1
|
Li X, Zhang Y, Guo S, Dai R. RSM optimization of fermentation technology of yellow wine produced from Millets rice (containing Daylily and Agaricus blazei Murr) and analysis of volatile aroma constituents and amino acid contents by GC-MS and HPLC. Food Chem X 2024; 23:101567. [PMID: 39669897 PMCID: PMC11637178 DOI: 10.1016/j.fochx.2024.101567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/30/2024] [Accepted: 06/14/2024] [Indexed: 12/14/2024] Open
Abstract
The fermentation process was carried out with varied input variables, and all the models showed significant p-values for interaction of variance (<0.05). Millet rice yellow wine with ethanol yield of 15.68%, v/v was produced at an optimized temperature of 32 °C, yeast addition quantity of 9%, and time of 41 days. The volatile compounds in millet rice wine were analyzed by gas chromatography coupled with mass spectrometry (GC/MS). Amino acid components in yellow wines were analyzed by high performance liquid chromatography (HPLC). Ten, twelve and sixteen volatile compounds were detected in wines in fermentation time of 41, 55 and 70 days, respectively. HPLC shows that the content of amino acids in rice wine is not only the highest, but also has 20 kinds, including 8 kinds of essential amino acids for human body. The difference in volatile components and amino acids composition greatly contribute to the flavor of the wine.
Collapse
Affiliation(s)
- XinMing Li
- Shanxi institute for Functional Food, Shanxi Agricultural University, Taiyuan City, 030000, Shanxi Province, China
| | - YaJun Zhang
- Shanxi institute for Functional Food, Shanxi Agricultural University, Taiyuan City, 030000, Shanxi Province, China
| | - Shang Guo
- Shanxi institute for Functional Food, Shanxi Agricultural University, Taiyuan City, 030000, Shanxi Province, China
| | - RunFang Dai
- Shanxi Provincial Agricultural Product Quality and Safety Center, Taiyuan city, 030006, Shangxi Province, China
| |
Collapse
|
2
|
Zhu J, Lu Y, He Q. From detection methods to risk prevention: Control of N-nitrosamines in foods and the role of natural bioactive compounds. Compr Rev Food Sci Food Saf 2024; 23:e70000. [PMID: 39217507 DOI: 10.1111/1541-4337.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Food processing unavoidably introduces various risky ingredients that threaten food safety. N-Nitrosamines (NAs) constitute a class of food contaminants, which are considered carcinogenic to humans. According to the compiled information, pretreatment methods based on solid-phase extraction (SPE) were widely used before the determination of volatile NAs in foods. The innovation of adsorbents and hybridization of other methods have been confirmed as the future trends of SPE-based pretreatment methods. Moreover, technologies based on liquid chromatography and gas chromatography were popularly applied for the detection of NAs. Recently, sensor-based methods have garnered increasing attention due to their efficiency and flexibility. More portable sensor-based technologies are recommended for on-site monitoring of NAs in the future. The application of artificial intelligence can facilitate data processing during high-throughput detection of NAs. Natural bioactive compounds have been confirmed to be effective in mitigating NAs in foods through antioxidation, scavenging precursors, and regulating microbial activities. Meanwhile, they exhibit strong protective activities against hepatic damage, pancreatic cancer, and other NA injuries. Further supplementation of data on the bioavailability of bioactives can be achieved through encapsulation and clinical trials. The utilization of bioinformatics tools rooted in various omics technologies is suggested for investigating novel mechanisms and finally broadening their applications in targeted therapies.
Collapse
Affiliation(s)
- Jinpeng Zhu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Yunhao Lu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Qiang He
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Ding N, Liu R, Zhang B, Yang N, Qin M, Zhang Y, Wang Z. A fluorescent nanoprobe and paper-based nanofiber platform for detection and imaging of Fe 3+ in actual samples and living cells. Talanta 2024; 271:125713. [PMID: 38310757 DOI: 10.1016/j.talanta.2024.125713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/06/2024]
Abstract
In this study, a novel fluorescent nanoprobe (ZIF-90@FSS) was constructed using a zeolite imidazolium ester skeleton (ZIF-90) incorporating sodium fluorescein within its porous structure. Notably, this nanoprobe exhibited regular fluorescence "off" detection performance of Fe3+ in actual samples and living cells. The concentration range of 0-150 ng/mL exhibited a lowest detection limit of 0.26 ng/mL. A nanofiber paper-based platform (VL78/ZIF-90@FSS) was further developed by coupling the prepared nanoprobe to a multi-dimensional fiber paper via CN bonds, enabling rapid visual white light colorimetric and fluorescence imaging of Fe3+ within 2 min. The constructed nanoprobe and its paper-based detection platforms demonstrated a stable recovery range in tap water, beer, and soy sauce samples during spiking-recovery assessments. The recovery rates ranged from 98.46 % to 108.24 % for the nanoprobe and from 91.75 % to 108.71 % for the nanofiber paper-based platform. Therefore, the developed nano-fluorescent sensor and paper-based nanofiber sensing platform offer a promising strategy for the visual detection of Fe3+, while also presenting novel and valuable methods to investigate the regulatory mechanisms of Fe3+ in living cells.
