1
|
Xu R, Ye H, Zeng D, Zhang H, Xu X, Wu F. Oat flour and β-glucan regulate the quality of cereal flour and cereal products: Unveiling novel physicochemical insights with future perspectives. Int J Biol Macromol 2025; 307:142362. [PMID: 40120888 DOI: 10.1016/j.ijbiomac.2025.142362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/13/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
In the dynamically evolving cereal food industry, the demand for enhanced health properties has surged. The specific dietary requirements of certain patient groups have further intensified this pursuit, thereby driving the expansion of the gluten-free product market. However, refined and gluten-free cereal products often suffer from nutrient loss. Oats, celebrated for their outstanding nutritional profile, have garnered global attention within the realm of cereal products. Despite this, the impacts of adding oats, such as oat (bran) flour and oat β-glucan, on the physicochemical characteristics of cereal flours and the quality of associated products have not been reviewed. This review focuses on these aspects, including the influence on viscosity, thermal stability, viscoelasticity, dough/batter network structure, water distribution, and starch retrogradation, which can be used as mechanisms to explain the effects of oats on the quality of cereal products to some extent. Notably, the concentration, molecular weight, and structure of β-glucan play crucial roles. The effects of oats vary distinctly across diverse cereal products. We have comprehensively summarized these effects and propose strategies to mitigate negative impacts. Whole oats products show potential as gluten-free alternatives, but their associated safety issues must be considered. Meanwhile, large-scale production of oat β- glucan-enriched cereal products in the food industry faces numerous challenges. Looking forward, future research should explore advanced technologies such as genetic modification, spectral imaging, machine learning algorithms, and molecular dynamics simulation. These endeavors are aimed at surmounting the safety and nutritional challenges associated with oats in applications, optimizing the formulations of different cereal products, and fully exploiting the potential of oats in cereal product development.
Collapse
Affiliation(s)
- Ruoyuan Xu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Honggao Ye
- Shanghai Tramy Green Food (Group) Co., Ltd., Shanghai 200120, China
| | - Dexiong Zeng
- Shanghai Tramy Green Food (Group) Co., Ltd., Shanghai 200120, China
| | - Honghong Zhang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xueming Xu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Anqing Yixiu Green Food Innovation Research Institute, Anqing 246000, China
| | - Fengfeng Wu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Anqing Yixiu Green Food Innovation Research Institute, Anqing 246000, China.
| |
Collapse
|
2
|
He S, He S, Niu L, Sun C, Zeng Z, Xiao J. Effects of different roasting conditions on sugars profile, volatile compounds, carotenoids and antioxidant activities of orange-fleshed sweet potato. Food Chem X 2025; 25:102201. [PMID: 39901945 PMCID: PMC11788740 DOI: 10.1016/j.fochx.2025.102201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 02/05/2025] Open
Abstract
The effects of different roasting conditions (180 °C/70 min (T180), 210 °C/50 min (T210), and 240 °C/30 min (T240) on the qualities of orange-fleshed sweet potato (OFSP) were explored. Changes in sugars and carotenoids were analyzed by GC-MS and LC-MS/MS, and volatile compounds were characterized by GC × GC/TOF-MS. The antioxidant activities (DPPH• and ABTS•+) and bioaccessibility of β-carotene after in vitro digestion were also evaluated. Results showed that sugar content increased with roasting temperature, with T240 showing the highest sugar content (817.53 mg/g). The greatest variety of sugar species was identified in T180, with maltose (53.51 %) and sucrose (25.70 %) being the predominant sugars. In addition, T210 produced the largest number of volatile compounds, with vanillin being key flavor compound. Regarding the antioxidant activities and bioaccessibility in vitro simulated digestion, their capacity was T180 > T210 > T240. In comparison, T210 appears to be the optimal roasting condition, offering a balanced sweetness profile, enhanced flavor complexity, and optimal retention of carotenoids.
