1
|
Sari DK, Ibrahim N, Herlina N, Arrasyid NK, Dharmajaya R, Rachmawati M, Muhammad N, Salazar-Chang I. The Effects of Red Palm Oil, Koja Bay Leaves, and Passion Fruit Seeds Formulation on Antioxidant Activity, Antihyperlipidemia, BDNF, and Lipase Enzyme Activity on Sprague-Dawley Rats. J Exp Pharmacol 2024; 16:271-284. [PMID: 39262571 PMCID: PMC11389710 DOI: 10.2147/jep.s466494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024] Open
Abstract
Background Local wisdom food ingredients in North Sumatra, Indonesia, are a source of phenolics which have antioxidant, antihyperlipidemia, neuronal survival, and growth. Administering products with antioxidant properties can provide a supporting effect in preventing inflammation and neurodegenerative process. Objective The main objective of this study was to analyze the formulation of red palm oil (Elaeis guineensis Jacq), koja bay leaves (Murraya koenigii L Spreng), and passion fruit seeds (Passiflora edulis Sims) to improve lipid profile, antioxidant activity, Brain-Derived Neurotrophic Factor (BDNF), and lipase enzyme activity of Sprague-Dawley rats. Methods This study was an in vivo and pre-post experimental study, starting with analyzing flavonoid of the three extract ingredients, then tested by giving it to rats for 14 days and ending with induction administration of lipopolysaccharide (LPS) for two days. This pre-post study on animals involved 36 rats divided into 6 groups. At the end of the study, termination and examination of malondialdehyde, lipid profile, glucose, BDNF, lipase enzyme activity and histopathological examination were carried out. Results The study results showed that there were significant values in several parameters, which were body weight, LDL, LDL/HDL ratio, BDNF, and lipase enzyme activity especially in the group of rats given LPS and the group with high calories-fat-protein. This study showed that there were significant differences in body weight, LDL levels, and LDL/HDL ratio in each group of rats, especially in the group given the formulation of the three extract ingredients, the significant dose showed in 300mg/kg body weight (p < 0.001). Conclusion The formulation of red palm oil, koja bay leaves, and passion fruit seeds showed significant reduction in LDL levels, LDL/HDL ratio, BDNF, and lipase enzyme activity.
Collapse
Affiliation(s)
- Dina Keumala Sari
- Nutrition Department, Faculty of Medicine, Universitas Sumatera Utara, Medan, North Sumatra, Indonesia
| | - Nurhadi Ibrahim
- Physiology and Biophysics Department, Faculty of Medicine, Universitas Indonesia, Jakarta, Center Java, Indonesia
| | - Nina Herlina
- Pharmacy Department, Faculty of Pharmacy, Universitas Pakuan, Bogor, West Java,Indonesia
- Program Study of Pharmacy, Faculty of Math and Science, Pakuan University, Bogor, West Java, Indonesia
| | - Nurfida Khairina Arrasyid
- Parasitology Department, Faculty of Medicine, Universitas Sumatera Utara, Medan, North Sumatra, Indonesia
| | - Ridha Dharmajaya
- Neurosurgery Department, Faculty of Medicine, Universitas Sumatera Utara, Medan, North Sumatra, Indonesia
| | - Meike Rachmawati
- Anatomical Pathology Department, Faculty of Medicine, Bandung Islamic University, Bandung, Indonesia
| | - Noorzaid Muhammad
- Cluster of Integrative Physiology and Molecular Medicine, Universiti Kuala Lumpur, Royal College of Medicine Perak, Ipoh, Perak, Malaysia
| | - Ivan Salazar-Chang
- International Relation Department, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
2
|
