1
|
Terlouw EMC, Paulmier V, Andanson S, Picgirard L, Aleyrangues X, Durand D. Slaughter of cattle without stunning: Questions related to pain, stress and endorphins. Meat Sci 2024; 219:109686. [PMID: 39490250 DOI: 10.1016/j.meatsci.2024.109686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/27/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024]
Abstract
EEG studies have suggested that cattle perceive pain when bled without stunning. The present study on bleeding without stunning, compared cows that had received a local anaesthetic on the site of the bleeding cut (Lurocaine; Luro cows) one hour before bleeding with a 35 cm knife, with cows that had not (saline: Placebo cows). Various physiological indicators potentially related to pain or stress were evaluated. Increases in heart rate (P < 0.02) and cortisol levels (P < 0.001) during slaughter, compared to control levels are indicative of slaughter stress in both groups. GSH/GSSG ratio, plasma PGE2, TNFα, and NO levels and blood haematocrit levels at slaughter were not influenced by slaughter or treatment. At bleeding, excluding two out of the 15 cows with non-missing data, Placebo cows presented a longer delay between the loss of the corneal reflex and respiratory arrest. Post-mortem, Longissimus muscle of Placebo cows had a faster pH decline and remained warmer. Overall, results suggest greater stress levels in this group, probably due to pain. Plasma or brain β-endorphin contents in relevant brain structures did not increase following bleeding in either group, thus not supporting the hypothesis that stress or pain-induced release of endorphins reduces pain perceived following the cut. Furthermore, according to existing knowledge, plasma β-endorphins do not reduce pain perceived. Thus, both our study and previous research do not provide evidence that slaughter without stunning does not cause pain or other forms of stress in at least part of the animals.
Collapse
Affiliation(s)
- E M Claudia Terlouw
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France.
| | - Valérie Paulmier
- Association pour le Développement de Institut de la Viande, Clermont-Ferrand, France; Present address: Cap Emploi 63 - 19 Boulevard Berthelot, 62400 Chamalieres, France
| | - Stéphane Andanson
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France; Université Clermont Auvergne, INRAE, PIAF, F-63000 Clermont-Ferrand, France
| | - Laurent Picgirard
- Association pour le Développement de Institut de la Viande, Clermont-Ferrand, France
| | - Xavier Aleyrangues
- Association pour le Développement de Institut de la Viande, Clermont-Ferrand, France
| | - Denis Durand
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| |
Collapse
|
2
|
Varzaru I, Untea AE, Panaite TD, Turcu R, Saracila M, Vlaicu PA, Oancea AG. Chlorella vulgaris as a Nutraceutical Source for Broilers: Improving Meat Quality and Storage Oxidative Status. Foods 2024; 13:2373. [PMID: 39123564 PMCID: PMC11312065 DOI: 10.3390/foods13152373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
This study aimed to assess the impact of Chlorella vulgaris supplementation in broilers' diet, alone or in combination with vitamin E, on meat quality parameters, nutritional value, and oxidative stability during storage time. An experiment was conducted on 180 COBB 500 broiler chickens (14 days old), assigned into six treatments, following a 2 × 3 factorial arrangement. A corn-soybean meal diet was supplemented with three levels of C. vulgaris (0% in group C1, 1% in E1, 2% in E2), two levels of vitamin E (0% in C1, 250 ppm in C2), and a combination of them (1% C. vulgaris + 250 ppm vitamin (E3), 2% C. vulgaris + 250 ppm vitamin (E4)). Dietary incorporation of C. vulgaris, including those supplemented with vitamin E, resulted in a significant increase in meat protein content. DPA and DHA levels increased by 2.01-fold and 1.60-fold in the 2% C. vulgaris + vitamin E group. The PUFA/SFA ratio was increased across all dietary treatments (p < 0.0001). HPI and h/H registered the highest values as a result of 2% C. vulgaris supplementation, being linked with a positive effect in lowering cholesterol levels. Supplementation with 2% C. vulgaris and vitamin E exhibited a 1.45-fold increase in vitamin E concentration in thigh meat compared to the control group, being the highest level registered in thigh meat in this experiment. Metmyoglobin concentrations registered lower values in the thigh meat of the experimental groups, while deoxymyoglobin increased in the same groups when compared to the control group. The inclusion of C. vulgaris (1% and 2%) in combination with vitamin E (250 mg/kg) in broiler diets exhibited the best prevention of lipid oxidation after 7 days of refrigerated storage, defined by the highest efficiency factors assessed in terms of secondary oxidation products.