Collapse
Affiliation(s)
- Sinian He
- School of Food Science and Engineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
| | - Shengsheng He
- Agricultural Science Institute of Longyan, No. 205, Longteng North Road, Longyan 364000, China
| | - Liya Niu
- School of Food Science and Engineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
| | - Chao Sun
- School of Food Science and Engineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
| | - Zicong Zeng
- School of Food Science and Engineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
| | - Jianhui Xiao
- School of Food Science and Engineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
| |
Collapse
|
3
|
Oh J, Lee KG. Analysis of physicochemical properties of nut-based milk and sweetened condensed milk alternatives. Food Chem 2024; 455:139991. [PMID: 38850990 DOI: 10.1016/j.foodchem.2024.139991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
This study analyzed the physicochemical properties of nut-based milk and sweetened condensed milk (SCM) alternatives. Four types of nuts (almonds, cashews, hazelnuts, and walnuts) were roasted at 140 °C for 15 min, followed by the preparation and analysis of milk and SCM alternatives. During the production of SCM by heating with adding sugar, the pH, moisture, and L* decreased, while the carbohydrates, viscosity, and browning index increased significantly (p < 0.05). Oleic acid, linoleic acid, and linolenic acid contents were comparable among all samples (p > 0.05). Volatile compounds were analyzed using HS-SPME-GC-MS to determine changes due to roasting and heating, and a total of 54 volatile compounds were identified. These findings to show the importance of the physicochemical characteristics of milk and SCM alternatives, provide practical information for the development of improved-quality dairy alternatives.
Collapse
Affiliation(s)
- Jeongeun Oh
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Kwang-Geun Lee
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea.
| |
Collapse
|
4
|
Oladunjoye AO, Olaoluwa GO. Effect of microwave-assisted treatment on proximate, techno-functional, thermal, structural, and storage properties of TGN (Cyperus esculentus L.) flour. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6494-6505. [PMID: 38507299 DOI: 10.1002/jsfa.13473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/10/2024] [Accepted: 03/20/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND The use of the emerging technique of microwave-assisted roasting on TGN (TGN) flour was investigated. Tiger nuts were subjected to microwave irradiation at 450, 600, and 900 W each at 5, 10, and 15 min, and milled to flour. The flours were analyzed for proximate, bioactive, techno-functional, morphological, thermal, and storage effects on their composition. An untreated sample was the control. RESULTS The results revealed that microwave treatment significantly (P < 0.05) elicited various modifications in the proximate composition and techno-functional properties. The treatment improved the bioactive composition of phenolic content together with the antioxidant activity of the flour. Progressive microwave treatment of TGNs resulted in flours with darker colors and reduced pasting parameters. Structural modification of starch granules, protein denaturation, and starch-protein complexes occasioned by microwave treatment were evidenced in the functional group analysis, including morphological agglomeration, increased particle size, and thermal properties. Treatment also enhanced the microbiological qualities of flour after 8 weeks of storage. CONCLUSION This study shows that microwave treatment produces excellent physical modifications that lead to improvements in the nutritional, functional, sensory, and color properties, and safety attributes of TGN flour for food application. This is a development that could present opportunities for novel food formulation by the food industry and related industries. © 2024 Society of Chemical Industry.
Collapse
|
5
|
Jha S, Sarkhel S, Saha S, Sahoo B, Kumari A, Chatterjee K, Mazumder PM, Sarkhel G, Mohan A, Roy A. Expanded porous-starch matrix as an alternative to porous starch granule: Present status, challenges, and future prospects. Food Res Int 2024; 175:113771. [PMID: 38129003 DOI: 10.1016/j.foodres.2023.113771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/10/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Exposing the hydrated-soft-starch matrix of intact grain or reconstituted flour dough to a high-temperature-short-time (HTST) leads to rapid vapor generation that facilitates high-pressure build-up in its elastic matrix linked to large deformation and expansion. The expanded starch matrix at high temperatures dries up quickly by flash vaporization of water, which causes loss of its structural flexibility and imparts a porous and rigid structure of the expanded porous starch matrix (EPSM). EPSM, with abundant pores in its construction, offers adsorptive effectiveness, solubility, swelling ability, mechanical strength, and thermal stability. It can be a sustainable and easy-to-construct alternative to porous starch (PS) in food and pharmaceutical applications. This review is a comparative study of PS and EPSM on their preparation methods, structure, and physicochemical properties, finding compatibility and addressing challenges in recommending EPSM as an alternative to PS in adsorbing, dispersing, stabilizing, and delivering active ingredients in a controlled and efficient way.
