functional and health-promoting benefits of the derived products. This review aims to explore and highlight the potential of sourdough fermentation in the Food Science and Technology field.
Collapse
|
6
|
Wang X, Lao X, Bao Y, Guan X, Li C. Effect of whole quinoa flour substitution on the texture and in vitro starch digestibility of wheat bread. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106840] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
Ma Z, Guan X, Gong B, Li C. Chemical components and chain-length distributions affecting quinoa starch digestibility and gel viscoelasticity after germination treatment. Food Funct 2021; 12:4060-4071. [PMID: 33977982 DOI: 10.1039/d1fo00202c] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A germination treatment was explored in this study as a green strategy to reduce the in vitro starch digestibility of cooked quinoa. The alterations of chemical compositions, starch chain-length distributions (CLDs) and rheological characteristics of quinoa flours after the germination treatment were characterized. Results showed that a significant alteration of amylose CLDs and the starch digestibility was observed for cooked quinoa flours after different germination times. By fitting starch digestograms to the logarithm of slop (LOS) plot and the combination of parallel and sequential kinetics model (CPS), two starch digestible fractions with distinct rate constants were identified. Pearson correlation analysis further found that the observed starch digestive characteristics could be largely explained by the alterations of amylose CLDs caused by the germination treatment. More specifically, the rapidly digestible starch fraction mainly consisted of amorphous amylopectin molecules and amylose intermolecular crystallites. On the other hand, the slowly digestible starch fraction was largely formed by intramolecular interactions among amylose short chains (degree of polymerization (DP) < 500). These results suggest that germination may be a promising way to develop cereal products with slower starch digestibility.
Collapse
Affiliation(s)
- Zhimin Ma
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Xiao Guan
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China. and National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China and Shanghai Engineering Research Center for Food Rapid Detection, Shanghai 200093, P.R. China
| | - Bo Gong
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, P.R. China
| | - Cheng Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
8
|
Priyadarshini S, Arunkumar E, Moses J, Anandharamakrishnan C. Predicting human glucose response curve using an engineered small intestine system in combination with mathematical modeling. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Graça C, Mota J, Lima A, Boavida Ferreira R, Raymundo A, Sousa I. Glycemic Response and Bioactive Properties of Gluten-Free Bread with Yoghurt or Curd-Cheese Addition. Foods 2020; 9:E1410. [PMID: 33020440 PMCID: PMC7601360 DOI: 10.3390/foods9101410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 12/31/2022] Open
Abstract
The influence of flour replacement by yogurt or curd-cheese additions (from 10% to 20%, w/w) on the glycemic response and bioactivity improvements of gluten-free bread was evaluated. Starch digestibility, measured by an in vitro digestion model, was applied to determine the effect on starch fractions. The bread glycemic index was calculated. Bread antioxidant capacity (2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) and ferric-ion-reducing antioxidant power (FRAP) methods) and total phenolic compounds were assessed. Anti-inflammatory properties according to enzymatic matrix metalloproteinase (MMP)-9 inhibitory activity were also studied. Considering the higher level of both dairy products tested (20%, w/w) and comparing with control bread results, a reduction of around 35% in the glycemic response of curd cheese bread was achieved, resulting in intermediate index level (glycemic index (GI) 55-69), with yogurt bread still showing a high glycemic index (GI > 70). In terms of bread bioactivity, curd cheese bread expressed better reducing power effects, whereas yogurt bread showed more effective radical-scavenging capacity. An increase in bread phenolic compounds by yogurt (55.3%) and curd cheese (73.0%) additions (at 20%) were also registered. MMP-9 inhibition activity was higher in the dairy bread than in control bread, suggesting an improvement in terms of anti-inflammatory properties. The supplementation of the gluten-free bread by yogurt or curd cheese was shown to be a promising strategy to reduce the glycemic response and to improve the bioactive properties of the bread, that which can contribute to preventive diets of celiac patients and irritable bowel syndrome individuals.
Collapse
Affiliation(s)
| | | | | | | | | | - Isabel Sousa
- LEAF—Linking Landscape, Environment, Agriculture and Food, Research Center of Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (C.G.); (J.M.); (A.L.); (R.B.F.); (A.R.)
| |
Collapse
|