Collapse
Affiliation(s)
- Ning Ding
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Ruoqing Liu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Bo Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Ningru Yang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Mingwei Qin
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, 610106, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, 610106, China; National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
4
|
Liao H, Asif H, Huang X, Luo Y, Xia X. Mitigation of microbial nitrogen-derived metabolic hazards as a driver for safer alcoholic beverage choices: An evidence-based review and future perspectives. Compr Rev Food Sci Food Saf 2023; 22:5020-5062. [PMID: 37823801 DOI: 10.1111/1541-4337.13253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023]
Abstract
Alcoholic beverages have been enjoyed worldwide as hedonistic commodities for thousands of years. The unique quality and flavor are attributed to the rich microbiota and nutritional materials involved in fermentation. However, the metabolism of these microbiota can also introduce toxic compounds into foods. Nitrogen-derived metabolic hazards (NMH) are toxic metabolic hazards produced by microorganisms metabolizing nitrogen sources that can contaminate alcoholic beverages during fermentation and processing. NMH contamination poses a risk to dietary safety and human health without effective preventive strategies. Existing literature has primarily focused on investigating the causes of NMH formation, detection methods, and abatement techniques for NMH in fermentation end-products. Devising effective process regulation strategies represents a major challenge for the alcoholic beverage industry considering our current lack of understanding regarding the processes whereby NMH are generated, real-time and online detection, and the high degradation rate after NMH formation. This review summarizes the types and mechanisms of nitrogenous hazard contamination, the potential risk points, and the analytical techniques to detect NMH contamination. We discussed the changing patterns of NMH contamination and effective strategies to prevent contamination at different stages in the production of alcoholic beverages. Moreover, we also discussed the advanced technologies and methods to control NMH contamination in alcoholic beverages based on intelligent monitoring, synthetic ecology, and computational assistance. Overall, this review highlights the risks of NMH contamination during alcoholic beverage production and proposes promising strategies that could be adopted to eliminate the risk of NMH contamination.
Collapse
Affiliation(s)
- Hui Liao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| | - Hussain Asif
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| | - Xinlei Huang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| | - Yi Luo
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| | - Xiaole Xia
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| |
Collapse
|
5
|
Lin S, Wang H, Cai L, Liao L, Su Y, Cai X, Shen M. Characteristics and health risk assessment of volatile N-nitrosamines in the plasma of adults in Guangdong Province, China. J Pharm Biomed Anal 2023; 227:115189. [PMID: 36854220 DOI: 10.1016/j.jpba.2022.115189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/04/2022] [Accepted: 11/26/2022] [Indexed: 11/29/2022]
Abstract
N-nitrosamines are strong carcinogens that are widely present in the environment. This study developed a method, and analyzed the concentrations of volatile N-nitrosamines (VNAs) in the plasma of adults in Guangdong Province, China. Finally, the health risks to adults in Guangdong Province, China, with dietary exposure to VNAs were assessed. Gas chromatography/mass spectrometry (GC/MS) in electron impact (EI) ionization source mode was used to quantitatively analyze VNAs, and to perform accurate mass determination. The lower limit of detection (LOD) of nine nitrosamines are ranged from 0.01 to 2.14 ng/mL. The recovery rate ranged from 83 % to 116 %, and the relative standard deviation (RSD) was < 10 %. The method developed is simple, rapid, and provides good reproducibility and high sensitivity. N-nitrosodimethylamine (NDMA), N-nitrosomethylethylamine (NMEA), N-nitrosodinbutylamine (NDBA), N-nitrosopiperidine (NPIP), N-nitrosopyrrolidine (NPYR), N-nitrosomorpholine (NMOR) and N-nitrosodiphenylamine (NDPhA) were detected in 92 adult plasma samples. NDMA and NMEA were detected in 56.5 % and 44.6 % of the samples, followed by NPIP (34.8 %). NDMA had the highest median concentration (43.7 ng/mL) in the total samples. There were gender-related differences found in the concentrations of NDBA and NDPhA. The exposure risk assessment results showed that the two highest daily dietary intakes of VNAs were N-nitrosodi-n-propylamine (NDPA) and NDMA, and aquatic products and pickled vegetables contributed the most total nitrosamine intake. The lifetime cancer risk of adults ranged from 2.88 × 10-10 to 7.46 × 10-5, and the risk associated with NDMA, NDPA, N-nitrosodiethylamine (NDEA), NMEA and NPIP are important and should attract more attention. This study aimed to explore the exposure levels of VNAs in the plasma of adults in Guangdong Province, China, and to assess the health risks of dietary intake of VNAs, which provides a basis of the effect of VNAs exposure on human health.