Gao Z, Zhu Y, Jin J, Jin Q, Wang X. Chemical-Physical Properties of Red Palm Oils and Their Application in the Manufacture of Aerated Emulsions with Improved Whipping Capabilities. Foods 2023; 12:3933. [PMID: 37959052 PMCID: PMC10648229 DOI: 10.3390/foods12213933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Red palm oil (RPO), which is rich in micronutrients, especially carotenoids, is different from its deodorized counterpart, palm oil. It is considered as one of the most promising food ingredients, owing to its unique compositions and nutritional values, while its usage could be further developed by improving its thermal behaviors. In this article, two typical commercial RPOs, HRPO (H. red palm oil) and NRPO (N. red palm oil), were evaluated by analyzing their fatty acids, triacylglycerols, micronutrients, oxidative stability index (OSI), and solid fat contents (SFCs). Micronutrients, mainly carotenes, tocopherols, polyphenols, and squalene, significantly increased the oxidative stability indices (OSIs) of the RPOs (from 10.02 to 12.06 h), while the OSIs of their micronutrient-free counterparts were only 1.12 to 1.82 h. HRPO exhibited a lower SFC than those of NRPO. RPOs softened at around 10 °C and completely melted near 20 °C. Although the softening problem may limit the usages of RPOs, that problem could be solved by incorporating RPOs with mango kernel fat (MKF). The binary blends containing 40% RPOs and 60% MKF exhibited desirable compatibilities, making that blend suitable for the manufacture of aerated emulsions with improved whipping performance and foam stabilities. The results provide a new application of RPOs and MKF in the manufacture of aerated emulsions with improved nutritional values and desired whipping capabilities.
Collapse
Affiliation(s)
| | | | - Jun Jin
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.G.); (Y.Z.); (Q.J.); (X.W.)
| | | | | |
Collapse
|
3
|
Šeregelj V, Estivi L, Brandolini A, Ćetković G, Tumbas Šaponjac V, Hidalgo A. Kinetics of Carotenoids Degradation during the Storage of Encapsulated Carrot Waste Extracts. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248759. [PMID: 36557892 PMCID: PMC9782125 DOI: 10.3390/molecules27248759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
The encapsulates of carrot waste oil extract improved the antioxidant properties of durum wheat pasta. The aim of this research was to study the kinetics of carotenoids degradation in the freeze-dried (FDE) and spray-dried (SDE) encapsulates of carrot waste extract during storage at four different temperatures (+4, +21.3, +30, +37 °C) up to 413 days by HPLC. Carotenoids levels decreased as a function of time and temperature, following zero-order kinetics. At 4 °C carotenes were stable for at least 413 days, but their half-lives decreased with increasing temperatures: 8-12 months at 21 °C; 3-4 months at 30 °C; and 1.5-2 months at 37 °C. The freeze-drying technique was more effective against carotenes degradation. An initial lag-time with no or very limited carotenes degradation was observed: from one week at 37 °C up to 3 months (SDE) or more (FDE) at 21 °C. The activation energies (Ea) varied between 66.6 and 79.5 kJ/mol, and Ea values tended to be higher in FDE than in SDE.
Collapse
Affiliation(s)
- Vanja Šeregelj
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21101 Novi Sad, Serbia
| | - Lorenzo Estivi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
- Correspondence: (L.E.); (A.H.)
| | - Andrea Brandolini
- Council for Agricultural Research and Economics-Centre for Animal Production and Aquaculture (CREA-ZA), Viale Piacenza 29, 26900 Lodi, Italy
| | - Gordana Ćetković
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21101 Novi Sad, Serbia
| | - Vesna Tumbas Šaponjac
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21101 Novi Sad, Serbia
| | - Alyssa Hidalgo
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
- Correspondence: (L.E.); (A.H.)