Collapse
Affiliation(s)
- Iulia Varzaru
- Feed and Food Quality Department, National Research and Development Institute for Biology and Animal Nutrition, Calea Bucuresti, No.1, 077015 Balotesti, Romania; (A.E.U.); (R.T.); (M.S.); (P.A.V.); (A.G.O.)
| | - Arabela Elena Untea
- Feed and Food Quality Department, National Research and Development Institute for Biology and Animal Nutrition, Calea Bucuresti, No.1, 077015 Balotesti, Romania; (A.E.U.); (R.T.); (M.S.); (P.A.V.); (A.G.O.)
| | - Tatiana Dumitra Panaite
- Department of Nutrition Physiology, National Research and Development Institute for Biology and Animal Nutrition, Calea Bucuresti, No.1, 077015 Balotesti, Romania;
| | - Raluca Turcu
- Feed and Food Quality Department, National Research and Development Institute for Biology and Animal Nutrition, Calea Bucuresti, No.1, 077015 Balotesti, Romania; (A.E.U.); (R.T.); (M.S.); (P.A.V.); (A.G.O.)
| | - Mihaela Saracila
- Feed and Food Quality Department, National Research and Development Institute for Biology and Animal Nutrition, Calea Bucuresti, No.1, 077015 Balotesti, Romania; (A.E.U.); (R.T.); (M.S.); (P.A.V.); (A.G.O.)
| | - Petru Alexandru Vlaicu
- Feed and Food Quality Department, National Research and Development Institute for Biology and Animal Nutrition, Calea Bucuresti, No.1, 077015 Balotesti, Romania; (A.E.U.); (R.T.); (M.S.); (P.A.V.); (A.G.O.)
| | - Alexandra Gabriela Oancea
- Feed and Food Quality Department, National Research and Development Institute for Biology and Animal Nutrition, Calea Bucuresti, No.1, 077015 Balotesti, Romania; (A.E.U.); (R.T.); (M.S.); (P.A.V.); (A.G.O.)
| |
Collapse
|
3
|
Jacinto-Valderrama RA, Andrade CT, Pateiro M, Lorenzo JM, Conte-Junior CA. Recent Trends in Active Packaging Using Nanotechnology to Inhibit Oxidation and Microbiological Growth in Muscle Foods. Foods 2023; 12:3662. [PMID: 37835315 PMCID: PMC10572785 DOI: 10.3390/foods12193662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Muscle foods are highly perishable products that require the use of additives to inhibit lipid and protein oxidation and/or the growth of spoilage and pathogenic microorganisms. The reduction or replacement of additives used in the food industry is a current trend that requires the support of active-packaging technology to overcome novel challenges in muscle-food preservation. Several nano-sized active substances incorporated in the polymeric matrix of muscle-food packaging were discussed (nanocarriers and nanoparticles of essential oils, metal oxide, extracts, enzymes, bioactive peptides, surfactants, and bacteriophages). In addition, the extension of the shelf life and the inhibitory effects of oxidation and microbial growth obtained during storage were also extensively revised. The use of active packaging in muscle foods to inhibit oxidation and microbial growth is an alternative in the development of clean-label meat and meat products. Although the studies presented serve as a basis for future research, it is important to emphasize the importance of carrying out detailed studies of the possible migration of potentially toxic additives, incorporated in active packaging developed for muscle foods under different storage conditions.