Collapse
Affiliation(s)
- Simin Lin
- Department of Hygiene Inspection & Quarantine Science, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hetao Wang
- Department of Hygiene Inspection & Quarantine Science, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Lishan Cai
- Department of Hygiene Inspection & Quarantine Science, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Lili Liao
- Department of Hygiene Inspection & Quarantine Science, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yintong Su
- Department of Hygiene Inspection & Quarantine Science, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xiaohua Cai
- Department of Hygiene Inspection & Quarantine Science, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Mei Shen
- Department of Hygiene Inspection & Quarantine Science, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
6
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Hogstrand C, (Ron) Hoogenboom L, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Romualdo B, Cristina F, Stephen H, Marco I, Mosbach‐Schulz O, Riolo F, Christodoulidou A, Grasl‐Kraupp B. Risk assessment of N-nitrosamines in food. EFSA J 2023; 21:e07884. [PMID: 36999063 PMCID: PMC10043641 DOI: 10.2903/j.efsa.2023.7884] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
EFSA was asked for a scientific opinion on the risks to public health related to the presence of N-nitrosamines (N-NAs) in food. The risk assessment was confined to those 10 carcinogenic N-NAs occurring in food (TCNAs), i.e. NDMA, NMEA, NDEA, NDPA, NDBA, NMA, NSAR, NMOR, NPIP and NPYR. N-NAs are genotoxic and induce liver tumours in rodents. The in vivo data available to derive potency factors are limited, and therefore, equal potency of TCNAs was assumed. The lower confidence limit of the benchmark dose at 10% (BMDL10) was 10 μg/kg body weight (bw) per day, derived from the incidence of rat liver tumours (benign and malignant) induced by NDEA and used in a margin of exposure (MOE) approach. Analytical results on the occurrence of N-NAs were extracted from the EFSA occurrence database (n = 2,817) and the literature (n = 4,003). Occurrence data were available for five food categories across TCNAs. Dietary exposure was assessed for two scenarios, excluding (scenario 1) and including (scenario 2) cooked unprocessed meat and fish. TCNAs exposure ranged from 0 to 208.9 ng/kg bw per day across surveys, age groups and scenarios. 'Meat and meat products' is the main food category contributing to TCNA exposure. MOEs ranged from 3,337 to 48 at the P95 exposure excluding some infant surveys with P95 exposure equal to zero. Two major uncertainties were (i) the high number of left censored data and (ii) the lack of data on important food categories. The CONTAM Panel concluded that the MOE for TCNAs at the P95 exposure is highly likely (98-100% certain) to be less than 10,000 for all age groups, which raises a health concern.
Collapse
|
7
|
Deng H, Ji L, Han X, Wu T, Han B, Li C, Zhan J, Huang W, You Y. Research progress on the application of different controlling strategies to minimizing ethyl carbamate in grape wine. Compr Rev Food Sci Food Saf 2023; 22:1495-1516. [PMID: 36856535 DOI: 10.1111/1541-4337.13119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 01/15/2023] [Accepted: 01/22/2023] [Indexed: 03/02/2023]
Abstract
Ethyl carbamate (EC) is a probable carcinogenic compound commonly found in fermented foods and alcoholic beverages and has been classified as a category 2A carcinogen by the International Agency for Research on Cancer (IARC). Alcoholic beverages are one of the main sources of EC intake by humans. Therefore, many countries have introduced a standard EC limit in alcoholic beverages. Wine is the second largest alcoholic beverage in the world after beer and is loved by consumers for its rich taste. However, different survey results showed that the detection rate of EC in wine was almost 100%, while the maximum content was as high as 100 μg/L, necessitating EC content regulation in wine. The existing methods for controlling the EC level in wine mainly include optimizing raw fermentation materials and processes, using genetically engineered strains, and enzymatic methods (urease or urethanase). This review focused on introducing and comparing the advantages, disadvantages, and applicability of methods for controlling EC, and proposes two possible new techniques, that is, changing the fermentation strain and exogenously adding phenolic compounds. In the future, it is hoped that the feasibility of this prospect will be verified by pilot-scale or large-scale application to provide new insight into the regulation of EC during wine production. The formation mechanism and influencing factors of EC in wine were also introduced and the analytical methods of EC were summarized.
Collapse
Affiliation(s)
- Huan Deng
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Lin Ji
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Xiaoyu Han
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Tianyang Wu
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Bing Han
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Chenyu Li
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China.,School of Advanced Agricultural Sciences, Peking University, Beijing, China.,Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua, China
| | - Jicheng Zhan
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Weidong Huang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Yilin You
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Determination of 2-amino-1-methyl-6-phenylimidazole [4, 5-b] pyridine (PhIP) and its precursors and possible intermediates in a chemical model system and roast pork. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
9
|
Hu J, Liang M, Xian Y, Chen R, Wang L, Hou X, Wu Y. Development and validation of a multianalyte method for quantification of aflatoxins and bongkrekic acid in rice and noodle products using PRiME-UHPLC-MS/MS method. Food Chem 2022; 395:133598. [DOI: 10.1016/j.foodchem.2022.133598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/30/2022]
|
10
|
Studies on a novel method for the determination of nitrosamines in food by HPLC-UV-FLD coupling with terbium-doped carbon dots. Food Chem 2022. [DOI: 10.1016/j.foodchem.2022.134894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Luo F, Liu Y, Xie Y, Hou W, Zhang L, Zhang Z. Simultaneous determination of 13 nitrosamine impurities in biological medicines using salting-out liquid-liquid extraction coupled with liquid chromatography tandem mass spectrometry. J Pharm Biomed Anal 2022; 218:114867. [DOI: 10.1016/j.jpba.2022.114867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 11/25/2022]
|
12
|
Zhou H, Huang Q, Wu X, Zhan B, Chen D, Lei M, Zhang H. Rapid and selective determination of 9 nitrosamines in biological samples using ultra-high performance liquid chromatography-triple quadrupole linear ion trap mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2249-2254. [PMID: 35670188 DOI: 10.1039/d2ay00468b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A sensitive, selective and convenient method for the simultaneous determination of 9 nitrosamines (NAs) in biological samples was developed using isotope dilution ultra-high performance liquid chromatography-triple quadrupole linear ion trap mass spectrometry (UPLC-QTRAP-MS). Multiple reaction monitoring-information dependent acquisition-enhanced product ion (MRM-IDA-EPI) scan mode was performed to eliminate false positive results, and the whole detection procedure was characterized by less time consuming and simple sample preparation. 9 NAs were separated through a T3 column with the gradient elution of acetonitrile and water, and detected by UPLC-QTRAP-MS with an atmospheric pressure chemical ionization (APCI) source in the positive mode. The quantitative analysis was carried out via the isotope internal standard method with a matrix calibration curve. Under the optimized conditions, good linearity for the 9 NAs was achieved in the range of 0.2-20 μg L-1 with correlation coefficients (r) higher than ≥0.9991, and the limits of detection and limits of quantitation were 0.02-0.1 μg L-1 (S/N = 3) and 0.06-0.3 μg L-1 (S/N = 10), respectively. Satisfactory recoveries ranging from 79.4% to 108.0% were obtained, and the precision of the proposed method, indicated by the relative standard deviations (RSDs), was 2.3-12.9%. The matrix effect study showed that NDMA, NMOR and NMEA presented a matrix suppression effect, NDPHA displayed a matrix enhancement effect, and the matrix effects of the other 5 analytes could be ignored. Real application of the developed method in 13 urine and 24 plasma samples demonstrated that NDBA, NPIP and NPYR occurred in both urine and plasma samples with the concentration of 0.038-0.60 μg L-1, while other NAs were not detected. Such a method was sensitive and selective, and could be applied to the rapid qualitative and quantitative analysis of the 9 NAs in biological samples.