| |
Collapse
|
4
|
Sodeifian G, Usefi MMB. Solubility, Extraction, and Nanoparticles Production in Supercritical Carbon Dioxide: A Mini‐Review. CHEMBIOENG REVIEWS 2022. [DOI: 10.1002/cben.202200020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gholamhossein Sodeifian
- University of Kashan Faculty of Engineering, Department of Chemical Engineering 87317-53153 Kashan Iran
- University of Kashan Laboratory of Supercritical Fluids and Nanotechnology 87317-53153 Kashan Iran
| | - Mohammad Mahdi Behvand Usefi
- University of Kashan Faculty of Engineering, Department of Chemical Engineering 87317-53153 Kashan Iran
- University of Kashan Laboratory of Supercritical Fluids and Nanotechnology 87317-53153 Kashan Iran
| |
Collapse
|
5
|
Dewi EN, Purnamayati L, Jaswir I. Effects of thermal treatments on the characterisation of microencapsulated chlorophyll extract of Caulerpa racemosa. INTERNATIONAL FOOD RESEARCH JOURNAL 2022. [DOI: 10.47836/ifrj.29.6.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Caulerpa racemosa is a macroalga that has a green pigment, that is, chlorophyll. Chlorophyll is highly sensitive to damage during heat processing. In the present work, C. racemosa chlorophyll extract was microencapsulated with fish gelatine and Arabic gum coatings, using a freeze-drying technique, to protect against heat damage. The microcapsules were subjected to high temperatures (120, 140, and 160°C) for 5 h. The protective effect of microcapsules on chlorophyll stability was assessed by measuring chlorophylls a and b degradation, total phenolic content, antioxidant activity, functional group analysis, colour, particle size, and morphology via scanning electron microscopy. Chlorophyll b significantly decreased by 87.78% in comparison with chlorophyll a (61.49%) during heating; the characteristic green colour of chlorophyll changed to brownish-green following heat exposure. However, chlorophyll was still present in the microcapsules as detected by the presence of the functional group C=O bond at 1600 nm wavelength. The heat treatment did not affect microcapsule particle size and morphology. Particle size distribution ranged from 91.58 to 112.51 µm, and the microcapsule was flake-shaped. The activation energy of chlorophyll a was 19336.96 kJ/mol·K; this was higher than that of chlorophyll b, which was 1780.53 kJ/mol·K. Based on the results, microcapsules produced using fish gelatine and Arabic gum as coating materials were able to protect chlorophyll in C. racemosa extract from heat damage.
Collapse
|
6
|
Determination of the solubility of rivaroxaban (anticoagulant drug, for the treatment and prevention of blood clotting) in supercritical carbon dioxide: Experimental data and correlations. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
7
|
Lai W, Liu Y, Kuang Y, Zhang S, Zhang C, Li C, Guo B. Preparation and evaluation of microcapsules containing Rimulus Cinnamon and Angelica Sinenis essential oils. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2116716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Wensheng Lai
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanling Liu
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanhui Kuang
- Guangzhou Baiyun Mountain and Hutchison Whampoa Ltd, Modern Chinese Medicine Research Institute, Guangzhou, China
| | - Sisi Zhang
- Guangzhou Baiyun Mountain and Hutchison Whampoa Ltd, Modern Chinese Medicine Research Institute, Guangzhou, China
| | - Chuanping Zhang
- Guangzhou Baiyun Mountain and Hutchison Whampoa Ltd, Modern Chinese Medicine Research Institute, Guangzhou, China
| | - Chuyuan Li
- Guangzhou Baiyun Mountain and Hutchison Whampoa Ltd, Modern Chinese Medicine Research Institute, Guangzhou, China
| | - Bohong Guo
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
8
|
Li Y, Hu K, Huang C, Hu Y, Ji H, Liu S, Gao J. Improvement of solubility, stability and antioxidant activity of carotenoids using deep eutectic solvent-based microemulsions. Colloids Surf B Biointerfaces 2022; 217:112591. [PMID: 35679734 DOI: 10.1016/j.colsurfb.2022.112591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/14/2022] [Accepted: 05/20/2022] [Indexed: 01/25/2023]
Abstract
Natural carotenoids have been widely used as colorants and antioxidants in process of food, medicine, and cosmetic. However, the carotenoids have low bioactivity in vivo due to poor water-solubility. To enhance the solubility, stability and antioxidant activity of carotenoids, novel microemulsions (MEs) composed with deep eutectic solvents (DESs), tween 80 and water were developed as alternatives to organic solvents. The phase diagrams and physicochemical properties (viscosity, pH, and diameter) of the DES-based MEs were investigated at different temperatures. Then the solubility distribution, storage stability and DPPH free radical-scavenging activity of three carotenoids (astaxanthin, astaxanthin ester and lutein) in the MEs were evaluated. Compared with ethanol, methanol, and acetone, all the DES-based MEs studied significantly enhanced the solubility of the carotenoids due to the stronger hydrogen bonding and Van der Waals interactions. The highest solubilities of 0.27, 473.63, and 12.50 mg/mL for astaxanthin, astaxanthin ester and lutein, respectively, were observed in the MEs containing DES (DL-menthol:acetic acid = 1:2) at 35 ℃. Moreover, astaxanthin ester can be well preserved in the MEs containing DES (DL-menthol:octanoic acid = 1:2) with a half-life of more than 69 days. In addition, the DPPH scavenging capacities of the three carotenoids in all the MEs were higher than the organic solvents. The results revealed that the DES-based MEs with low viscosity (<0.2 Pa•s) and mild acidic pH (4-5) are potential solvents for natural carotenoids in food processing and storage, medicine making, as well as biomaterials processing.
