1
|
Zhang Y, Dong Q, Zhao X, Sun Y, Lin X, Zhang X, Wang T, Yang T, Jiang X, Li J, Cao Z, Cai T, Liu W, Zhang H, Bai J, Yao Q. Honeycomb-like biomimetic scaffold by functionalized antibacterial hydrogel and biodegradable porous Mg alloy for osteochondral regeneration. Front Bioeng Biotechnol 2024; 12:1417742. [PMID: 39070169 PMCID: PMC11273084 DOI: 10.3389/fbioe.2024.1417742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/20/2024] [Indexed: 07/30/2024] Open
Abstract
Introduction: Osteochondral repair poses a significant challenge due to its unique pathological mechanisms and complex repair processes, particularly in bacterial tissue conditions resulting from open injuries, infections, and surgical contamination. This study introduces a biomimetic honeycomb-like scaffold (Zn-AlgMA@Mg) designed for osteochondral repair. The scaffold consists of a dicalcium phosphate dihydrate (DCPD)-coated porous magnesium scaffold (DCPD Mg) embedded within a dual crosslinked sodium alginate hydrogel (Zn-AlgMA). This combination aims to synergistically exert antibacterial and osteochondral integrated repair properties. Methods: The Zn-AlgMA@Mg scaffold was fabricated by coating porous magnesium scaffolds with DCPD and embedding them within a dual crosslinked sodium alginate hydrogel. The structural and mechanical properties of the DCPD Mg scaffold were characterized using scanning electron microscopy (SEM) and mechanical testing. The microstructural features and hydrophilicity of Zn-AlgMA were assessed. In vitro studies were conducted to evaluate the controlled release of magnesium and zinc ions, as well as the scaffold's osteogenic, chondrogenic, and antibacterial properties. Proteomic analysis was performed to elucidate the mechanism of osteochondral integrated repair. In vivo efficacy was evaluated using a rabbit full-thickness osteochondral defect model, with micro-CT evaluation, quantitative analysis, and histological staining (hematoxylin-eosin, Safranin-O, and Masson's trichrome). Results: The DCPD Mg scaffold exhibited a uniform porous structure and superior mechanical properties. The Zn-AlgMA hydrogel displayed consistent microstructural features and enhanced hydrophilicity. The Zn-AlgMA@Mg scaffold provided controlled release of magnesium and zinc ions, promoting cell proliferation and vitality. In vitro studies demonstrated significant osteogenic and chondrogenic properties, as well as antibacterial efficacy. Proteomic analysis revealed the underlying mechanism of osteochondral integrated repair facilitated by the scaffold. Micro-CT evaluation and histological analysis confirmed successful osteochondral integration in the rabbit model. Discussion: The biomimetic honeycomb-like scaffold (Zn-AlgMA@Mg) demonstrated promising results for osteochondral repair, effectively addressing the challenges posed by bacterial tissue conditions. The scaffold's ability to release magnesium and zinc ions in a controlled manner contributed to its significant osteogenic, chondrogenic, and antibacterial properties. Proteomic analysis provided insights into the scaffold's mechanism of action, supporting its potential for integrated osteochondral regeneration. The successful in vivo results highlight the scaffold's efficacy, making it a promising biomaterial for future applications in osteochondral repair.
Collapse
Affiliation(s)
- Yongqiang Zhang
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China
- Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China
| | - Qiangsheng Dong
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing Institute of Technology, Nanjing, China
| | - Xiao Zhao
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China
- Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China
| | - Yuzhi Sun
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China
- Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China
| | - Xin Lin
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Zhang
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China
- Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China
| | - Tianming Wang
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China
- Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China
| | - Tianxiao Yang
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China
- Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China
| | - Xiao Jiang
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China
- Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China
| | - Jiaxiang Li
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China
- Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China
| | - Zhicheng Cao
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China
- Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China
| | - Tingwen Cai
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China
- Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China
| | - Wanshun Liu
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China
- Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China
| | - Hongjing Zhang
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China
- Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China
| | - Jing Bai
- School of Materials Science and Engineering, Southeast University, Nanjing, Jiangsu, China
- Institute of Medical Devices (Suzhou), Southeast University, Suzhou, China
| | - Qingqiang Yao
- Department of Orthopedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, China
- Research Center of Digital Medicine and 3D Printing Technology of Jiangsu Province, Nanjing, China
| |
Collapse
|
2
|
Zhang P, Zhang D, Ma C, Wang R, Wang W. Free Radical Scavenging Effect and Immunomodulatory Activity of Total Saponins Extract of Ginseng Fibrous Roots. Molecules 2024; 29:2770. [PMID: 38930835 PMCID: PMC11206437 DOI: 10.3390/molecules29122770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Ginseng (Panax ginseng C.A. Mey) is known for its rich saponin compounds and tonic effects. To better utilize the medicinal value of ginseng, this study investigated the extraction process, components, free radical scavenging ability, and immunomodulatory activity of total saponins of ginseng fibrous roots. The response surface methodology was employed to optimize the extraction process of total saponins, and Q-Orbitrap high-resolution liquid chromatography-mass spectrometry (LC-MS) was used to identify the chemical constituents in the total saponins extract of ginseng fibrous roots (GRS). The results showed that the optimal extraction process was achieved with an ethanol concentration of 68%, a material-solvent ratio of 1:25 mL/g, and an extraction time of 20 min, yielding a total saponin content of 6.34% under these conditions. The extract contained four terpenoid compounds and four polyphenolic compounds. GRS exhibited considerable scavenging activity against DPPH and ABTS radicals, with IC50 values of 0.893 and 0.210 mg/mL, respectively. Moreover, GRS restored immune suppression in mice by increasing white blood cell, red blood cell, and neutrophil counts, and improving the lymphocyte. It also promoted immune system recovery, as evidenced by elevated serum levels of IL-2, IFN-γ, TNF-α, and IL-1β in mice. GRS is a natural compound with promising potential for developing antioxidants and immunomodulatory foods.