Collapse
Affiliation(s)
- Hua Zhou
- Quzhou Center for Disease Control and Prevention, Quzhou 324000, China
| | - Qin Huang
- Quzhou Center for Disease Control and Prevention, Quzhou 324000, China
| | - Xianglun Wu
- Quzhou Center for Disease Control and Prevention, Quzhou 324000, China
| | - Bindong Zhan
- Quzhou Center for Disease Control and Prevention, Quzhou 324000, China
| | - Dongyang Chen
- Hunan Provincial Center for Disease Control and Prevention, Changsha, Hunan 410005, China.
| | - Meikang Lei
- The Comprehensive Technology and Service Center of Quzhou Customs, Quzhou 324003, China
| | - Hao Zhang
- Hunan Provincial Center for Disease Control and Prevention, Changsha, Hunan 410005, China.
| |
Collapse
|
13
|
Metabolites comparison in post-fermentation stage of manual (mechanized) Chinese Huangjiu (yellow rice wine) based on GC–MS metabolomics. Food Chem X 2022; 14:100324. [PMID: 35586029 PMCID: PMC9108467 DOI: 10.1016/j.fochx.2022.100324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/20/2022] [Accepted: 04/30/2022] [Indexed: 11/22/2022] Open
Abstract
The differential metabolites of manual (mechanized) Huangjiu were determined during post-fermentation stage. The metabolic pathways associated with the differential metabolites were identified. The contribution of different metabolites to the flavor of Huangjiu was analyzed.
In order to understand the differences of metabolites and their key metabolic pathways between traditional manual and mechanized Huangjiu, gas chromatography-mass spectrometry (GC–MS) combined with non targeted metabolomics was used to track and monitor Huangjiu in the whole post-fermentation stage. The results showed that 25 metabolites and 14 metabolites were identified as differential metabolites in manual and mechanized Huangjiu, respectively (VIP > 1, P < 0.05); three metabolic pathways had significant effects on differential metabolites (−log (P) > 1, impact > 0.01). Compared with the two kinds of Huangjiu, 21 kinds of metabolites were identified as differential metabolites (VIP > 1, P < 0.05); four metabolic pathways had significant effects on differential metabolites (−log (P) > 1, impact > 0.01). This study is helpful to gain insight into the underlying mechanism of flavor formation during the post-fermentation process of Huangjiu and provide a theoretical basis for the industrial development.
Collapse
|
14
|
Liang Z, Su H, Ren X, Lin X, He Z, Li X, Zheng Y. Analysis of Key Genes Responsible for Low Urea Production in Saccharomyces cerevisiae JH301. Front Microbiol 2022; 13:894661. [PMID: 35558109 PMCID: PMC9087593 DOI: 10.3389/fmicb.2022.894661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 03/31/2022] [Indexed: 01/23/2023] Open
Abstract
There is a potential safety risk with ethyl carbamate (EC) in Hongqu Huangjiu production; 90% of the EC in rice wine is produced by the reaction of the urea with the alcohol of Saccharomyces cerevisiae. In our previous experiments, we screened and obtained a S. cerevisiae strain JH301 that offered low urea production. However, the key genes responsible for low urea production of strain JH301 remain unclear. Here, the whole genome sequencing of S. cerevisiae strain JH301 was accomplished via a next-generation high-throughput sequencing and long-read sequencing technology. There are six main pathways related to the urea metabolism of strain JH301 based on KEGG pathway mapping. Three species-specific genes are related to the urea metabolism pathways and were found in comparative genome analysis between strains JH301 and S288c during Hongqu Huangjiu production for the first time. Finally, the ARG80 gene was found to be likely a key gene responsible for low urea production of S. cerevisiae strain JH301, as determined by PCR and qRT-PCR check analyses from DNA and RNA levers. In conclusion, the results are useful for a scientific understanding of the mechanism of low urea production by Saccharomyces cerevisiae during Hongqu Huangjiu fermentation. It also is important to control the urea and EC contents in Hongqu Huangjiu production.