Collapse
Affiliation(s)
- Yan Li
- Collage of Food Science, Guangdong Pharmaceutical University, Zhongshan, PR China; Collage of Food Science and Technology, Guangdong Ocean University, Zhanjiang, PR China
| | - Kun Hu
- Collage of Food Science, Guangdong Pharmaceutical University, Zhongshan, PR China
| | - Chao Huang
- Collage of Food Science, Guangdong Pharmaceutical University, Zhongshan, PR China
| | - Yong Hu
- Collage of Food Science, Guangdong Pharmaceutical University, Zhongshan, PR China
| | - Hongwu Ji
- Collage of Food Science and Technology, Guangdong Ocean University, Zhanjiang, PR China
| | - Shucheng Liu
- Collage of Food Science and Technology, Guangdong Ocean University, Zhanjiang, PR China
| | - Jing Gao
- Collage of Food Science, Guangdong Pharmaceutical University, Zhongshan, PR China; Collage of Food Science and Technology, Guangdong Ocean University, Zhanjiang, PR China.
| |
Collapse
|
9
|
Singh S, Verma DK, Thakur M, Tripathy S, Patel AR, Shah N, Utama GL, Srivastav PP, Benavente-Valdés JR, Chávez-González ML, Aguilar CN. Supercritical fluid extraction (SCFE) as green extraction technology for high-value metabolites of algae, its potential trends in food and human health. Food Res Int 2021; 150:110746. [PMID: 34865764 DOI: 10.1016/j.foodres.2021.110746] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 02/07/2023]
Abstract
Application of high-value algal metabolites (HVAMs) in cosmetics, additives, pigments, foods and medicines are very important. These HVAMs can be obtained from the cultivation of micro- and macro-algae. These metabolites can benefit human and animal health in a physiological and nutritional manner. However, because of conventional extraction methods and their energy and the use of pollutant solvents, the availability of HVAMs from algae remains insufficient. Receiving their sustainability and environmental benefits have recently made green extraction technologies for HVAM extractions more desirable. But very little information is available about the technology of green extraction of algae from these HVAM. This review, therefore, highlights the supercritical fluid extraction (SCFE) as principal green extraction technologyand theirideal parameters for extracting HVAMs. In first, general information is provided concerning the HVAMs and their components of macro and micro origin. The review also includes a description of SCFE technology's properties, instrumentation operation, solvents used, and the merits and demerits. Moreover, there are several HVAMs associated with their numerous high-level biological activities which include high-level antioxidant, anti-inflammatory, anticancer and antimicrobial activity and have potential health-beneficial effects in humans since they are all HVAMs, such as foods and nutraceuticals. Finally, it provides future insights, obstacles, and suggestions for selecting the right technologies for extraction.