Collapse
Affiliation(s)
- Rickyn A. Jacinto-Valderrama
- Programa de Pós-Graduação em Ciência de Alimentos, Instituto de Química, Universidade Federal do Rio de Janeiro, Centro de Tecnologia, Avenida Athos da Silveira Ramos 149, Rio de Janeiro 21941-909, RJ, Brazil; (R.A.J.-V.); (C.T.A.)
| | - Cristina T. Andrade
- Programa de Pós-Graduação em Ciência de Alimentos, Instituto de Química, Universidade Federal do Rio de Janeiro, Centro de Tecnologia, Avenida Athos da Silveira Ramos 149, Rio de Janeiro 21941-909, RJ, Brazil; (R.A.J.-V.); (C.T.A.)
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (M.P.); (J.M.L.)
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (M.P.); (J.M.L.)
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Carlos Adam Conte-Junior
- Programa de Pós-Graduação em Ciência de Alimentos, Instituto de Química, Universidade Federal do Rio de Janeiro, Centro de Tecnologia, Avenida Athos da Silveira Ramos 149, Rio de Janeiro 21941-909, RJ, Brazil; (R.A.J.-V.); (C.T.A.)
| |
Collapse
|
4
|
Ponnampalam EN, Kiani A, Santhiravel S, Holman BWB, Lauridsen C, Dunshea FR. The Importance of Dietary Antioxidants on Oxidative Stress, Meat and Milk Production, and Their Preservative Aspects in Farm Animals: Antioxidant Action, Animal Health, and Product Quality-Invited Review. Animals (Basel) 2022; 12:ani12233279. [PMID: 36496798 PMCID: PMC9738477 DOI: 10.3390/ani12233279] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022] Open
Abstract
The biological effects of oxidative stress and associated free radicals on farm animal performance, productivity, and product quality may be managed via dietary interventions-specifically, the provision of feeds, supplements, and forages rich in antioxidants. To optimize this approach, it is important first to understand the development of free radicals and their contributions to oxidative stress in tissue systems of farm animals or the human body. The interactions between prooxidants and antioxidants will impact redox homeostasis and, therefore, the well-being of farm animals. The impact of free radical formation on the oxidation of lipids, proteins, DNA, and biologically important macromolecules will likewise impact animal performance, meat and milk quality, nutritional value, and longevity. Dietary antioxidants, endogenous antioxidants, and metal-binding proteins contribute to the 'antioxidant defenses' that control free radical formation within the biological systems. Different bioactive compounds of varying antioxidant potential and bio-accessibility may be sourced from tailored feeding systems. Informed and successful provision of dietary antioxidants can help alleviate oxidative stress. However, knowledge pertaining to farm animals, their unique biological systems, and the applications of novel feeds, specialized forages, bioactive compounds, etc., must be established. This review summarized current research to direct future studies towards more effective controls for free radical formation/oxidative stress in farm animals so that productivity and quality of meat and milk can be optimized.
Collapse
Affiliation(s)
- Eric N. Ponnampalam
- Animal Production Sciences, Agriculture Victoria Research, Department of Jobs, Precincts and Regions, Bundoora, VIC 3083, Australia
- Correspondence:
| | - Ali Kiani
- Department of Animal Sciences, Faculty of Agriculture and Natural Resources, Lorestan University, Khorramabad P.O. Box 465, Iran
| | - Sarusha Santhiravel
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| | - Benjamin W. B. Holman
- Wagga Wagga Agricultural Institute, NSW Department of Primary Industries, Wagga Wagga, NSW 2650, Australia
| | - Charlotte Lauridsen
- Department of Animal and Veterinary Sciences, Aarhus University, P.O. Box 50, DK-8830 Tjele, Denmark
| | - Frank R. Dunshea
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
- The Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
5
|
Wang Y, Li S, Chen J, Zhu H, Harsh BN, Boler DD, Dilger AC, Shike DW, Suman SP. Supranutritional Supplementation of Vitamin E Influences Myoglobin Post-Translational Modifications in Postmortem Beef Longissimus Lumborum Muscle. MEAT AND MUSCLE BIOLOGY 2022. [DOI: 10.22175/mmb.13541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Post-translational modifications (PTM) in myoglobin (Mb) can influence fresh meat color stability. Dietary supplementation of vitamin E improves beef color stability by delaying lipid oxidation–induced Mb oxidation and influences proteome profile of postmortem beef skeletal muscles. Nonetheless, the influence of vitamin E on Mb PTM in postmortem beef skeletal muscles has yet to be investigated. Therefore, the objective of the current study was to examine the effect of dietary vitamin E on Mb PTM in postmortem beef longissimus lumborum muscle. Beef longissimus lumborum muscle samples (24 h postmortem) were obtained from the carcasses of 9 vitamin E–supplemented (VITE; 1,000 IU vitamin E diet/heifer·d−1for 89 d) and 9 control (CONT; no supplemental vitamin E) heifers. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis was used to separate Mb from other sarcoplasmic proteins of beef longissimus lumborum muscle. Tandem mass spectrometry identified multiple PTM (phosphorylation, acetylation, 4-hydroxynonenalalkylation, methylation, dimethylation, trimethylation, and carboxymethylation) in the protein bands (17 kDa) representing Mb. The amino acids susceptible to phosphorylation were threonine (T) and tyrosine (Y), whereas lysine (K) residues were prone to other PTM. The same sites of phosphorylation (T34, T67, Y103), carboxymethylation (K77, K78), and 4-hydroxynonenal alkylation (K77, K78, K79) were identified in Mb from CONT and VITE samples, indicating that these PTM were not influenced by the vitamin E supplementation in cattle. Nonetheless, differential occurrence of acetylation, methylation, dimethylation, and trimethylation were identified in Mb from CONT and VITE samples. Overall, a greater number of amino acids were modified in CONT than VITE, suggesting that the supplementation of vitamin E decreased thenumbers of post-translationally modified residues in Mb. Additionally, PTM at K87, K96, K98, and K102 were unique to CONT, whereas PTM at K118 were unique to VITE. These findings suggested that dietary supplementation of vitamin E in beef cattle might protect amino acid residues in Mb—especially those located spatially close to proximal histidine—from undergoing PTM, thereby improving Mb redox stability.
Collapse
Affiliation(s)
- Yifei Wang
- University of Kentucky Department of Animal and Food Sciences
| | - Shuting Li
- University of Kentucky Department of Animal and Food Sciences
| | - Jing Chen
- University of Kentucky Proteomics Core Facility
| | - Haining Zhu
- University of Kentucky Proteomics Core Facility
| | - Bailey N. Harsh
- University of Illinois Urbana-Champaign Department of Animal Sciences
| | - Dustin D. Boler
- University of Illinois Urbana-Champaign Department of Animal Sciences
| | - Anna C. Dilger
- University of Illinois Urbana-Champaign Department of Animal Sciences
| | - Daniel W. Shike
- University of Illinois Urbana-Champaign Department of Animal Sciences
| | | |
Collapse
|
6
|
Durand D, Collin A, Merlot E, Baéza E, Guilloteau LA, Le Floc'h N, Thomas A, Fontagné-Dicharry S, Gondret F. Review: Implication of redox imbalance in animal health and performance at critical periods, insights from different farm species. Animal 2022; 16:100543. [PMID: 35623200 DOI: 10.1016/j.animal.2022.100543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/15/2022] [Accepted: 04/25/2022] [Indexed: 11/01/2022] Open
Abstract
The process of oxidative stress occurs all over the production chain of animals and food products. This review summarises insights obtained in different farm species (pigs, ruminants, poultry, and fishes) to underpin the most critical periods for the venue of oxidative stress, namely birth/hatching and weaning/start-feeding phase. Common responses between species are also unravelled in periods of high physiological demands when animals are facing dietary deficiencies in specific nutrients, suggesting that nutritional recommendations must consider the modulation of responses to oxidative stress for optimising production performance and quality of food products. These conditions concern challenges such as heat stress, social stress, and inflammation. The magnitude of the responses is partly dependent on the prior experience of the animals before the challenge, reinforcing the importance of nutrition and other management practices during early periods to promote the development of antioxidant reserves in the animal. When these practices also improved the performance and health of the animal, this further confirms the central role played by oxidative stress in physiologically and environmentally induced perturbations. Difficulties in interpreting responses to oxidative stress arise from the fact that the indicators are only partly shared between studies, and their modulations may also be challenge-specific. A consensus about the best indicators to assess pro-oxidative and antioxidant pathways is of huge demand to propose a synthetic index measurable in a non-invasive way and interpretable along the productive life of the animals.
