1
|
Zanghelini G, Giampaoli P, Athès V, Vitu S, Wilhelm V, Esteban-Decloux M. Charentaise distillation of cognac. Part I: Behavior of aroma compounds. Food Res Int 2024; 178:113977. [PMID: 38309919 DOI: 10.1016/j.foodres.2024.113977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 02/05/2024]
Abstract
The Charentaise distillation plays an essential role in designing cognac aroma by extracting and selectively concentrating aroma compounds from the wine along with ethanol, in addition to promoting compound formation or degradation through different chemical reactions. This traditional mode of distillation still relies heavily on empirical knowledge and the impact of its different parameters on the composition of cognac is not fully elucidated. In this context, this study aimed to broaden the current knowledge on the behavior of aroma compounds throughout the two steps of the Charentaise distillation and to investigate the formation of aroma compounds during the operation, an aspect which is seldom considered. The concentration profiles of 62 aroma compounds were represented over time for a wine and a brouillis distillation in usual scale (25 hL) with recycling. A classification system was then proposed to group compounds based on their volatilities at different ethanol concentrations in the boiling liquid, their concentration profiles and their chemical properties. This could help identify how chemical characteristics of aroma compounds affect their volatilities in hydroalcoholic media during distillation. In addition, several compounds appear to be formed during distillation, most of which are terpenes, norisoprenoids and aldehydes. Finally, to highlight the importance of different compounds to the aroma of freshly distilled cognac, their odor activity values (OAV) in the heart fraction were estimated, revealing isobutanol and (E)-ß-damascenone to be the most odorant compounds. These results provided additional elements of understanding for different aspects of the Charentaise distillation for the production of cognac, several of which can be transposed, at least in part, to different modes of distillation pertaining to other distilled beverages.
Collapse
Affiliation(s)
- Gabriela Zanghelini
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91120 Palaiseau, France.
| | - Pierre Giampaoli
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91120 Palaiseau, France.
| | - Violaine Athès
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91120 Palaiseau, France.
| | - Stéphane Vitu
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91120 Palaiseau, France; CNAM, 75003 Paris, France.
| | | | | |
Collapse
|
2
|
Wang X, Cui W, Guo W, Sun B, Huang M, Li J, Li H, Meng N. Separation techniques for manufacturing fruit spirits: From traditional distillation to advanced pervaporation process. Compr Rev Food Sci Food Saf 2024; 23:e13278. [PMID: 38284610 DOI: 10.1111/1541-4337.13278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/02/2023] [Accepted: 11/21/2023] [Indexed: 01/30/2024]
Abstract
Separation process is one of the key processes in the production of fruit spirits, including the traditional distillation method and the new pervaporation membrane method. The separation process significantly determines the constituents and proportions of compounds in the fruit spirit, which has a significant impact on the spirit quality and consumer acceptance. Therefore, it is important and complex to reveal the changing rules of chemical substances and the principles behind them during the separation process of fruit spirits. This review summarized the traditional separation methods commonly used in fruit spirits, covering the types, principles, and corresponding equipment of distillation methods, focused on the enrichment or removal of aroma compounds and harmful factors in fruit spirits by distillation methods, and tried to explain the mechanism behind it. It also proposed a new separation technology for the production of fruit spirits, pervaporation membrane technology, summarized its working principle, operation, working parameters, and application in the production of fruit spirits, and outlined the impact of the separation method on the production of fruit spirits based on existing research, focusing on the separation of flavor compounds, sensory qualities, and hazard factors in fruit spirits, along with a preliminary comparison with distillation. Finally, according to the current researches of the separation methods and the development requirement of the separation process of fruit spirits, the prospect of corresponding research is put forward, in order to propose new ideas and development directions for the research in this field.
Collapse
Affiliation(s)
- Xiaoqin Wang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
| | - Wenwen Cui
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
| | - Wentao Guo
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
| | - Baoguo Sun
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
| | - Mingquan Huang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
| | - Jinchen Li
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
| | - Hehe Li
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
| | - Nan Meng
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
3
|
Silveira AL, Barbeira PJS. Synchronous fluorescence spectroscopy and multivariate classification for the discrimination of cachaças and rums. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 270:120821. [PMID: 35007903 DOI: 10.1016/j.saa.2021.120821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/21/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
Although cachaça and rum are distilled beverages obtained from the same raw material, they present differences in their chemical compositions. In this study, synchronous fluorescence spectroscopy was used combined with supervised classification models based on the partial least squares discriminant analysis to develop a rapid and low-cost model for discriminating between 50 cachaça and 40 rum samples. Partial least squares discriminant analysis models were constructed using synchronous fluorescence spectra recorded at wavelength differences of 10-100 nm. Initially, spectra were preprocessed by the first derivative with the Savitzky-Golay smoothing, and filter width and polynomial order were selected through face-centered central composite designs. For the construction and validation models, the spectra data were split into two datasets: the training and the test sets containing 60 (C, n = 33; R, n = 27) and 30 (C, n = 17; R, n = 13) samples, respectively. The best discrimination was achieved using fluorescence spectra recorded at wavelength difference 10 nm, allowing the discrimination of cachaça and rum with a classification efficiency of 98%. These results indicate that synchronous fluorescence spectroscopy offers a promising approach for the authentication of cachaças and rums.
