1
|
Su R, Xiao X, Li G. Thermosensitive poly(N-isopropylacrylamide) hydrogel/highly internal phase emulsion porous polymer tube tip solid-phase extraction for the determination of methylimidazoles in beverage. J Chromatogr A 2023; 1712:464476. [PMID: 37924617 DOI: 10.1016/j.chroma.2023.464476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023]
Abstract
Poly(N-isopropylacrylamide) thermosensitive hydrogel tube tip solid-phase extraction/ultra-high liquid chromatography-mass spectrometry (UPLC-MS/MS) method was developed for analysis of methylimidazoles in beverages. Thermosensitive poly(N-isopropylacrylamide) (PNIPA) hydrogel solid-phase extraction (SPE) medium was prepared on the surface of highly internal phase emulsion (HIPE) porous polymer by thermally initiated polymerization in a tube tip. The temperature sensitive SPE medium has the characteristics of high porosity and high specific surface area. When the temperature is higher than 30.0℃, it can well adsorb polar molecular, and could quickly desorb polar molecular when the temperature was less than 20.0℃. The tube tip SPE coupled with UPLC-MS/MS method was established for the determination of three polar molecules including 1-methylimidazole, 4-methylimidazole and 2-methylimidazole, with linear ranges of 2.50 - 240 μg/L, and detection limits of 1.20, 1.20 and 0.65 μg/L, respectively. The method was applied to the determination of three methylimidazoles in beverages with the spiked recoveries of 81.5%-115.5% and the RSD of 0.6%-5.0%, and the relative errors of the results with the national standard UPLC-MS/MS method were in the range of -8.5%-8.9%.
Collapse
Affiliation(s)
- Rihui Su
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiaohua Xiao
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Badawy MEI, El-Nouby MAM, Kimani PK, Lim LW, Rabea EI. A review of the modern principles and applications of solid-phase extraction techniques in chromatographic analysis. ANAL SCI 2022; 38:1457-1487. [PMID: 36198988 PMCID: PMC9659506 DOI: 10.1007/s44211-022-00190-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022]
Abstract
Analytical processes involving sample preparation, separation, and quantifying analytes in complex mixtures are indispensable in modern-day analysis. Each step is crucial to enriching correct and informative results. Therefore, sample preparation is the critical factor that determines both the accuracy and the time consumption of a sample analysis process. Recently, several promising sample preparation approaches have been made available with environmentally friendly technologies with high performance. As a result of its many advantages, solid-phase extraction (SPE) is practiced in many different fields in addition to the traditional methods. The SPE is an alternative method to liquid-liquid extraction (LLE), which eliminates several disadvantages, including many organic solvents, a lengthy operation time and numerous steps, potential sources of error, and high costs. SPE advanced sorbent technology reorients with various functions depending on the structure of extraction sorbents, including reversed-phase, normal-phase, cation exchange, anion exchange, and mixed-mode. In addition, the commercial SPE systems are disposable. Still, with the continual developments, the restricted access materials (RAM) and molecular imprinted polymers (MIP) are fabricated to be active reusable extraction cartridges. This review will discuss all the theoretical and practical principles of the SPE techniques, focusing on packing materials, different forms, and performing factors in recent and future advances. The information about novel methodological and instrumental solutions in relation to different variants of SPE techniques, solid-phase microextraction (SPME), in-tube solid-phase microextraction (IT-SPME), and magnetic solid-phase extraction (MSPE) is presented. The integration of SPE with analytical chromatographic techniques such as LC and GC is also indicated. Furthermore, the applications of these techniques are discussed in detail along with their advantages in analyzing pharmaceuticals, biological samples, natural compounds, pesticides, and environmental pollutants, as well as foods and beverages.
Collapse
Affiliation(s)
- Mohamed E I Badawy
- Department of Pesticide Chemistry and Technology, Laboratory of Pesticide Residues Analysis, Faculty of Agriculture, Alexandria University, Aflatoun St., 21545-El-Shatby, Alexandria, Egypt.