Collapse
Affiliation(s)
- D Durand
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, 63122 Saint-Genès-Champanelle, France.
| | - A Collin
- INRAE, Université de Tours, BOA, 37380 Nouzilly, France
| | - E Merlot
- PEGASE, INRAE, Institut Agro, 35590 Saint-Gilles, France
| | - E Baéza
- INRAE, Université de Tours, BOA, 37380 Nouzilly, France
| | | | - N Le Floc'h
- PEGASE, INRAE, Institut Agro, 35590 Saint-Gilles, France
| | - A Thomas
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, 63122 Saint-Genès-Champanelle, France
| | - S Fontagné-Dicharry
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, NUMEA, 64310 Saint-Pée-sur-Nivelle, France
| | - F Gondret
- PEGASE, INRAE, Institut Agro, 35590 Saint-Gilles, France
| |
Collapse
|
7
|
Effect of Diet and Essential Oils on the Fatty Acid Composition, Oxidative Stability and Microbiological Profile of Marchigiana Burgers. Antioxidants (Basel) 2022; 11:antiox11050827. [PMID: 35624691 PMCID: PMC9137589 DOI: 10.3390/antiox11050827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/14/2022] [Accepted: 04/22/2022] [Indexed: 12/04/2022] Open
Abstract
The objective of this study is to evaluate the effects of including linseed (L) or linseed plus vitamin E (LE) in the diet of Marchigiana young bulls on the oxidative stability, color measurements, microbiological profile and fatty acid composition (FA) of burgers treated with and without a blend of essential oils (Rosmarinus officinalis and Origanum vulgare var. hirtum) (EOs). For this aim, the burgers were analysed for pH, thiobarbituric-acid-reactive substance (TBARS) content, Ferric Reducing/Antioxidant Power Assay (FRAP), vitamin E and colour measurements (L, a*, b) at 3, 6, 9, 12 days of storage: the TBARs were the highest in group L compared to C and LE after 12 days of storage (0.98, 0.73, and 0.63 mg MDA/kg, respectively). The TBARS content was also influenced by the use of EO compared to burgers not treated with EO (p < 0.05). The vitamin E content was influenced by the diet (p < 0.01), but not by the EO. The meat of the L group showed the lowest value of redness (a*) compared to C and LE (p < 0.01), while the use of EO did not affect colour parameters. The microbiological profile of the burgers showed a lower Pseudomonas count for L and LE at T0 (2.82 ± 0.30 and 2.30 ± 0.52 Log CFU/g, respectively) compared to C (3.90 ± 0.38 Log CFU/g), while the EO did not influence the microbiological profile. The FA composition was analysed at 0 and 12 days. The burgers from the LE group showed the highest value of polyunsaturated FA compared to the L and C groups (p < 0.05). Our findings suggest that the inclusion of vitamin E in a concentrate rich in polyunsaturated fatty acids is useful to limit intramuscular fat oxidation and to preserve the colour stability of burgers from young Marchigiana bulls enriched with healthy fatty acids. Moreover, linseed and vitamin E had a positive effect on microbial loads and growth dynamics, containing microbial development through time.