Collapse
Affiliation(s)
- Smita Singh
- Department of Nutrition and Dietetics, University Institute of Applied Health Sciences, Chandigarh University, Chandigarh 140413, Punjab, India.
| | - Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| | - Mamta Thakur
- Department of Food Technology, School of Sciences, ITM University, Gwalior 474001, Madhya Pradesh, India.
| | - Soubhagya Tripathy
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Ami R Patel
- Division of Dairy Microbiology, Mansinhbhai Institute of Dairy and Food Technology-MIDFT, Dudhsagar Dairy Campus, Mehsana 384 002, Gujarat, India
| | - Nihir Shah
- Division of Dairy Microbiology, Mansinhbhai Institute of Dairy and Food Technology-MIDFT, Dudhsagar Dairy Campus, Mehsana 384 002, Gujarat, India
| | - Gemilang Lara Utama
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang 45363, Indonesia; Center for Environment and Sustainability Science, Universitas Padjadjaran, Bandung 40132, Indonesia
| | - Prem Prakash Srivastav
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Juan Roberto Benavente-Valdés
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo Campus, 25280 Coahuila, Mexico
| | - Mónica L Chávez-González
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo Campus, 25280 Coahuila, Mexico
| | - Cristobal Noe Aguilar
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo Campus, 25280 Coahuila, Mexico.
| |
Collapse
|
10
|
Changes in oxidative stability and phytochemical contents of microencapsulated wheat germ oil during accelerated storage. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Alkandari S, Al-Hassawi F, Aldughpassi A, Sidhu JS, Al-Amiri HA, Al-Othman A, Ahmed N, Ahmad A. Pilot scale production of functional foods using red palm olein: Antioxidant, vitamins' stability and sensory quality during storage. Saudi J Biol Sci 2021; 28:5547-5554. [PMID: 34588864 PMCID: PMC8459047 DOI: 10.1016/j.sjbs.2021.06.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 11/19/2022] Open
Abstract
The objective of this research work was to produce acceptable quality functional foods, namely, extruded snacks, digestive biscuits and pan bread, on a pilot scale, using vitamin E and β-carotene-rich red palm olein (RPOL) and red palm shortening (RPS). These products were evaluated for their chemical composition and sensory quality along with the antioxidants and vitamin contents during the six months of storage at room temperature (22 ± 1 °C). Extruded snacks and digestive biscuits prepared with RPOL and RPS were found to be good sources of these antioxidant vitamins. The average β-carotene content of the control and test snacks at the end of six months of storage ranged from 26.8 to 56.1 mg/kg fat, and from 430.9 to 468.9 mg/kg fat, respectively. The total vitamin E content in control and test snacks made in Plant No. 1 decreased after six months of storage from 786.1 to 704.4 mg/kg fat, and from 765.1 to 695.4 mg/kg fat, respectively. As expected, the total tocotrienol content was four to five times higher than the total tocopherols in control biscuits. The RPOL containing 600–750 ppm of carotenes (mainly α- and β-carotenes), 710–774 ppm of vitamin E, was found to be suitable for industrial application in producing acceptable quality pan bread, digestive biscuits and snacks. These functional foods contained significant amounts of β-carotene and total vitamin E, indicating the possibility of producing such foods rich in these two of the important antioxidant vitamins coming from a natural source. The research findings strongly indicate that good-quality pan bread, extruded snacks and digestive biscuits can successfully be produced to offer healthier eating choices to the consumers of this region, thereby promoting better health and productivity among the population.