Collapse
Affiliation(s)
- Amanda Lemes Silveira
- ICEx, Departamento de Química - Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte - MG CEP 31270-901, Brazil
| | - Paulo Jorge Sanches Barbeira
- ICEx, Departamento de Química - Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte - MG CEP 31270-901, Brazil.
| |
Collapse
|
4
|
Fayek NM, Xiao J, Farag MA. A multifunctional study of naturally occurring pyrazines in biological systems; formation mechanisms, metabolism, food applications and functional properties. Crit Rev Food Sci Nutr 2021; 63:5322-5338. [PMID: 34933625 DOI: 10.1080/10408398.2021.2017260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Natural pyrazines, mainly methyl- or ethyl-substituted forms, are commonly applied as flavor ingredients in raw and roasted food. Meanwhile alkylpyrazines are used as food preservatives due to their effective antimicrobial action. These natural pyrazines are widely distributed in several biological systems such as plants, animals, and insects; each with respective physiological role. Besides, pyrazines are formed in food via thermal treatment and fermentation. This review presents the most comprehensive overview of pyrazines with correlation to their chemical structures and different applications with emphasis on their food applications. The major part deals with pyrazines generated in thermally treated food, reaction mechanisms highlighting factors and optimum conditions affecting their production. Additionally, the several metabolic reactions mediating for pyrazines metabolism in humans and excretion via the kidney are discussed and on context to their effects. Lastly, a review of the different techniques applied for pyrazines isolation, detection and quantitation is presented. The study provides future considerations and direction of research on this important dietary component and their applications. Pyrazines multifunctional chemistry is of value to the food sector, by presenting the best practices for their production whilst the detrimental effects are minimized.
Collapse
Affiliation(s)
- Nesrin M Fayek
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Vigo, Spain
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt
| |
Collapse
|
5
|
Zhang MJ, Chen Y, Liu JD, Li K, Li JB. Comparison of LLE and SPME Methods for Screening the Aroma Compounds in Rum. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2021. [DOI: 10.1080/03610470.2021.1937472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ming-jun Zhang
- College of Light Industry and Food Engineering, Guangxi University, Guangxi, Nanning, China
| | - Yu Chen
- College of Light Industry and Food Engineering, Guangxi University, Guangxi, Nanning, China
| | - Ji-dong Liu
- College of Light Industry and Food Engineering, Guangxi University, Guangxi, Nanning, China
- Collaborative Innovation Center for Guangxi Sugar Industry, Guangxi, Nanning, China
| | - Kai Li
- College of Light Industry and Food Engineering, Guangxi University, Guangxi, Nanning, China
- Collaborative Innovation Center for Guangxi Sugar Industry, Guangxi, Nanning, China
| | - Jian-bin Li
- College of Light Industry and Food Engineering, Guangxi University, Guangxi, Nanning, China
- Collaborative Innovation Center for Guangxi Sugar Industry, Guangxi, Nanning, China
| |
Collapse
|
6
|
Effect of processing and storage on the volatile profile of sugarcane honey: A four-year study. Food Chem 2021; 365:130457. [PMID: 34252619 DOI: 10.1016/j.foodchem.2021.130457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 01/19/2023]
Abstract
Sugarcane honey (SCH) is a syrup from Madeira Island recognized by its unique and excellent aroma, associated to volatile organic compounds (VOCs) generated during the well-defined five stages of its traditional making process. The establishment of volatile profile throughout all SCH-making stages during four years, allowed the evaluation of the influence of each stage in the typical characterisitcs of SCH. One hundred eighthy seven VOCs were identified, being associated to several origins and formation pathways. VOCs formed during stage 1 and 2 were originate from raw material, and its oxidation (i.e. enzymatic browning) and thermal degradation (i.e. lipid oxidation, Maillard reactions, Strecker degradation). In stage 3 and 4, the caramelization and melanoidin degradation also occurred, while in stage 5, the thermal degradation continues, followed by microbial activity. Chemometric analysis allowed to identify 35 VOCs as potential markers for processing control by the producers and as guarantee of the typicality and authenticity of SCH. Based on the obtained results, we propose for the first time an innovative schematic diagram explaining the potential reactions and pathways for VOCs formation during the different steps of the SCH production.