Collapse
Affiliation(s)
- Peng Zhang
- College of Life Engineering, Shenyang Institute of Technology, Fushun 113122, China; (D.Z.); (C.M.); (R.W.)
| | - Dongyan Zhang
- College of Life Engineering, Shenyang Institute of Technology, Fushun 113122, China; (D.Z.); (C.M.); (R.W.)
| | - Chuanjie Ma
- College of Life Engineering, Shenyang Institute of Technology, Fushun 113122, China; (D.Z.); (C.M.); (R.W.)
| | - Ruxia Wang
- College of Life Engineering, Shenyang Institute of Technology, Fushun 113122, China; (D.Z.); (C.M.); (R.W.)
| | - Weili Wang
- Liaoning Inspection, Examination & Certification Centre, Shenyang 110031, China
| |
Collapse
|
3
|
Alreshidi M, Abdulhakeem MA, Badraoui R, Amato G, Caputo L, De Martino L, Nazzaro F, Fratianni F, Formisano C, De Feo V, Snoussi M. Pulicaria incisa (Lam.) DC. as a Potential Source of Antioxidant, Antibacterial, and Anti-Enzymatic Bioactive Molecules: Phytochemical Constituents, In Vitro and In Silico Pharmacological Analysis. Molecules 2023; 28:7439. [PMID: 37959858 PMCID: PMC10648406 DOI: 10.3390/molecules28217439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Plants with medicinal benefits are a crucial source of compounds for developing drugs. This study was designed to determine the chemical composition, antibacterial, antibiofilm, antioxidant, and anti-enzymatic activities of Pulicaria incisa (Lam.) DC. We also reported the molecular interaction between identified molecules and several receptors associated with antimicrobial and antibiofilm activities. A total of seventeen and thirteen compounds were identified in aqueous and methanolic extracts of P. incisa, respectively. The methanolic extract yielded a higher total content of polyphenols and flavonoids of about 84.80 ± 2.8 mg GAE/g and 28.30 ± 1.2 mg QE/g, respectively. Significant antibacterial activity was recorded for both extracts, with minimum inhibitory concentration (MIC) values ranging from 30 to 36 µg/mL, and the result was comparable to the reference antibiotic control. Antibiofilm assays revealed that both extracts were able to reduce the attachment of bacterial cells to 96-well plates, but the highest antibiofilm activity was recorded against Staphylococcus aureus. The methanolic extract also showed anti-enzymatic potency and high antioxidant activity, as demonstrated by all assays used, including DPPH, FRAP, and ABTS. These results were further validated by in silico approaches, particularly the molecular interaction of the identified compounds with the targeted receptors. These findings present P. incisa as a significant source of antibacterial, antibiofilm, antioxidant, and anti-enzymatic molecules.
Collapse
Affiliation(s)
- Mousa Alreshidi
- Department of Biology, College of Science, University of Ha’il, Hail 2440, Saudi Arabia; (M.A.); (M.A.A.); (M.S.)
| | - Mohammad A. Abdulhakeem
- Department of Biology, College of Science, University of Ha’il, Hail 2440, Saudi Arabia; (M.A.); (M.A.A.); (M.S.)
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Ha’il, Hail 2440, Saudi Arabia; (M.A.); (M.A.A.); (M.S.)