Collapse
Affiliation(s)
- Shipra Jha
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Shubhajit Sarkhel
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Sreyajit Saha
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Bijendra Sahoo
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Ankanksha Kumari
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Kaberi Chatterjee
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Papiya Mitra Mazumder
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Gautam Sarkhel
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology - Mesra, Ranchi 835215, India
| | - Anand Mohan
- Department of Food Science & Technology, University of Georgia, Athens, GA 30602, USA
| | - Anupam Roy
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Centre for Food Engineering and Technology, Department of Chemical Engineering, Birla Institute of Technology - Mesra, Ranchi 835215, India.
| |
Collapse
|
6
|
Reiners S, Hebestreit S, Wedekind L, Kiehntopf M, Klink A, Rummler S, Glei M, Lorkowski S, Schlörmann W, Dawczynski C. Effect of a regular consumption of traditional and roasted oat and barley flakes on blood lipids and glucose metabolism-A randomized crossover trial. Front Nutr 2023; 10:1095245. [PMID: 36819683 PMCID: PMC9932717 DOI: 10.3389/fnut.2023.1095245] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Background Regular consumption of the soluble dietary fiber β-glucan is associated with decreased total cholesterol (TC), low-density lipoprotein (LDL) cholesterol and blood glucose. Barley and oat flakes as natural sources of β-glucan were roasted to improve sensory quality. The aim of this study was to investigate whether roasting of barley and oat flakes changes the physiological impact of the β-glucan-rich flakes on glucose and lipid metabolism. Method A five-armed randomized crossover trial design was used. The intervention study was conducted from May 2018 to May 2019 and included 32 healthy subjects with moderately increased LDL cholesterol (≥2.5 mmol/L). During the 3-week intervention periods, 80 g of roasted or traditional barley or oat flakes, or four slices of white toast bread per day were consumed for breakfast. At the start and the end of each intervention, fasting and postprandial blood was taken. The intervention periods were separated by 3-week wash-out periods. Results During the interventions with the cereal flakes, TC and LDL cholesterol concentrations were significantly reduced compared to baseline values by mean differences of 0.27-0.33 mmol/L and 0.21-0.30 mmol/L, respectively (p < 0.05), while high-density lipoprotein (HDL) cholesterol was only reduced after the intervention with barley flakes (p < 0.05). After the intervention period with toast, TC and HDL cholesterol increased (p < 0.05). The fasting levels of triglycerides, fasting blood glucose and insulin did not change in any group. The effects of traditional and roasted varieties on blood lipids did not differ between the groups. Conclusion The regular consumption of traditional or roasted barley and oat flakes contributes to the management of cardiovascular diseases by improving TC and LDL cholesterol. Clinical trial registration https://clinicaltrials.gov/ct2/show/NCT03648112, identifier NCT03648112.
Collapse
Affiliation(s)
- Sarah Reiners
- Junior Research Group Nutritional Concepts, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Jena, Germany
| | - Sandra Hebestreit
- Junior Research Group Nutritional Concepts, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Lisa Wedekind
- Institute of Medical Statistics, Computer and Data Sciences, Jena University Hospital, Jena, Germany
| | - Michael Kiehntopf
- Institute of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, Jena, Germany
| | - Anne Klink
- Institute of Transfusion Medicine, University Hospital Jena, Jena, Germany
| | - Silke Rummler
- Institute of Transfusion Medicine, University Hospital Jena, Jena, Germany
| | - Michael Glei
- Department of Nutritional Toxicology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Stefan Lorkowski
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Jena, Germany
- Department of Nutritional Biochemistry and Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Wiebke Schlörmann
- Department of Nutritional Toxicology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Christine Dawczynski
- Junior Research Group Nutritional Concepts, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Jena, Germany
| |
Collapse
|
7
|
Qian X, Sun B, Gu Y, Tian X, Ma S, Wang X. Milling and roasting impact pasting and rheological properties of oat flours and quality of steamed oat cakes. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
8
|
Qian X, Sun B, Gu Y, Ma S, Wang X. Relation between hydration level and quality of steamed oat cakes: From the view of batter rheological properties. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Xiaojie Qian