Collapse
|
7
|
Srivastava RK, Shetti NP, Reddy KR, Kwon EE, Nadagouda MN, Aminabhavi TM. Biomass utilization and production of biofuels from carbon neutral materials. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116731. [PMID: 33607352 DOI: 10.1016/j.envpol.2021.116731] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/01/2021] [Accepted: 02/09/2021] [Indexed: 05/22/2023]
Abstract
The availability of organic matters in vast quantities from the agricultural/industrial practices has long been a significant environmental challenge. These wastes have created global issues in increasing the levels of BOD or COD in water as well as in soil or air segments. Such wastes can be converted into bioenergy using a specific conversion platform in conjunction with the appropriate utilization of the methods such as anaerobic digestion, secondary waste treatment, or efficient hydrolytic breakdown as these can promote bioenergy production to mitigate the environmental issues. By the proper utilization of waste organics and by adopting innovative approaches, one can develop bioenergy processes to meet the energy needs of the society. Waste organic matters from plant origins or other agro-sources, biopolymers, or complex organic matters (cellulose, hemicelluloses, non-consumable starches or proteins) can be used as cheap raw carbon resources to produce biofuels or biogases to fulfill the ever increasing energy demands. Attempts have been made for bioenergy production by biosynthesizing, methanol, n-butanol, ethanol, algal biodiesel, and biohydrogen using different types of organic matters via biotechnological/chemical routes to meet the world's energy need by producing least amount of toxic gases (reduction up to 20-70% in concentration) in order to promote sustainable green environmental growth. This review emphasizes on the nature of available wastes, different strategies for its breakdown or hydrolysis, efficient microbial systems. Some representative examples of biomasses source that are used for bioenergy production by providing critical information are discussed. Furthermore, bioenergy production from the plant-based organic matters and environmental issues are also discussed. Advanced biofuels from the organic matters are discussed with efficient microbial and chemical processes for the promotion of biofuel production from the utilization of plant biomasses.
Collapse
Affiliation(s)
- Rajesh K Srivastava
- Department of Biotechnology, GIT, GITAM (Deemed to Be University), Rushikonda, Visakhapatnam, 530045, (A.P.), India
| | - Nagaraj P Shetti
- Department of Chemistry, K. L. E. Institute of Technology, Gokul, Hubballi, 580027, Karnataka, India
| | - Kakarla Raghava Reddy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, Seoul, 05006, Republic of Korea
| | - Mallikarjuna N Nadagouda
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, 45324, USA
| | | |
Collapse
|
8
|
Louw S. Recent trends in the chromatographic analysis of volatile flavor and fragrance compounds: Annual review 2020. ANALYTICAL SCIENCE ADVANCES 2021; 2:157-170. [PMID: 38716458 PMCID: PMC10989567 DOI: 10.1002/ansa.202000158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/17/2022]
Abstract
The chromatographic analysis of volatile flavor and fragrance compounds is performed routinely in several industries and in many fields of scientific research. Typical applications include food-, environmental-, essential oil- and cosmetics analysis. Even though the analysis of flavors and fragrances have become increasingly standardized during the past decade, there are still a large variety of techniques that can be used for their extraction, chemical analysis, and sensory analysis. Moreover, there are certain less commonly used techniques that are now being used with increased frequency and that are showing the potential of being used as alternatives to the existing standard techniques. In this annual review, the techniques that were most commonly used in 2020 for the investigation of these volatile compounds are discussed. In addition, a number of emerging trends are discussed, notably the use of solvent assisted flavor evaporation (SAFE) for extraction, GC ion mobility spectrometry (IMS) for volatile compound analysis and electronic senses, that is, E-noses and E-tongues, for sensory analysis. Miscellaneous hyphenated techniques, advances in stationary phase chemistry and a number of interesting applications are also highlighted.
Collapse
Affiliation(s)
- Stefan Louw
- Department of Chemistry and BiochemistryUniversity of NamibiaWindhoekNamibia
| |
Collapse
|
9
|
Processes, Challenges and Optimisation of Rum Production from Molasses—A Contemporary Review. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7010021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The rum industry is currently worth USD 16 billion, with production concentrated in tropical countries of the Caribbean and Asia-Pacific regions. The primary feedstock for rum production is sugar cane molasses, a by-product of sugar refineries. The main variables known to affect rum quality include the composition of the molasses, the length of fermentation, and the type of barrels and length of time used for aging the rum. The goal of this review is to provide an overview of the impact of these variables on rum quality, and to highlight current challenges and opportunities in the production of rum from molasses. In order to achieve this, we review the relevant contemporary scientific literature on these topics. The major contemporary challenges in the rum production industry include minimising the effects of variability in feedstock quality, ensuring the fermentation process runs to completion, preventing microbial contamination, and the selection and maintenance of yeast strains providing optimum ethanol production. Stringent quality management practices are required to ensure consistency in the quality and organoleptic properties of the rum from batch to batch. Further research is required to fully understand the influences of many of these variables on the final quality of the rum produced.
Collapse
|