Collapse
Affiliation(s)
- Zhangcheng Liang
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, China.,Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, China
| | - Hao Su
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, China.,Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, China
| | - Xiangyun Ren
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, China.,Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, China
| | - Xiaozi Lin
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, China.,Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, China
| | - Zhigang He
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, China.,Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, China
| | - Xiangyou Li
- Fujian Pinghuhong Biological Technology Co., Ltd., Fuzhou, China
| | - Yan Zheng
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, China.,Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, China
| |
Collapse
|
15
|
Zhao W, Qian M, Dong H, Liu X, Bai W, Liu G, Lv XC. Effect of Hong Qu on the flavor and quality of Hakka yellow rice wine (Huangjiu) produced in Southern China. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
16
|
Seo J, Park J, Lee Y, Do B, Lee J, Kwon H. Effect of Cooking Method on the Concentrations of Volatile N‐nitrosamines in Various Food Products. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jung‐eun Seo
- Department of Food and Nutrition Seoul National University 1, Gwanak‐ro, Gwanak‐gu, Seoul 08826 Republic of Korea
- Present address: Digital Appliances Business, Samsung Electronics, 129, Samsung‐ro, Yeongtong‐gu Suwon‐si, Gyeonggi‐do 16677 Republic of Korea
| | - Jong‐eun Park
- Department of Food and Nutrition Seoul National University 1, Gwanak‐ro, Gwanak‐gu, Seoul 08826 Republic of Korea
- Present address: Analytics 2 team, Addpharma, 23, Jeongjail‐ro, Bundang‐gu Seongnam‐si, Gyeonggi‐do Republic of Korea
| | - Youngwon Lee
- Department of Food and Nutrition Seoul National University 1, Gwanak‐ro, Gwanak‐gu, Seoul 08826 Republic of Korea
| | - Byungkyung Do
- Department of Food and Nutrition Seoul National University 1, Gwanak‐ro, Gwanak‐gu, Seoul 08826 Republic of Korea
| | - Jee‐yeon Lee
- Bureau of Health Industry Policy Korea Health Industry Development Institute 187 Osongsaengmyeong 2‐ro, Osong‐eup, Chungcheongbuk‐do 28159 Republic of Korea
| | - Hoonjeong Kwon
- Department of Food and Nutrition Seoul National University 1, Gwanak‐ro, Gwanak‐gu, Seoul 08826 Republic of Korea
- Research Institute of Human Ecology Seoul National University, 1, Gwanak‐ro, Gwanak‐gu, Seoul 08826 Republic of Korea
| |
Collapse
|
17
|
Ma Z, Zhao T, Cui S, Zhao X, Fan Y, Song J. Determination of ethyl carbamate in wine by matrix modification-assisted headspace single-drop microextraction and gas chromatography-mass spectrometry technique. Food Chem 2022; 373:131573. [PMID: 34785112 DOI: 10.1016/j.foodchem.2021.131573] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/24/2021] [Accepted: 11/06/2021] [Indexed: 12/16/2022]
Abstract
A novel method for the analysis of ethyl carbamate in wine has been developed by coupling matrix modification-assisted headspace single-drop microextraction and gas chromatography-mass spectrometry (GC-MS) techniques. The method was developed by optimizing the matrix modifier and extraction parameters. The calibration method was followed by quantifying the internal isotope standard. The results suggested that the method was linear in the concentration range of 2-1000 ng/mL (R2 = 0.9996). The method presents a detection limit of 1.5 ng/mL, and the quantification limit is 5 ng/mL. The accuracy ranged between 94.9 and 99.9%, and the precision of the method was less than 5%. The method was applied for the detection of wine samples, and the results exhibited no significant difference when compared to the solid phase extraction method.
Collapse
Affiliation(s)
- Zexin Ma
- Bayingol Mongolian Autonomous Prefecture Food and Drug Inspection Institute, Xinjiang, 841000 Korla, China.
| | - Tingyong Zhao
- Bayingol Mongolian Autonomous Prefecture Food and Drug Inspection Institute, Xinjiang, 841000 Korla, China
| | - Shiyao Cui
- Bayingol Mongolian Autonomous Prefecture Food and Drug Inspection Institute, Xinjiang, 841000 Korla, China
| | - Xiaoning Zhao
- Bayingol Mongolian Autonomous Prefecture Food and Drug Inspection Institute, Xinjiang, 841000 Korla, China
| | - Yong Fan
- Bayingol Mongolian Autonomous Prefecture Food and Drug Inspection Institute, Xinjiang, 841000 Korla, China
| | - Jiangping Song
- Bayingol Mongolian Autonomous Prefecture Food and Drug Inspection Institute, Xinjiang, 841000 Korla, China
| |
Collapse
|
18
|
Abt E, Incorvati V, Robin LP, Redan BW. Occurrence of Ethyl Carbamate in Foods and Beverages: Review of the Formation Mechanisms, Advances in Analytical Methods, and Mitigation Strategies. J Food Prot 2021; 84:2195-2212. [PMID: 34347857 PMCID: PMC9092314 DOI: 10.4315/jfp-21-219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/02/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Ethyl carbamate (EC) is a process contaminant that can be formed as a by-product during fermentation and processing of foods and beverages. Elevated EC concentrations are primarily associated with distilled spirits, but this compound has also been found at lower concentrations in foods and beverages, including breads, soy sauce, and wine. Evidence from animal studies suggests that EC is a probable human carcinogen. Consequently, several governmental institutions have established allowable limits for EC in the food supply. This review includes EC formation mechanisms, occurrence of EC in the food supply, and EC dietary exposure assessments. Current analytical methods used to detect EC will be covered, in addition to emerging technologies, such as nanosensors and surface-enhanced Raman spectroscopy. Various mitigation methods have been used to maintain EC concentrations below allowable limits, including distillation, enzymatic treatments, and genetic engineering of yeast. More research in this field is needed to refine mitigation strategies and develop methods to rapidly detect EC in the food supply. HIGHLIGHTS