| | - Mahmoud A M El-Nouby
- Department of Pesticide Chemistry and Technology, Laboratory of Pesticide Residues Analysis, Faculty of Agriculture, Alexandria University, Aflatoun St., 21545-El-Shatby, Alexandria, Egypt
- Department of Engineering, Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Paul K Kimani
- Department of Engineering, Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Lee W Lim
- International Joint Department of Materials Science and Engineering Between National University of Malaysia and Gifu University, Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Entsar I Rabea
- Department of Plant Protection, Faculty of Agriculture, Damanhour University, Damanhour, 22516, Egypt
| |
Collapse
|
3
|
Rafiei Jam M, Nezhadali A, Kaykhaii M. Application of gas flow headspace liquid phase micro extraction coupled with gas chromatography-mass spectrometry for determination of 4-methylimidazole in food samples employing experimental design optimization. BMC Chem 2022; 16:29. [PMID: 35524272 PMCID: PMC9077832 DOI: 10.1186/s13065-022-00823-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/28/2022] [Indexed: 12/05/2022] Open
Abstract
Background 4-Methylimidazole (4-MeI) or 4-methyl-1H-imidazole, a slightly yellowish solid with molecular formula C4H6N2, is a heterocyclic compound which supposedly does not exist as a natural product and is formed when carbohydrates are heating with ammonium compounds. This compound is used in pharmaceuticals, agriculture and photography chemicals, dyes and pigments, and rubber manufacturing. In the present study, a simple and efficient sample preparation method designated gas flow headspace liquid phase microextraction (GF-HS-SDME) was employed for the extraction and preconcentration of 4-methylimidazole (4-MeI) from food and beverage samples, before its determination by gas chromatography-mass spectrometry. Result To investigate the optimal conditions for the extraction process in GF-HS-SDME method, factors affecting extraction, including selection of extraction solvent, vial volume, extraction solvent ratio, position of extracting solvent, drop volume, sample volume, stirring speed, temperature, extraction time, sample pH, ionic strength of the sample solution and gas flow rate were optimized by utilizing both one-variable-at-a-time method and Plackett–Burman design. The investigation of protocol was carried out by using a standard solution containing 100.0 μg L−1 of 4-MeI in deionized water. Conclusion In this study, a simple and green analytical method based on GF-HS-SDME was proposed for the extraction and preconcentration of 4-MeI from foodstuffs, followed by GC–MS determination. The main advantage of this method is its high preconcentration factor and fastness due to the application of an inert gas stream during microextraction. Supplementary Information The online version contains supplementary material available at 10.1186/s13065-022-00823-z.
Collapse
Affiliation(s)
- Mahdiye Rafiei Jam
- Department of Chemistry, Payame Noor University, P.O. Box 19395-4697, 19569, Tehran, Iran
| | - Azizollah Nezhadali
- Department of Chemistry, Payame Noor University, P.O. Box 19395-4697, 19569, Tehran, Iran
| | - Massoud Kaykhaii
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, 80-233, Gdańsk, Poland.
| |
Collapse
|
4
|
Gou L, Zeng X, Du H, Li L, Tian Y, Hou X, Wu L. Sensitive detection of trace 4-methylimidazole utilizing a derivatization reaction-based ratiometric surface-enhanced Raman scattering platform. Talanta 2022; 237:122925. [PMID: 34736662 DOI: 10.1016/j.talanta.2021.122925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
Herein, a facile and fast surface-enhanced Raman scattering (SERS) method with ratiometric strategy was developed for detection of 4-methylimidazole (4-MI). Via a chemical derivatization reaction with 3-amino-5-mercapto-1,2,4-triazole (AMTA) diazonium salts, 4-MI could be converted to SERS-sensitive species. The SERS intensity ratio between the peaks at 1243 cm-1 and 1110 cm-1 (I1243/I1110) was used for the quantification of 4-MI. In addition, the method sensitivity was further improved by the aggregation of beta-cyclodextrin-modified Ag nanoparticles (beta-CD-AgNPs). Under the optimal conditions, the limit of detection (LOD) and the limit of quantification (LOQ) for 4-MI were 1.7 nM (S/N = 3) and 5.7 nM (S/N = 10), respectively. The relative standard deviation (RSD) for 0.5 μM 4-MI was 8.2% (n = 20). This method was successfully used for the determination of 4-MI in cola samples with recoveries ranging from 92% to 106%. The present method is convenient, sensitive, selective, reliable and may have a promising application in determination of the compounds with an imidazole ring containing active hydrogen atoms.
Collapse
Affiliation(s)
- Lichen Gou
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Xiaoliang Zeng
- State Grid Sichuan Electric Power Research Institute, Chengdu, Sichuan, 610041, China
| | - Huan Du
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Ling Li
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Yunfei Tian
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Xiandeng Hou
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan, 610064, China; Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Li Wu
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan, 610064, China.
| |
Collapse
|
5
|
A Review of the Analytical Methods for the Determination of 4(5)-Methylimidazole in Food Matrices. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9110322] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
4(5)-Methylimidazole (4(5)MEI) is a product of the Maillard reaction between sugars and amino acids, which occurs during the thermal processing of foods. This compound is also found in foods with caramel colorants additives. Due to its prevalence in foods and beverages and its potent carcinogenicity, 4(5)MEI has received federal and state regulatory agency attention. The aim of this review is to present the extraction procedures of 4(5)MEI from food matrices and the analytical methods for its determination. Liquid and gas chromatography coupled with mass spectrometry are the techniques most commonly employed to detect 4(5)MEI in food matrices. However, the analysis of 4(5)MEI is challenging due to the high polarity, water solubility, and the absence of chromophores. To overcome this, specialized sample pretreatment and extraction methods have been developed, such as solid-phase extraction and derivatization procedures, increasing the cost and the preparation time of samples. Other analytical methods for the determination of 4(5)MEI, include capillary electrophoresis, paper spray mass spectrometry, micellar electrokinetic chromatography, high-performance cation exchange chromatography, fluorescence-based immunochromatographic assay, and a fluorescent probe.
Collapse
|