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan Province P.R. China
| | - Binghua Sun
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan Province P.R. China
| | - Yujuan Gu
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan Province P.R. China
| | - Sen Ma
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan Province P.R. China
| | - Xiaoxi Wang
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan Province P.R. China
| |
Collapse
|
9
|
Characterization of Sorghum Processed through Dry Heat Treatment and Milling. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sorghum grain nutritional quality can be enhanced by applying dry heat treatments. The purpose of this study was to investigate the effects of dry heat treatment at two temperatures (121 and 14 °C) with three fractionation factors (S fraction < 200 μm, M fraction 200–250 μm and, L fraction > 300 μm) on sorghum flour chemical and functional properties, to optimize processes by means of a desirability function, and to characterize the optimal products. Treatment temperature negatively affected oil- and water-absorption capacity, protein and moisture contents, while the opposite trend was obtained for hydration capacity, swelling power, emulsifying properties, fat, ash, and carbohydrate content. Sorghum flour fractions positively influenced the hydration and water-retention capacities, emulsifying properties, and protein and carbohydrate content, while oil absorption, swelling power, fat, ash, and moisture were negatively affected. The optimal processing determined for each fraction was heat treatment at 121.00 °C for S fraction, 132.11 °C for M, and 139.47 °C for L. Optimal product characterization revealed that the color, bioactive properties, and protein and starch structures of the optimal samples had changed after heat treatment, depending on the fraction. These findings could be helpful for the cereal industry, since sorghum flour could be an alternative for conventional crops for the development of new products, such as snacks, baked goods, and pasta.
Collapse
|
10
|
Swarnakar AK, Mohapatra M, Das SK. A Review on Processes, Mechanisms, and Quality Influencing Parameters for Puffing and Popping of Grains. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ajay Kumar Swarnakar
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur 721302 West Bengal India
| | - Minati Mohapatra
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur 721302 West Bengal India
- Department of Agricultural Processing and Food Engineering, College of Agricultural Engineering and Technology Odisha University of Agriculture and Technology Bhubaneswar, 751003 Odisha India
| | - Susanta Kumar Das
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur 721302 West Bengal India
| |
Collapse
|
11
|
Streptomycetaceae and Promicromonosporaceae: Two Actinomycetes Families from Moroccan Oat Soils Enhancing Solubilization of Natural Phosphate. Microorganisms 2022; 10:microorganisms10061116. [PMID: 35744634 PMCID: PMC9230749 DOI: 10.3390/microorganisms10061116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022] Open
Abstract
Soil actinomycetes explorations appear to be an efficient alternative as biofertilizers to optimize the use of phosphorus (P) resources and enhance plant growth. This research aimed to explore the distribution of actinomycetes isolated from four different rhizospheric Moroccan oat soils and to investigate their potential for P solubilization. The distribution of actinomycetes was significantly more abundant in Settat (9.68%), Tangier (7.38%), and Beni Mellal (6.87%) than in the Merchouch-Rabat (4.90%) region. A total of 235 actinomycete strains were isolated from all sites and tested for their ability to grow on a synthetic minimum medium (SMM) containing insoluble natural rock phosphate (RP) or synthetic tricalcium phosphate (TCP) as the unique P source. One hundred forty-three isolates (60.8%) had the ability to grow in the SMM with RP whereas only twenty-five isolates (17%) had the most active growth using the SMM with TCP. Eight isolates with the most active growth in solid SMM were selected for their P solubilization abilities in liquid SMM cultures. The highest amount of P solubilized was 163.8 µg/mL for RP and 110.27 µg/mL for TCP after 5 days of culture. The biosolubilization process of AM2, the most efficient RP and TCP solubilizing strain, probably implied the highest excretion of siderophore substances. Eight of these strains were shown to belong to the Streptomyces genus and one to the Promicromonospora genus. These findings bolster the phosphate biosolubilization abilities of actinomycetes and may participate in increasing agricultural yields in an eco-efficient and environmentally friendly manner.