Collapse
|
8
|
Cassar-Malek I, Pomiès L, de la Foye A, Tournayre J, Boby C, Hocquette JF. Transcriptome profiling reveals stress-responsive gene networks in cattle muscles. PeerJ 2022; 10:e13150. [PMID: 35411255 PMCID: PMC8994496 DOI: 10.7717/peerj.13150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/01/2022] [Indexed: 01/12/2023] Open
Abstract
In meat-producing animals, preslaughter operations (e.g., transportation, mixing unfamiliar animals, food and water deprivation) may be a source of stress with detrimental effects on meat quality. The objective of this work was to study the effect of emotional and physical stress by comparing the transcriptomes of two muscles (M. longissimus thoracis, LT and M. semitendinosus, ST) in Normand cows exposed to stress (n = 16) vs. cows handled with limited stress (n = 16). Using a microarray, we showed that exposure to stress resulted in differentially expressed genes (DEGs) in both muscles (62 DEGs in LT and 32 DEGs in ST, of which eight were common transcription factors (TFs)). Promoter analysis of the DEGs showed that 25 cis transcriptional modules were overrepresented, of which nine were detected in both muscles. Molecular interaction networks of the DEGs targeted by the most represented cis modules helped identify common regulators and common targets involved in the response to stress. They provided elements showing that the transcriptional response to stress is likely to (i) be controlled by regulators of energy metabolism, factors involved in the response to hypoxia, and inflammatory cytokines; and (ii) initiate metabolic processes, angiogenesis, corticosteroid response, immune system processes, and satellite cell activation/quiescence. The results of this study demonstrate that exposure to stress induced a core response to stress in both muscles, including changes in the expression of TFs. These factors could relay the physiological adaptive response of cattle muscles to cope with emotional and physical stress. The study provides information to further understand the consequences of these molecular processes on meat quality and find strategies to attenuate them.
Collapse
Affiliation(s)
- Isabelle Cassar-Malek
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| | - Lise Pomiès
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
- Université de Toulouse, INRAE, UR MIAT, Castanet-Tolosan, France
| | - Anne de la Foye
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| | - Jérémy Tournayre
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| | - Céline Boby
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| | - Jean-François Hocquette
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| |
Collapse
|
9
|
|
10
|
Macho-González A, Bastida S, Garcimartín A, López-Oliva ME, González P, Benedí J, González-Muñoz MJ, Sánchez-Muniz FJ. Functional Meat Products as Oxidative Stress Modulators: A Review. Adv Nutr 2021; 12:1514-1539. [PMID: 33578416 PMCID: PMC8321872 DOI: 10.1093/advances/nmaa182] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/21/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
High meat consumption has been associated with increased oxidative stress mainly due to the generation of oxidized compounds in the body, such as malondialdehyde, 4-hydroxy-nonenal, oxysterols, or protein carbonyls, which can induce oxidative damage. Meat products are excellent matrices for introducing different bioactive compounds, to obtain functional meat products aimed at minimizing the pro-oxidant effects associated with high meat consumption. Therefore, this review aims to summarize the concept and preparation of healthy and functional meat, which could benefit antioxidant status. Likewise, the key strategies regarding meat production and storage as well as ingredients used (e.g., minerals, polyphenols, fatty acids, walnuts) for developing these functional meats are detailed. Although most effort has been made to reduce the oxidation status of meat, newly emerging approaches also aim to improve the oxidation status of consumers of meat products. Thus, we will delve into the relation between functional meats and their health effects on consumers. In this review, animal trials and intervention studies are discussed, ascertaining the extent of functional meat products' properties (e.g., neutralizing reactive oxygen species formation and increasing the antioxidant response). The effects of functional meat products in the frame of diet-gene interactions are analyzed to 1) discover target subjects that would benefit from their consumption, and 2) understand the molecular mechanisms that ensure precision in the prevention and treatment of diseases, where high oxidative stress takes place. Long-term intervention-controlled studies, testing different types and amounts of functional meat, are also necessary to ascertain their positive impact on degenerative diseases.