Collapse
Affiliation(s)
- Sharifa Alkandari
- Dept of Food Science & Nutrition, College of Life Sciences, Kuwait University, P.O. Box. 5969, 13060 Safat, Kuwait
| | - Fatima Al-Hassawi
- Dept of Food Science & Nutrition, College of Life Sciences, Kuwait University, P.O. Box. 5969, 13060 Safat, Kuwait
| | - Ahmed Aldughpassi
- Dept of Food Science & Nutrition, College of Life Sciences, Kuwait University, P.O. Box. 5969, 13060 Safat, Kuwait
| | - Jiwan S Sidhu
- Dept of Food Science & Nutrition, College of Life Sciences, Kuwait University, P.O. Box. 5969, 13060 Safat, Kuwait.,Food Science & Nutrition Program, Kuwait Institute for Scientific Research, P.O. Box 24885, 13109 Safat, Kuwait
| | - Hanan A Al-Amiri
- Food Science & Nutrition Program, Kuwait Institute for Scientific Research, P.O. Box 24885, 13109 Safat, Kuwait
| | - Amani Al-Othman
- Information and Communications Technology Dept, Kuwait Institute for Scientific Research, P.O. Box 24885, 13109 Safat, Kuwait
| | - Nissar Ahmed
- Central Analytical Laboratory, Kuwait Institute for Scientific Research, P.O. Box 24885, 13109 Safat, Kuwait
| | - Anwar Ahmad
- Central Analytical Laboratory, Kuwait Institute for Scientific Research, P.O. Box 24885, 13109 Safat, Kuwait
| |
Collapse
|
12
|
Patil PD, Patil SP, Kelkar RK, Patil NP, Pise PV, Nadar SS. Enzyme-assisted supercritical fluid extraction: An integral approach to extract bioactive compounds. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Santos PDDF, Rubio FTV, da Silva MP, Pinho LS, Favaro-Trindade CS. Microencapsulation of carotenoid-rich materials: A review. Food Res Int 2021; 147:110571. [PMID: 34399544 DOI: 10.1016/j.foodres.2021.110571] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/29/2022]
Abstract
Carotenoids are natural pigments that present several bioactive properties, including antioxidant, anticarcinogenic and provitamin A activities. However, these compounds are susceptible to degradation when exposed to a number of conditions (e.g. light, heat, oxygen), leading to loss of benefits and hampering their application in food products. Their hydrophobicity also makes incorporation into water-based foods more difficult. Microencapsulation techniques have been applied for decades to provide stability to carotenoid-rich extracts under typical conditions of processing and storage of foods, besides offering several other advantages to the use and application of these materials. This work reviews the recent advances in the microencapsulation of carotenoid-rich extracts, oils and oleoresins from varying sources, evidencing the technologies applied to encapsulate these materials, the effects of encapsulation on the obtained particles, and the impact of such processes on the bioaccessibility and release profile of carotenoids from microparticles. Moreover, recent applications of carotenoid-rich microparticles in food products are discussed. Most of the applied processes were effective in improving different aspects of the encapsulated materials, especially the stability of carotenoids during storage, resulting in microparticles with promising properties for future applications in food products. However, the lack of information about the effects of microencapsulation on carotenoids during processing of model foods, the sensory acceptance of enriched food products and the bioaccessibility and bioavailability of microencapsulated carotenoids reveals gaps that should be explored in the future.
Collapse
Affiliation(s)
- Priscila Dayane de Freitas Santos
- Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Engenharia de Alimentos, Avenida Duque de Caxias Norte, 225 - 13635-900 Pirassununga, SP, Brazil.
| | - Fernanda Thaís Vieira Rubio
- Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Engenharia de Alimentos, Avenida Duque de Caxias Norte, 225 - 13635-900 Pirassununga, SP, Brazil.
| | - Marluci Palazzolli da Silva
- Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Engenharia de Alimentos, Avenida Duque de Caxias Norte, 225 - 13635-900 Pirassununga, SP, Brazil.
| | - Lorena Silva Pinho
- Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Engenharia de Alimentos, Avenida Duque de Caxias Norte, 225 - 13635-900 Pirassununga, SP, Brazil.
| | - Carmen Sílvia Favaro-Trindade
- Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Engenharia de Alimentos, Avenida Duque de Caxias Norte, 225 - 13635-900 Pirassununga, SP, Brazil.
| |
Collapse
|
14
|
Huang K, Yuan Y, Baojun X. A Critical Review on the Microencapsulation of Bioactive Compounds and Their Application. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1963978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kehao Huang
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, China
- Department Of Food Science And Agricultural Chemistry, McGill University, Quebec, Canada
| | - Yingzhi Yuan
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, China
- Department Of Biochemistry, University College London, London, UK
| | - Xu Baojun
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, China
| |
Collapse
|
15
|
Acyl migration occurrence of palm olein during interesterification catalyzed by sn-1,3 specific lipase. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
|
17
|
Recent advances in subcritical water and supercritical carbon dioxide extraction of bioactive compounds from plant materials. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.014] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|