Collapse
|
12
|
Acrylamide and 5-hydroxymethylfurfural in thermally treated non-wheat flours and respective breads. Food Chem 2021; 365:130491. [PMID: 34243127 DOI: 10.1016/j.foodchem.2021.130491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 10/21/2022]
Abstract
This is the first report about the influence of dry and wet heat treatment on acrylamide content in flours and, subsequently, in breads. It was shown that during production of some breads acrylamide content decreases. Dry heating of non-wheat flour resulted in acrylamide in flours of sorghum (160 µg/kg); millet (447 µg/kg); barley (516 µg/kg); triticale (868 µg/kg); rye (1833 µg/kg); oat (1951 µg/kg). Hydrothermal heating had a negligible impact on acrylamide formation. In breads made from flour blends consisted of 70% of dry thermally and 30% of hydrothermally treated flours of millet, sorghum, oat, and rye, respectively, acrylamide was detected in the range from 105 to 312 µg/kg. 5-hydroxymethylfurfural probably contributing to acrylamide formation in bread was detected in the range from 2.0 mg/kg to 44.3 mg/kg in dry heated flours; in hydrothermally treated flours was below LOQ (1.7 mg/kg); in breads was between 3.3 and 8.0 mg/kg.
Collapse
|
13
|
Liu X, Liu Y, Li P, Yang J, Wang F, Kim E, Wu Y, He P, Li B, Tu Y. Chemical characterization of Wuyi rock tea with different roasting degrees and their discrimination based on volatile profiles. RSC Adv 2021; 11:12074-12085. [PMID: 35423741 PMCID: PMC8696517 DOI: 10.1039/d0ra09703a] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Wuyi rock tea is a typical and famous oolong tea in China and roasting is an important manufacturing procedure for its flavor formation. This work aimed to explore the effect of roasting on non-volatiles and volatiles of 12 Wuyi rock tea samples at three roasting levels (low, moderate and sufficient), made from four tea cultivars (Shuixian, Qizhong, Dahongpao, Rougui). Results show that different roasting had not caused significant difference on contents of soluble solids, total polyphenols, flavonoids, soluble sugar, thearubigins and theabrownins, while it slightly regulated caffeine, proteins and theaflavins, and remarkably reduced catechins and free amino acids. The ratio of polyphenol content/amino acid content, a negative-correlated indicator of fresh and brisk taste, significantly increased with the increase of roasting degree. High-level roasting not only decreased the fresh and brisk taste of the tea infusion, but also reduced the amount of bioactive ingredients including catechins and theanine. A total of 315 volatiles were detected and analyzed with OPLS-DA and HCA methods, in which 99 volatiles were found with variable importance in the projection (VIP) values greater than 1.00. Tea samples at different roasting degrees were successfully separated by this model of roasting-level discrimination. 'Naphthalene, 1,2,3,4-tetrahydro-1,6,8-trimethyl-', '1,1,5-trimethyl-1,2-dihydronaphthalene', 'p-Xylene', 'alpha.-methyl-.alpha.-[4-methyl-3-pentenyl]oxiranemethanol', 'hydrazinecarboxylic acid, phenylmethyl ester', and '3-buten-2-one, 4-(2,6,6-trimethyl-2-cyclohexen-1-yl)-' might be key characteristic markers for the roasting process of Wuyi rock tea.