Collapse
Affiliation(s)
- Adrián Macho-González
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, Madrid, Spain
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Sara Bastida
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, Madrid, Spain
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Alba Garcimartín
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, Madrid, Spain
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - María Elvira López-Oliva
- Departmental Section of Physiology, Pharmacy School, Complutense University of Madrid, Madrid, Spain
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Pilar González
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, Madrid, Spain
| | - Juana Benedí
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, Madrid, Spain
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - María José González-Muñoz
- Biomedical Sciences Department, Toxicology Teaching Unit, Pharmacy School, Alcala University, Alcalá de Henares, Spain
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Francisco J Sánchez-Muniz
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, Madrid, Spain
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| |
Collapse
|
11
|
Muscle and Subcutaneous Fatty Acid Composition and the Evaluation of Ageing Time on Meat Quality Parameters of Hispano-Bretón Horse Breed. Animals (Basel) 2021; 11:ani11051421. [PMID: 34063520 PMCID: PMC8156715 DOI: 10.3390/ani11051421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Horse meat; even though is still not popular in most countries; its consumption is slowly increasing and has the potential to become an alternative future red meat. However; research is still insufficient and a deeper understanding of its nutritional and physicochemical characteristics would be beneficial for the horse meat industry. The capacity of horses to efficiently uptake polyunsaturated fatty acids into their tissues has been reported; but detailed knowledge about horse meat fatty acid composition is limited. The present work provides a comprehensive fatty acid composition analysis of subcutaneous and muscle tissues from semiextensively reared Hispano-Breton horses; results indicated that finishing on a high-grain diet limited muscle n-3 accumulation. In addition; the evolution of physicochemical quality parameters such as pH, instrumental color, texture and cook loss were thoroughly studied during vacuum ageing (0, 7, 14 and 21 days), and the conclusion was that an ageing period between 7 and 14 days would be recommended for an optimum horse meat quality. The reasons for this recommendation were that tenderness increased during the first two weeks and then stayed stable and that visual properties deteriorated after 14 days. Overall; these results will help to standardize post mortem practices to obtain a homogeneous final horse meat quality. Abstract A full-randomized block design was used for the study of the FA composition and meat quality parameters, considering ageing time as a split-plot factor. Chemical and fatty acid composition of steaks (longissimus thoracis and lumborum muscle) from 15 month old semiextensively reared Hispano-Bretón horses were characterized (day 0), and the effect of vacuum ageing (0, 7, 14 and 21 days) on several meat quality parameters (pH, instrumental color and texture and cook loss) was determined. The average fat content of horse loin was 3.31%, and the n-3 polyunsaturated fatty acid content, although higher than in ruminant meats, suggested that the finishing on a high-grain diet limited muscle n-3 accumulation. Results revealed that ageing affected all meat quality measurements; color started to turn brownish at 14 days of ageing, with a decrease in redness but not in yellowness. Tenderness improved during the first two weeks, and the Warner-Bratzler shear force scores showed that meat aged for 7 days could be considered as ‘intermediate tender’. Under the present study conditions, an ageing period between 7 and 14 days is recommended for an optimum horse meat quality.
Collapse
|
12
|
Maggiolino A, Sgarro MF, Natrella G, Lorenzo JM, Colucci A, Faccia M, De Palo P. Dry-Aged Beef Steaks: Effect of Dietary Supplementation with Pinus taeda Hydrolyzed Lignin on Sensory Profile, Colorimetric and Oxidative Stability. Foods 2021; 10:1080. [PMID: 34068173 PMCID: PMC8152972 DOI: 10.3390/foods10051080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022] Open
Abstract
Flavor is one of the main factors involved in consumer meat-purchasing decision and use of natural antioxidants in animal feeding had a great appeal for consumers. The aim of this trial is to evaluate the effect of Pinus taeda hydrolyzed lignin (PTHL) feed addition on oxidative stability, volatile compounds characteristics, and sensory attributes of 35 days dry-aged beef steaks. Forty steer six months old were randomly divided into a control group (CON; n = 20) and an experimental group (PTHL; n = 20). Both groups were fed ad libitum for 120 days with the same TMR and only the PTHL group received PTHL supplement. Samples of LT muscle were removed from carcasses and dry aged for 35 days at 2 °C, 82% of humidity, and 0.4 m/s of ventilation and then analyzed. Meat of CON group showed lower yellowness (p < 0.01) and higher TBARS (p < 0.01) values. Moreover, CON meat showed higher volatile aldehydes and lower sulfur compounds (p < 0.01), with higher unpleasant odor (p < 0.05) and meaty odor (p < 0.01) score revealed by sensory assessors. PTHL inclusion in beef diet delayed the oxidative mechanisms in 35 days dry-aged steaks, resulting in an improved colorimetric, volatolomic, and sensory profile.