Collapse
|
19
|
Mentana A, Palermo C, Iammarino M, Chiaravalle AE, Centonze D. Electroanalytical characterisation of nitrosamines in different mobile phases as supporting electrolytes. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Liu X, Bai W, Zhao W, Qian M, Dong H. Correlation analysis of microbial communities and precursor substances of ethyl carbamate (EC) during soy sauce fermentation. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Xu ML, Gao Y, Wang X, Han XX, Zhao B. Comprehensive Strategy for Sample Preparation for the Analysis of Food Contaminants and Residues by GC-MS/MS: A Review of Recent Research Trends. Foods 2021; 10:2473. [PMID: 34681522 PMCID: PMC8535889 DOI: 10.3390/foods10102473] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 01/19/2023] Open
Abstract
Food safety and quality have been gaining increasing attention in recent years. Gas chromatography coupled to tandem mass spectrometry (GC-MS/MS), a highly sensitive technique, is gradually being preferred to GC-MS in food safety laboratories since it provides a greater degree of separation on contaminants. In the analysis of food contaminants, sample preparation steps are crucial. The extraction of multiple target analytes simultaneously has become a new trend. Thus, multi-residue analytical methods, such as QuEChERs and adsorption extraction, are fast, simple, cheap, effective, robust, and safe. The number of microorganic contaminants has been increasing worldwide in recent years and are considered contaminants of emerging concern. High separation in MS/MS might be, in certain cases, favored to sample preparation selectivity. The ideal sample extraction procedure and purification method should take into account the contaminants of interest. Moreover, these methods should cooperate with high-resolution MS, and other sensitive full scan MSs that can produce a more comprehensive detection of contaminants in foods. In this review, we discuss the most recent trends in preparation methods for highly effective detection and analysis of food contaminants, which can be considered tools in the control of food quality and safety.
Collapse
Affiliation(s)
- Meng-Lei Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China;
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yu Gao
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China;
| | - Xiao Wang
- Jilin Institute for Food Control, Changchun 130103, China;
| | - Xiao Xia Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China;
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China;
| |
Collapse
|
22
|
Robust Detection of Advanced Glycation Endproducts in Milk Powder Using Ultrahigh Performance Liquid Chromatography Tandem Mass Spectrometry (UHPLC-MS/MS). FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-01986-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
23
|
Lim H, Oh Y, Shin H. Determination of
N
‐Nitrosodimethylamine and
N
‐Nitrosodiethylamine in Sartans and Metformin Raw Materials and Finished Products by Headspace Gas Chromatography‐Tandem Mass Spectrometry. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Hyun‐Hee Lim
- Drug Abuse Research Center Kongju National University Kongju 314‐701 Republic of Korea
| | - Yun‐Suk Oh
- Research Center International Advanced Analytical Institute Goyang Republic of Korea
| | - Ho‐Sang Shin
- Department of Environmental Education Kongju National University Kongju 314‐701 Republic of Korea
| |
Collapse
|
24
|
Liang M, Xian Y, Wang B, Hou X, Wang L, Guo X, Wu Y, Dong H. High throughput analysis of 21 perfluorinated compounds in drinking water, tap water, river water and plant effluent from southern China by supramolecular solvents-based microextraction coupled with HPLC-Orbitrap HRMS. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114389. [PMID: 32220691 DOI: 10.1016/j.envpol.2020.114389] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/14/2020] [Accepted: 03/14/2020] [Indexed: 06/10/2023]
Abstract
The present work reported a high-throughput strategy for the analysis of 21 perfluorinated compounds (PFCs) in drinking water, tap water, river water and plant effluent from southern China by supramolecular solvent (SUPARS) vortex-mixed microextraction combined with high performance liquid chromatography-Orbitrap high resolution mass spectrometry (HPLC-Orbitrap HRMS). The SUPRAS without heating assistance is less solvent-consumption, meeting the requirements for green environmental protection and sustainable development. Parameters in the microextraction such as volume of dodecanol and tetrahydrofuran (THF), vortexing extraction and centrifugation time, salt concentration were investigated. The optimal extraction conditions were 250 μL of undecanol, 1.0 mL of THF and 20.0% (w/v, 4 g) NaCl. Under the optimum conditions, method limit of detection and method limit of quantitation in the ranges of 0.01-0.08 μg/L and 0.03-0.25 μg/L, good recoveries (72.5-117.8%) and intra-day precision (1.1-11.2%, n = 6), high enrichment factors (48-78) were obtained. The developed method was successfully applied for analysis of PFCs in 13 drinking water, tap water, river water and plant effluent samples collected from southern China. Perfluorobutane sulfonic acid was detected in one river water with concentration of 0.48 μg/L and 1H,1H,2H,2H-Perfluorooctane sulfonic acid was detected in one river water and two plant effluent samples with concentrations in the range of 0.14-0.67 μg/L.