Collapse
Affiliation(s)
- Xiaobo Liu
- Department of Tea Science, Zhejiang University Hangzhou 310058 China .,College of Tea Science, Guizhou University Guiyang 550025 China
| | - Yawen Liu
- Department of Tea Science, Zhejiang University Hangzhou 310058 China
| | - Pan Li
- Department of Tea Science, Zhejiang University Hangzhou 310058 China
| | - Jiangfan Yang
- College of Tea and Food Science, Wuyi University Wuyishan 354300 China
| | - Fang Wang
- College of Tea and Food Science, Wuyi University Wuyishan 354300 China
| | - Eunhye Kim
- Department of Tea Science, Zhejiang University Hangzhou 310058 China
| | - Yuanyuan Wu
- Department of Tea Science, Zhejiang University Hangzhou 310058 China
| | - Puming He
- Department of Tea Science, Zhejiang University Hangzhou 310058 China
| | - Bo Li
- Department of Tea Science, Zhejiang University Hangzhou 310058 China
| | - Youying Tu
- Department of Tea Science, Zhejiang University Hangzhou 310058 China
| |
Collapse
|
14
|
Sruthi NU, Premjit Y, Pandiselvam R, Kothakota A, Ramesh SV. An overview of conventional and emerging techniques of roasting: Effect on food bioactive signatures. Food Chem 2021; 348:129088. [PMID: 33515948 DOI: 10.1016/j.foodchem.2021.129088] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/10/2021] [Accepted: 01/10/2021] [Indexed: 11/26/2022]
Abstract
Roasting is a food processingtechnique that employs the principle of heating to cook the product evenly and enhance the digestibility, palatability and sensory aspects of foods with desirable structural modifications of the food matrix. With the burgeoning demand for fortified roasted products along with the concern for food hygiene and the effects of harmful compounds, novel roasting techniques, and equipment to overcome the limitations of conventional operations are indispensable. Roasting techniques employing microwave, infrared hot-air, superheated steam, Revtech roaster, and Forced Convection Continuous Tumble (FCCT) roasting have been figuratively emerging to prominence for effectively roasting different foods without compromising the nutritional quality. The present review critically appraises various conventional and emerging roasting techniques, their advantages and limitations, and their effect on different food matrix components, functional properties, structural attributes, and sensory aspects for a wide range of products. It was seen that thermal processing at high temperatures for increased durations affected both the physicochemical and structural properties of food. Nevertheless, novel techniques caused minimum destructive impacts as compared to the traditional processes. However, further studies applying novel roasting techniques with a wide range of operating conditions on different types of products are crucial to establish the potential of these techniques in obtaining safe, quality foods.
Collapse
Affiliation(s)
- N U Sruthi
- Agricultural & Food Engineering Department, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Yashaswini Premjit
- Agricultural & Food Engineering Department, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - R Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR -Central Plantation Crops Research Institute, Kasaragod 671124, India.
| | - Anjineyulu Kothakota
- Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India
| | - S V Ramesh
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR -Central Plantation Crops Research Institute, Kasaragod 671124, India
| |
Collapse
|
15
|
Schmidt M. Cereal beta-glucans: an underutilized health endorsing food ingredient. Crit Rev Food Sci Nutr 2020; 62:3281-3300. [DOI: 10.1080/10408398.2020.1864619] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Marcus Schmidt
- Department of Safety and Quality of Cereals, Max Rubner-Institut (MRI), Federal Research Institute of Nutrition and Food, Detmold, Germany
| |
Collapse
|
16
|
Schlörmann W, Atanasov J, Lorkowski S, Dawczynski C, Glei M. Thermal Processing has no Impact on Chemopreventive Effects of Oat and Barley Kernels in LT97 Colon Adenoma Cells. Nutr Cancer 2020; 73:2708-2719. [PMID: 33305613 DOI: 10.1080/01635581.2020.1856892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The unique dietary fiber composition with high contents of β-glucan contributes to the health-promoting properties of oat and barley and may mediate a reduction of colon cancer risk. In the present study, chemopreventive effects of oat and barley (beta®barley) kernels were investigated. In order to address the impact of thermal processing on these effects, kernels were roasted (150-180 °C, approx. 20 min), digested and fermented using an In Vitro human digestion model. Concentrations of short-chain fatty acids (SCFA) and ammonia were determined in fermentation supernatants (FS). Growth inhibition, apoptosis, DNA integrity and gene expression of catalase were analyzed in LT97 colon adenoma cells. Concentrations of SCFA, particularly butyrate, were higher in oat/barley FS (2.2-fold, on average), while ammonia levels were significantly lower (0.7-fold, on average) than in the fermentation control. Treatment of LT97 cells with FS of oat/barley kernels led to a significant time- and dose-dependent growth reduction, a significant increase in caspase-3 activity and enhanced levels of catalase mRNA, without exhibiting genotoxic effects. In general, the results indicate a chemopreventive potential of In Vitro fermented oat and waxy winter barley mediated mainly by growth inhibitory and apoptotic effects, which are preserved after thermal processing.