Collapse
Affiliation(s)
- Aristide Maggiolino
- Department of Veterinary Medicine, University of Bari A. Moro, Valenzano, 70010 Bari, Italy; (M.F.S.); (P.D.P.)
| | - Maria Federica Sgarro
- Department of Veterinary Medicine, University of Bari A. Moro, Valenzano, 70010 Bari, Italy; (M.F.S.); (P.D.P.)
| | - Giuseppe Natrella
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (G.N.); (A.C.); (M.F.)
| | - Josè Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia 4, Parque Tecnológico de Galicia, San Cibrán das Viñas, 32900 Ourense, Spain;
- Area Tecnologia de los Alimentos, Facultad Ciencias de Oruesnse, Universidad de Vigo, 32004 Ourense, Spain
| | - Annamaria Colucci
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (G.N.); (A.C.); (M.F.)
| | - Michele Faccia
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (G.N.); (A.C.); (M.F.)
| | - Pasquale De Palo
- Department of Veterinary Medicine, University of Bari A. Moro, Valenzano, 70010 Bari, Italy; (M.F.S.); (P.D.P.)
| |
Collapse
|
13
|
Xiong YL, Guo A. Animal and Plant Protein Oxidation: Chemical and Functional Property Significance. Foods 2020; 10:E40. [PMID: 33375649 PMCID: PMC7824645 DOI: 10.3390/foods10010040] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/29/2022] Open
Abstract
Protein oxidation, a phenomenon that was not well recognized previously but now better understood, is a complex chemical process occurring ubiquitously in food systems and can be induced by processing treatments as well. While early research concentrated on muscle protein oxidation, later investigations included plant, milk, and egg proteins. The process of protein oxidation involves both radicals and nonradicals, and amino acid side chain groups are usually the site of initial oxidant attack which generates protein carbonyls, disulfide, dityrosine, and protein radicals. The ensuing alteration of protein conformational structures and formation of protein polymers and aggregates can result in significant changes in solubility and functionality, such as gelation, emulsification, foaming, and water-holding. Oxidant dose-dependent effects have been widely reported, i.e., mild-to-moderate oxidation may enhance the functionality while strong oxidation leads to insolubilization and functionality losses. Therefore, controlling the extent of protein oxidation in both animal and plant protein foods through oxidative and antioxidative strategies has been of wide interest in model system as well in in situ studies. This review presents a historical perspective of food protein oxidation research and provides an inclusive discussion of the impact of chemical and enzymatic oxidation on functional properties of meat, legume, cereal, dairy, and egg proteins based on the literature reports published in recent decades.
Collapse
Affiliation(s)
- Youling L. Xiong
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA;
| | | |
Collapse
|
14
|
Delosière M, Thomas A, Terlouw CEM, Gruffat D, Habeanu M, Durand D. Dataset of lipids, antioxidative status and color attributes in cows meat from slaughter to storage: Impacts of diet supplementations and pre-slaughter stress. Data Brief 2020; 30:105409. [PMID: 32274408 PMCID: PMC7132067 DOI: 10.1016/j.dib.2020.105409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/26/2020] [Accepted: 03/04/2020] [Indexed: 11/26/2022] Open
Abstract
This data article presents a dataset with 34 values of the fatty acids composition and of indicators of lipid oxidation determined in the Longissimus dorsi and Semitendinosus from 71 Normand cull-cows at slaughter, after muscle aging and after meat storage periods under different packaging conditions. Cows were subjected to 3 feeding diets and 2 slaughter protocols relative to pre-slaughter stress. The indicators of lipids, FA composition, antioxidative enzymes activities, antioxidative status and global lipid oxidation of the muscles, and meat at different time points and under different aging and storage conditions, may be used to increase our understanding of the evolution of oxidation and consequences on color development. The last research article published on part of these data [1] is available for some interpretive insights: https://doi.org/10.1016/j.foodchem.2019.125668.
Collapse
Affiliation(s)
- Mylène Delosière
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - Agnès Thomas
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - Claudia E M Terlouw
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - Dominique Gruffat
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - Mihaela Habeanu
- National Research-Development Institute for Biology and Animal Nutrition, Balotesti, Romania
| | - Denis Durand
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| |
Collapse
|