1
|
Bian Y, Zhang Y, Ruan LY, Feng XS. Phytosterols in Plant-Derived Foods: Recent Updates in Extraction and Analysis Methods. Crit Rev Anal Chem 2024:1-19. [PMID: 39556048 DOI: 10.1080/10408347.2024.2427128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The physiological and officinal functions of phytosterols are of great significance, and recent dietary guidelines have underscored the significance of incorporating them into a balanced diet. Furthermore, it exhibits inhibitory effects on tumor growth, stimulates cellular immunity, possesses anti-inflammatory, antioxidant, and antidiabetic properties. To gain a more comprehensive understanding of the role of phytosterols in public health, it is crucial to establish simple, rapid, eco-conscious, efficient, and highly sensitive techniques for their extraction and determination across various matrices. This review presents a thorough overview of various techniques used for extracting and analyzing phytosterols in diverse plant-derived foods, encompassing a range of advanced technologies like solid-phase extraction, microextraction, supercritical fluid extraction, QuEChERS, alongside traditional approaches. The detection techniques include liquid chromatography-based methods, gas chromatography-based methods, supercritical fluid chromatography, and other methodologies. Additionally, we conduct a thorough examination and comparison of various techniques while proposing future prospects.
Collapse
Affiliation(s)
- Yu Bian
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Ling-Yun Ruan
- School of Pharmacy, China Medical University, Shenyang, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
2
|
Martini G, Nerli BB, Malpiedi LP. A novel method based on saponification coupled to micelle-extraction for recovering valuable bioactive compounds from soybean oil deodorizer distillate. Food Chem 2022; 384:132610. [DOI: 10.1016/j.foodchem.2022.132610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 11/24/2022]
|
3
|
MIL-101(Cr) based d-SPE/UPLC-MS/MS for determination of neonicotinoid insecticides in beverages. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
4
|
Kalogiouri NP, Kabir A, Olayanju B, Furton KG, Samanidou VF. Development of highly hydrophobic fabric phase sorptive extraction membranes and exploring their applications for the rapid determination of tocopherols in edible oils analyzed by high pressure liquid chromatography-diode array detection. J Chromatogr A 2021; 1664:462785. [PMID: 34992043 DOI: 10.1016/j.chroma.2021.462785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 12/17/2022]
Abstract
Α novel, green, and facile fabric phase sorptive extraction (FPSE) prior to high pressure liquid chromatography with diode array detection (HPLC-DAD) methodology was developed for the efficient extraction and quantitative determination of tocopherols (α-, sum of (β+γ), and δ-) in edible oils. Among several highly hydrophobic FPSE membranes, sol-gel polycaprolactone-polydimethylsiloxane-polycaprolactone (sol-gel PCAP-PDMS-PCAP) coated polyester FPSE membrane was found as the most efficient in extracting tocopherol homologues from edible oil samples. To maximize the extraction efficiency of FPSE membrane, major parameters of FPSE including the membrane size, sample loading time, the choice of the appropriate elution solvent and the elution solvent volume, desorption time, and the influence of stirring were systematically optimized. The developed FPSE-HPLC-DAD methodology was validated and presented adequately low limits of detection (LODs) and limits of quantification (LOQs) over the ranges 0.05-0.10 μg/g, and 0.17-0.33 μg/g, respectively. The RSD% of the within-day and between-day assays were lower than 1.3, and 11.8, respectively, demonstrating good method precision. The trueness of the method was assessed by means of relative percentage of recovery and ranged between 90.8 and 95.1% for within-day assay, and between 88.7-92.8% for between-day assay. The developed methodology was applied in the analysis of edible oils.
Collapse
Affiliation(s)
- Natasa P Kalogiouri
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Abuzar Kabir
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA; Department of Pharmacy, Faculty of Allied Health Science, Daffodil International University, Dhaka-1207, Bangladesh
| | - Basit Olayanju
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | - Kenneth G Furton
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | - Victoria F Samanidou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| |
Collapse
|
5
|
Lv W, Wu C, Lin S, Wang X, Wang Y. Integrated Utilization Strategy for Soybean Oil Deodorizer Distillate: Synergically Synthesizing Biodiesel and Recovering Bioactive Compounds by a Combined Enzymatic Process and Molecular Distillation. ACS OMEGA 2021; 6:9141-9152. [PMID: 33842783 PMCID: PMC8028127 DOI: 10.1021/acsomega.1c00333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/09/2021] [Indexed: 05/05/2023]
Abstract
Soybean oil deodorizer distillate (SODD) is well recognized as a good source of both biodiesel and high-value bioactive compounds of tocopherols, squalene, and phytosterols. To achieve a one-step synthesis of biodiesel and recovery of bioactive compounds from SODD, four commercial immobilized enzymes (Novozym 435, Lipozyme TLIM, Lipozyme RMIM, and Lipozyme RM) and one self-prepared immobilized lipase MAS1-H108A were compared. The results showed that immobilized lipase MAS1-H108A due to the better methanol tolerance and higher catalytic activity gave the highest biodiesel yield of 97.08% under the optimized conditions: molar ratio of 1:2 (oil/methanol), temperature of 35 °C, and enzyme loading of 35 U/g SODD, even after 10 persistent cycles without significant decrease of activity. Simultaneously, there was no loss of tocopherols and squalene in SODD during the enzymatic reaction. Pure biodiesel (characterized by fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR)) and a high concentration of bioactive compounds could be successfully separated by molecular distillation at 100 °C. In a word, this work provides an interesting idea to achieve environmentally friendly treatment of SODD by combining an enzymatic process and molecular distillation, and it is suitable for industrial production.