Collapse
Affiliation(s)
- Wiebke Schlörmann
- Department of Nutritional Toxicology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany.,Competence Cluster for Nutrition, Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| | - Julia Atanasov
- Department of Nutritional Toxicology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Stefan Lorkowski
- Competence Cluster for Nutrition, Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany.,Department of Nutritional Biochemistry and Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Christine Dawczynski
- Competence Cluster for Nutrition, Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany.,Junior Research Group Nutritional Concepts, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Michael Glei
- Department of Nutritional Toxicology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany.,Competence Cluster for Nutrition, Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| |
Collapse
|
17
|
Impact of processing degree on fermentation profile and chemopreventive effects of oat and waxy barley in LT97 colon adenoma cells. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03645-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AbstractThe chemopreventive effects of β-glucan-rich cereals such as oat and barley (beta®barley) have been examined previously, but studies comparing fermentation characteristics and chemopreventive effects of oat and barley of different processing stages are rare. Therefore, the present study aims at investigating the fermentation end points (pH values, concentrations of short-chain fatty acids (SCFA) and ammonia) in fermentation supernatants (FS) obtained from differently processed oat and barley samples (kernels, thick and thin flakes). Chemopreventive effects of FS, such as growth inhibition, apoptosis, and induction of cell cycle- and redox-relevant genes (p21, SOD2), were analysed in LT97 colon adenoma cells. After fermentation, pH values were reduced (∆ pH − 1.3, on average) and SCFA concentrations were increased (∆ + 59 mmol/L, on average) with a shift towards butyrate formation in FS obtained from oat and barley samples compared to the fermentation negative control (FS blank). Ammonia was reduced more effectively in FS obtained from barley (∆ − 4.6 mmol/L, on average) than from oat samples (∆ − 1.0 mmol/L, on average). Treatment of LT97 cells with FS resulted in a time- and dose-dependent reduction of cell number, an increase in caspase-3 activity (up to 9.0-fold after 24 h, on average) and an induction of p21 (2.1-fold, on average) and SOD2 (2.3-fold, on average) mRNA expression, while no genotoxic effects were observed. In general, the results indicate no concrete effect of the type of cereal or processing stage on fermentation and chemopreventive effects of oat and barley.
Collapse
|
18
|
Galaz‐Pérez EA, Velazquez G, Mendez‐Montealvo G. Improvement of physicochemical properties of baked oatmeal (
Avena sativa
L.) by imbibition. Cereal Chem 2020. [DOI: 10.1002/cche.10320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Estefany A. Galaz‐Pérez
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada Instituto Politécnico Nacional Querétaro México
| | - Gonzalo Velazquez
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada Instituto Politécnico Nacional Querétaro México
| | - Guadalupe Mendez‐Montealvo
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada Instituto Politécnico Nacional Querétaro México
| |
Collapse
|
19
|
Glei M, Zetzmann S, Lorkowski S, Dawczynski C, Schlörmann W. Chemopreventive effects of raw and roasted oat flakes after in vitro fermentation with human faecal microbiota. Int J Food Sci Nutr 2020; 72:57-69. [PMID: 32482126 DOI: 10.1080/09637486.2020.1772205] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The aim of the present study was to analyse chemopreventive effects of oat flakes under consideration of processing. Thin and thick flakes were roasted and subjected to an in vitro digestion and fermentation. Fermentation supernatants (FS) were characterised and chemopreventive effects were analysed in LT97 colon adenoma cells. Compared to the fermentation control, pH values were decreased (from pH 6.3 to pH 5.0) and concentrations of SCFA, in particular butyrate, were increased in oat FS (2.6-fold, on average). Ammonia levels were not altered. Oat FS significantly decreased cell growth time- and dose-dependently. Caspase 3 activity was significantly increased (9.7-fold, on average). Oat FS slightly increased the mRNA expression of CAT (2.0-fold), SOD2 (1.7-fold) and GSTP1 (2.8-fold), on average, while GPX1 mRNA (0.3-fold) was decreased. The results indicate a chemopreventive potential of in vitro digested oat flakes regarding colon cancer development mediated mostly by growth inhibition and apoptosis, unaffected by roasting.
Collapse
Affiliation(s)
- Michael Glei
- Department of Nutritional Toxicology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany.,Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Jena, Germany
| | - Silvana Zetzmann
- Department of Nutritional Toxicology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Stefan Lorkowski
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Jena, Germany.,Department of Nutritional Biochemistry and Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Christine Dawczynski
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Jena, Germany.,Junior Research Group Nutritional Concepts, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Wiebke Schlörmann
- Department of Nutritional Toxicology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany.,Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Jena, Germany
| |
Collapse
|