Collapse
Affiliation(s)
- Ming Liang
- Guangzhou Quality Supervision and Testing Institute, Guangzhou City Research Center of Risk Dynamic Detection and Early Warning for Food Safety, Guangzhou City Key Laboratory of Detection Technology for Food Safety, No. 1-2, Zhujiang Road, Chaotian Industrial Zone, Panyu District, Guangzhou, Guangdong, 511447, China
| | - Yanping Xian
- Guangzhou Quality Supervision and Testing Institute, Guangzhou City Research Center of Risk Dynamic Detection and Early Warning for Food Safety, Guangzhou City Key Laboratory of Detection Technology for Food Safety, No. 1-2, Zhujiang Road, Chaotian Industrial Zone, Panyu District, Guangzhou, Guangdong, 511447, China
| | - Bin Wang
- Guangzhou Quality Supervision and Testing Institute, Guangzhou City Research Center of Risk Dynamic Detection and Early Warning for Food Safety, Guangzhou City Key Laboratory of Detection Technology for Food Safety, No. 1-2, Zhujiang Road, Chaotian Industrial Zone, Panyu District, Guangzhou, Guangdong, 511447, China
| | - Xiangchang Hou
- Guangzhou Quality Supervision and Testing Institute, Guangzhou City Research Center of Risk Dynamic Detection and Early Warning for Food Safety, Guangzhou City Key Laboratory of Detection Technology for Food Safety, No. 1-2, Zhujiang Road, Chaotian Industrial Zone, Panyu District, Guangzhou, Guangdong, 511447, China
| | - Li Wang
- Guangzhou Quality Supervision and Testing Institute, Guangzhou City Research Center of Risk Dynamic Detection and Early Warning for Food Safety, Guangzhou City Key Laboratory of Detection Technology for Food Safety, No. 1-2, Zhujiang Road, Chaotian Industrial Zone, Panyu District, Guangzhou, Guangdong, 511447, China
| | - Xindong Guo
- Guangzhou Quality Supervision and Testing Institute, Guangzhou City Research Center of Risk Dynamic Detection and Early Warning for Food Safety, Guangzhou City Key Laboratory of Detection Technology for Food Safety, No. 1-2, Zhujiang Road, Chaotian Industrial Zone, Panyu District, Guangzhou, Guangdong, 511447, China
| | - Yuluan Wu
- Guangzhou Quality Supervision and Testing Institute, Guangzhou City Research Center of Risk Dynamic Detection and Early Warning for Food Safety, Guangzhou City Key Laboratory of Detection Technology for Food Safety, No. 1-2, Zhujiang Road, Chaotian Industrial Zone, Panyu District, Guangzhou, Guangdong, 511447, China
| | - Hao Dong
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, No. 24, Dongsha Street, Fangzhi Road, Haizhu District, Guangzhou, Guangdong, 510225, China.
| |
Collapse
|
25
|
Rapid determination of nine N-nitrosamines in dry-cured mackerel (Scomberomorus niphonius) using salting out homogeneous phase extraction with acetonitrile followed by GC-MS/MS. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109716] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Xian Y, Liang M, Wu Y, Wang B, Hou X, Dong H, Wang L. Fluorine and nitrogen functionalized magnetic graphene as a novel adsorbent for extraction of perfluoroalkyl and polyfluoroalkyl substances from water and functional beverages followed by HPLC-Orbitrap HRMS determination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:138103. [PMID: 32224403 DOI: 10.1016/j.scitotenv.2020.138103] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 06/10/2023]
Abstract
Most of the reported magnetic adsorbents are difficult to absorb multi-class of per- and polyfluoroalkyl substances (PFASs), especially the short-chain PFASs. In this work, a novel fluorine and nitrogen functionalized magnetic graphene (G-NH-FBC/Fe2O3) was first synthesized and characterized by scanning electron microscope (SEM), Fourier Transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). The as-prepared G-NH-FBC/Fe2O3 was utilized as adsorbents for the magnetic solid-phase extraction (MSPE) of 19 PFASs from water and functional beverages and showed excellent adsorption capacity probably due to the hydrophobic interaction. Under the optimal pretreatment and instrumental conditions, a selective and sensitive high performance liquid chromatography Orbitrap high resolution mass spectrometry (HPLC-Orbitrap HRMS) method was developed for the determination of PFASs. Results indicated that the proposed method had favorable linearity (R2 ≥ 0.994) within a wide range of concentrations. Limit of detection (LOD) and limit of quantification (LOQ) for the developed method ranged from 3 ng/L to 15 ng/L and 10 ng/L to 49 ng/L, respectively. Finally, the method was successfully applied to determine PFASs in drinking water, river water, tap water, factory drainage and functional beverages with recoveries ranging from 71.9% to 117.6% and relative standard deviation of <10%. The prepared G-NH-FBC/Fe2O3 was easy to recycle and could be reused for five times without significant decrease in extraction recoveries of PFASs. These results demonstrated that this novel magnetic G-NH-FBC/Fe2O3 could efficiently enrich PFASs and the proposed method is reliable and robust for the determination of PFASs in water and beverage samples.