Collapse
Affiliation(s)
- Wen Lv
- School
of Food Science and Engineering, South China
University of Technology, Guangzhou 510640, P. R. China
| | - Chunjian Wu
- School
of Food Science and Engineering, South China
University of Technology, Guangzhou 510640, P. R. China
| | - Sen Lin
- School
of Food Science and Engineering, South China
University of Technology, Guangzhou 510640, P. R. China
| | - Xuping Wang
- Sericultural
& Agri-Food Research Institute, Guangdong Academy of Agricultural
Sciences, Guangzhou 510610, P. R. China
| | - Yonghua Wang
- School
of Food Science and Engineering, South China
University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
6
|
Xu Y, Li X, Zhang W, Jiang H, Pu Y, Cao J, Jiang W. Zirconium(Ⅳ)-based metal-organic framework for determination of imidacloprid and thiamethoxam pesticides from fruits by UPLC-MS/MS. Food Chem 2020; 344:128650. [PMID: 33229159 DOI: 10.1016/j.foodchem.2020.128650] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/21/2020] [Accepted: 11/12/2020] [Indexed: 11/19/2022]
Abstract
Zirconium(Ⅳ)-based metal-organic framework (MOF)-UiO-66-NH2 was fabricated to adsorb the imidacloprid and thiamethoxam in fruit samples before analysis using UPLC-MS/MS. The UiO-66-NH2 was confirmed by SEM, FTIR, and XRD. Key experimental parameters were investigated by response surface methodology (RSM). The desirability recovery of imidacloprid was 94.52% under optimum conditions (mount of adsorbent = 52.48 mg, volume of eluent = 5.18 mL, pH = 9, extraction time = 15 min). The desirability recovery of thiamethoxam was 93.57% under optimum conditions (mount of adsorbent = 50.58 mg, volume of eluent = 2.6 mL, pH = 5.65, extraction time = 11.94 min). Under the optimal conditions, the actual recovery of imidacloprid and thiamethoxam was 92.39% and 94.37%, respectively. Besides, the method was applied successfully to detect imidacloprid and thiamethoxam in different fruit samples. The results demonstrated that the UiO-66-NH2 is an excellent adsorbent for the extraction imidacloprid and thiamethoxam from fruit samples.
Collapse
Affiliation(s)
- Yan Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Xiangxin Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Wanli Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Haitao Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yijing Pu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
7
|
Tang HZ, Wang YH, Li S, Wu J, Gao ZX, Zhou HY. Development and application of magnetic solid phase extraction in tandem with liquid-liquid extraction method for determination of four tetracyclines by HPLC with UV detection. Journal of Food Science and Technology 2020; 57:2884-2893. [PMID: 32624594 DOI: 10.1007/s13197-020-04320-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/10/2020] [Accepted: 03/03/2020] [Indexed: 02/04/2023]
Abstract
A novel HPLC-UV method was developed for the determination of four tetracyclines based on magnetic solid phase extraction in tandem with liquid-liquid extraction. The water-soluble amino functionalized magnetite nanoparticle (MNP-NH2) was used as an adsorbent for extraction/preconcentration of tetracycline, oxytetracycline, chlortetracycline, and doxycycline from bovine milk samples. Fourier transform infrared spectrometer, transmission electron microscope, X-ray diffraction, and elemental analyze techniques were used to characterize the material. Some key parameters which influence liquid-liquid extraction and magnetic dispersive solid-phase extraction procedure, including volume of extraction solvent, the amount of adsorbent, the pH, extraction and desorption time, the composition of the eluent, and elution frequency were investigated. The proposed method exhibited a linear range of 50.0-2500.0 μg L-1 (r2 = 0.9941) with and good reproducibility (RSD < 2.2%, n = 3). The limit of detection and quantification were 40.0 and 50.0 μg L-1. This method was verified using milk sample spiked with four tetracyclines (100.0-200.0 μg L-1), and accuracies of 87.8-107.5%, which confirmed its applicability in real-sample analysis. The proposed method also shows potential application prospects for other water-soluble adsorbents.
Collapse
Affiliation(s)
- Hong-Zhi Tang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, No. 1, DaLi Road, HePing District, Tianjin, 300050 China.,Laboratory of Deep Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Yong-Hui Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, No. 1, DaLi Road, HePing District, Tianjin, 300050 China
| | - Shuang Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, No. 1, DaLi Road, HePing District, Tianjin, 300050 China
| | - Jin Wu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, No. 1, DaLi Road, HePing District, Tianjin, 300050 China
| | - Zhi-Xian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, No. 1, DaLi Road, HePing District, Tianjin, 300050 China
| | - Huan-Ying Zhou
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, No. 1, DaLi Road, HePing District, Tianjin, 300050 China
| |
Collapse
|