1
|
Chen K, Xue L, Li Q, Li Y, Mao Y, Fan S, Zhang L, Zhao L. Quantitative structure-pungency landscape of sanshool dietary components from Zanthoxylum species. Food Chem 2021; 363:130286. [PMID: 34120040 DOI: 10.1016/j.foodchem.2021.130286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
The molecular basis of the pungency of sanshool dietary components from the Zanthoxylum species has been firstly addressed by constructing the statistically significant and highly predictive quantitative structure-pungency relationship models along with the pharmacophore models. The important pungent structural characters in the isobutylamide moiety and linear carbon chains were elucidated in this study that maintained the suitable spatial packing and electrostatic interactions with their receptors. Our results also revealed that the amide moiety, N-isobutyl moiety with suitable bulky and restricted electronegative substituents, and the relatively long straight carbon chains with suitable (conjugated) CC bonds or heteroatoms at regular intervals were essential for the high pungency. The pungency of 42 new sanshools was predicted, compared with the rough experimental data, and ultimately classified into weak, medium and strong types. Most of these sanshools were found to have good oral bioavailability and acceptable pharmacokinetic properties.
Collapse
Affiliation(s)
- Kexian Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, PR China.
| | - Lingling Xue
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, PR China
| | - Qingyao Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, PR China
| | - Yunyou Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, PR China
| | - Yufen Mao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, PR China
| | - Shuwen Fan
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, PR China
| | - Lulu Zhang
- Food and Agriculture Standardization Institute, China National Institute of Standardization, Beijing 102200, PR China
| | - Lei Zhao
- Food and Agriculture Standardization Institute, China National Institute of Standardization, Beijing 102200, PR China
| |
Collapse
|
2
|
Mechanistic elucidation of the oral pungency of capsaicin-related dietary components: Spatial structural insights. Food Chem 2021; 353:129429. [PMID: 33714121 DOI: 10.1016/j.foodchem.2021.129429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/11/2021] [Accepted: 02/19/2021] [Indexed: 12/17/2022]
Abstract
The mechanistic insights into the oral pungency of capsaicin-related dietary components have been elucidated from the spatial structural perspectives by establishing statistically significant and highly predictive three-dimensional quantitative structure-property relationship models. Our results visualized the possible favorable and unfavorable steric and electrostatic interactions with the pungent receptors with the assistance of pharmacophore models, and revealed the suitable electronegative/positive or bulky substitutions in the vanillyl group, amide moiety, linear alkyl chain and their adjacent structural area of capsaicin required for the desired pungency, which was not only complementary to the viewpoints proposed in our previous structure-pungency correlations, but also was applied to clearly clarify the pungent differences in compounds, and well predict the pungency of 21 capsaicin analogs though with ambiguous experimental data on pungency. Hopefully, this work would benefit the overall understanding of the pungent mechanism and facile discovery/design of analogs with desired pungency to expand their applications in foods.
Collapse
|
3
|
Vázquez-Espinosa M, Fayos O, V. González-de-Peredo A, Espada-Bellido E, Ferreiro-González M, Palma M, Garcés-Claver A, F. Barbero G. Content of Capsaicinoids and Capsiate in "Filius" Pepper Varieties as Affected by Ripening. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9091222. [PMID: 32957596 PMCID: PMC7569991 DOI: 10.3390/plants9091222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/02/2020] [Accepted: 09/12/2020] [Indexed: 05/03/2023]
Abstract
Peppers are fruits with wide genetic variability and multiple ways of being consumed that hold a relevant position in the human diet. Nowadays, consumers are interested in new gastronomic experiences provided by pepper cultivars that present new shapes, colors, and flavors while preserving their bioactive compounds, such as their capsaicinoids and capsinoids. However, numerous changes take place during their development that may alter their biological properties. Therefore, this work evaluates the capsaicinoid and capsiate contents in two traditional varieties of ornamental peppers ("Filius Blue" and "Filius Green'") during fruit maturation. The aim is to determine the ideal harvesting moment depending on the farmer's objective (e.g., achieving a specific color, shape, or flavor; achieving the maximum concentrations of bioactive compounds). The capsaicinoid contents followed different patterns in the two varieties analyzed. The "Filius Blue" variety exhibited increasing concentrations of capsaicinoids up to the 41st day post-anthesis (dpa), from which point on this trend was reversed. The concentrations in the "Filius Green" variety increased and decreased several times, reaching maximum concentrations on the 69th dpa. Regarding capsiate contents, both varieties varied in the same way, reaching maximum concentrations on the 34th dpa and then decreasing.
Collapse
Affiliation(s)
- Mercedes Vázquez-Espinosa
- Department of Analytical Chemistry, Faculty of Sciences, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), IVAGRO, Puerto Real, 11510 Cadiz, Spain; (M.V.-E.); (A.V.G.-d.-P.); (E.E.-B.); (M.F.-G.); (M.P.)
| | - Oreto Fayos
- Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, 50059 Zaragoza, Spain; (O.F.); (A.G.-C.)
| | - Ana V. González-de-Peredo
- Department of Analytical Chemistry, Faculty of Sciences, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), IVAGRO, Puerto Real, 11510 Cadiz, Spain; (M.V.-E.); (A.V.G.-d.-P.); (E.E.-B.); (M.F.-G.); (M.P.)
| | - Estrella Espada-Bellido
- Department of Analytical Chemistry, Faculty of Sciences, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), IVAGRO, Puerto Real, 11510 Cadiz, Spain; (M.V.-E.); (A.V.G.-d.-P.); (E.E.-B.); (M.F.-G.); (M.P.)
| | - Marta Ferreiro-González
- Department of Analytical Chemistry, Faculty of Sciences, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), IVAGRO, Puerto Real, 11510 Cadiz, Spain; (M.V.-E.); (A.V.G.-d.-P.); (E.E.-B.); (M.F.-G.); (M.P.)
| | - Miguel Palma
- Department of Analytical Chemistry, Faculty of Sciences, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), IVAGRO, Puerto Real, 11510 Cadiz, Spain; (M.V.-E.); (A.V.G.-d.-P.); (E.E.-B.); (M.F.-G.); (M.P.)
| | - Ana Garcés-Claver
- Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, 50059 Zaragoza, Spain; (O.F.); (A.G.-C.)
| | - Gerardo F. Barbero
- Department of Analytical Chemistry, Faculty of Sciences, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), IVAGRO, Puerto Real, 11510 Cadiz, Spain; (M.V.-E.); (A.V.G.-d.-P.); (E.E.-B.); (M.F.-G.); (M.P.)
- Correspondence: ; Tel.: +34-956-016355; Fax: +34-956-016460
| |
Collapse
|