Collapse
Affiliation(s)
- Yanping Xian
- Guangzhou Quality Supervision and Testing Institute, Guangzhou City Research Center of Risk Dynamic Detection and Early Warning for Food Safety, Guangzhou City Key Laboratory of Detection Technology for Food Safety, Guangzhou, Guangdong 511447, China
| | - Ming Liang
- Guangzhou Quality Supervision and Testing Institute, Guangzhou City Research Center of Risk Dynamic Detection and Early Warning for Food Safety, Guangzhou City Key Laboratory of Detection Technology for Food Safety, Guangzhou, Guangdong 511447, China
| | - Yuluan Wu
- Guangzhou Quality Supervision and Testing Institute, Guangzhou City Research Center of Risk Dynamic Detection and Early Warning for Food Safety, Guangzhou City Key Laboratory of Detection Technology for Food Safety, Guangzhou, Guangdong 511447, China.
| | - Bin Wang
- Guangzhou Quality Supervision and Testing Institute, Guangzhou City Research Center of Risk Dynamic Detection and Early Warning for Food Safety, Guangzhou City Key Laboratory of Detection Technology for Food Safety, Guangzhou, Guangdong 511447, China
| | - Xiangchang Hou
- Guangzhou Quality Supervision and Testing Institute, Guangzhou City Research Center of Risk Dynamic Detection and Early Warning for Food Safety, Guangzhou City Key Laboratory of Detection Technology for Food Safety, Guangzhou, Guangdong 511447, China
| | - Hao Dong
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Liya Wang
- Guangdong Institute of Food Inspection, Guangzhou 510435, China
| |
Collapse
|
27
|
Liu X, Qian M, Dong H, Bai W, Zhao W, Li X, Liu G. Effect of ageing process on carcinogen ethyl carbamate (EC), its main precursors and aroma compound variation in Hakka Huangjiu produced in southern China. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Xiaoyan Liu
- College of Light Industry and Food Sciences Zhongkai University of Agriculture and Engineering Guangzhou 510225 China
| | - Min Qian
- College of Light Industry and Food Sciences Zhongkai University of Agriculture and Engineering Guangzhou 510225 China
| | - Hao Dong
- College of Light Industry and Food Sciences Zhongkai University of Agriculture and Engineering Guangzhou 510225 China
| | - Weidong Bai
- College of Light Industry and Food Sciences Zhongkai University of Agriculture and Engineering Guangzhou 510225 China
| | - Wenhong Zhao
- College of Light Industry and Food Sciences Zhongkai University of Agriculture and Engineering Guangzhou 510225 China
| | - Xiangluan Li
- College of Light Industry and Food Sciences Zhongkai University of Agriculture and Engineering Guangzhou 510225 China
| | - Gongliang Liu
- College of Light Industry and Food Sciences Zhongkai University of Agriculture and Engineering Guangzhou 510225 China
| |
Collapse
|
28
|
Liao PH, Yang HH, Wu PC, Abu Bakar NH, Urban PL. On-Line Coupling of Simultaneous Distillation-Extraction Using the Likens-Nickerson Apparatus with Gas Chromatography. Anal Chem 2019; 92:1228-1235. [PMID: 31814383 DOI: 10.1021/acs.analchem.9b04380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Simultaneous distillation-extraction (SDE) using the Likens-Nickerson apparatus is a convenient technique used to isolate volatile organic compounds (VOCs) from complex liquid matrices. The technique combines steam distillation with solvent extraction. While analytical extractions are normally followed by off-line separation/detection, it is advantageous to couple extractions on-line with separation and detection systems that are employed in the same analytical workflow. Here, we have coupled the Likens-Nickerson apparatus on-line with a gas chromatograph hyphenated with a mass spectrometer. For that purpose, we have devised an automated liquid transfer setup comprising a peristaltic pump, control unit, customized transfer vial with a drain port, and an autosampler arm to deliver liquid extract aliquots at defined time points. The on-line SDE-GC/MS system enables one to record real-time extraction profiles. These profiles reveal extraction kinetics of various VOCs present in the extracted samples. The data sets were fitted with the first order kinetic equation to obtain numeric values characterizing the extraction process (rate constants ranging from 0.21 to 0.01 min-1 for the ethyl esters from C6 to C19). A comparison of on-line and off-line results reveals that the on-line system is more dependable, while the off-line analysis leads to artifacts. To demonstrate the operation of the on-line SDE-GC/MS system, we performed analyses of selected real samples (beer). The real-time data sets revealed extraction kinetics for VOCs present in these samples. The devised extraction-analysis system allows the analysts to make an evidence-based decision on the extraction time for different groups of analytes in order to maximize extraction yield and minimize analyte losses.
Collapse
Affiliation(s)
- Pei-Han Liao
- Department of Chemistry , National Tsing Hua University , 101, Section 2, Kuang-Fu Road , Hsinchu 30013 , Taiwan.,Department of Applied Chemistry , National Chiao Tung University , 1001 University Road , Hsinchu 300 , Taiwan
| | - Hui-Hsien Yang
- Department of Chemistry , National Tsing Hua University , 101, Section 2, Kuang-Fu Road , Hsinchu 30013 , Taiwan.,Department of Applied Chemistry , National Chiao Tung University , 1001 University Road , Hsinchu 300 , Taiwan
| | - Pei-Chi Wu
- Department of Chemistry , National Tsing Hua University , 101, Section 2, Kuang-Fu Road , Hsinchu 30013 , Taiwan.,Department of Applied Chemistry , National Chiao Tung University , 1001 University Road , Hsinchu 300 , Taiwan
| | - Noor Hidayat Abu Bakar
- Department of Chemistry , National Tsing Hua University , 101, Section 2, Kuang-Fu Road , Hsinchu 30013 , Taiwan
| | - Pawel L Urban
- Department of Chemistry , National Tsing Hua University , 101, Section 2, Kuang-Fu Road , Hsinchu 30013 , Taiwan.,Frontier Research Center on Fundamental and Applied Sciences of Matters , National Tsing Hua University , 101, Section 2, Kuang-Fu Road , Hsinchu 30013 , Taiwan
| |
Collapse
|