- Section of Histology-Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, Tunis 1007, Tunisia
| | - Giuseppe Amato
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (G.A.); (L.D.M.)
| | - Lucia Caputo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (G.A.); (L.D.M.)
| | - Laura De Martino
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (G.A.); (L.D.M.)
| | | | | | - Carmen Formisano
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, 80131 Napoli, Italy;
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (G.A.); (L.D.M.)
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Ha’il, Hail 2440, Saudi Arabia; (M.A.); (M.A.A.); (M.S.)
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
| |
Collapse
|
4
|
Xue SJ, Liu J, Li XC, Zhang XT, Xin ZZ, Jiang WW, Zhang JY. First Natural Yeast Strain Trichosporon asahii HZ10 with Robust Flavonoid Productivity and Its Potential Biosynthetic Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37909088 DOI: 10.1021/acs.jafc.3c05188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Flavonoids are generally thought to be essential plant natural products with diverse bioactivities and pharmacological effects. Conventional approaches for the industrial production of flavonoids through plant extraction and chemical synthesis face serious economic and environmental challenges. Searching for natural robust flavonoid-producing microorganisms satisfying green and sustainable development is one of the good alternatives. Here, a natural yeast, Trichosporon asahii HZ10, isolated from raw honeycombs, was found to accumulate 146.41 mg/L total flavonoids intracellularly. Also, T. asahii HZ10 represents a broad flavonoid metabolic profiling, covering 40 flavonoids, among which nearly half were silibinin, daidzein, and irigenin trimethyl ether, especially silibinin occupying 21.07% of the total flavonoids. This is the first flavonoid-producing natural yeast strain worldwide. Furthermore, T. asahii HZ10-derived flavonoids represent favorable antioxidant activities. Interestingly, genome mining and transcriptome analysis clearly showed that T. asahii HZ10 possibly evolves a novel flavonoid synthesis pathway for the most crucial step of flavonoid skeleton synthesis, which is different from that in plants and filamentous fungi. Therefore, our results not only enrich the diversity of the natural flavonoid biosynthesis pathway but also pave an alternative way to promote the development of a synthetic biology strategy for the microbial production of flavonoids.
Collapse
Affiliation(s)
- Si-Jia Xue
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Jie Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Xiao-Chen Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Xin-Tong Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Zhao-Zhe Xin
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Wen-Wen Jiang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Jin-Yong Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
5
|
Marzouk M, Khalifa SM, Ahmed AH, Metwaly AM, Sh Mohammed H, Taie HAA. LC/HRESI-MS/MS screening, phytochemical characterization, and in vitro antioxidant and cytotoxic potential of Jatropha integerrima Jacq. extracts. Bioorg Chem 2023; 140:106825. [PMID: 37683543 DOI: 10.1016/j.bioorg.2023.106825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Avoiding the probable dangerous side effects of synthetic drugs, this study aims the identification of natural antioxidant and antitumor agents from J. integerrima leaf and floral extracts. A highly efficient and fast UPLC/ESI-qTOF-HRMS/MS screening has led to characterization of 30 flavonoids, i.e. 12 flavonols, 6 flavones, 3 dihydroflavonols, 4 anthocyanins (flower), 2 dihydroflavonols, and 3 isoflavones from both J. integerrima extracts. In addition, six major polyphenols were identified for the first time from leaf extract, and their structures were established as apigenin 7-O-β-d-neohesperidoside (rhoifolin, 1), apigenin 8-C-β-D-4C1-glucopyranoside (vitexin, 2), luteolin 6-C-β-D-4C1-glucopyranoside (isoorientin, 3), 6,6″-di-C-β-D-4C1-glucopyranosyl-methylene-biapigenin (Jatrophenol-I, 4), (E)-p-coumaric acid methyl ester (5), and (E)-ferulic acid methyl ester (6) with HRESI-MS and NMR analyses. The in vitro antioxidant activity of both extracts and major pure isolates was decided using DPPH, reducing power capability, FRAP, and ABTS radical scavenging assays, and their in vitro cytotoxicity was evaluated on Ehrlich ascites carcinoma cells (EACC), as well.The flower extract and compound 3 have shown the strongest antioxidant and cytotoxic effects. At low concentrations (25 µg/mL), they showed the highest DPPH radical scavenging ability (79.63 ± 0.42 and 76.20 ± 0.35%) regarding BHA (91.44 ± 0.29% at 100 µg/mL). In the parameter of absorbance, they exhibited higher reducing power ability (1.402 ± 0.025 and 1.178 ± 0.019%) than that of BHA (0.975 ± 0.013 at 100 µg/mL). Similarly, they proved superior FRAP (1427 ± 9.61 and 1377 ± 13.61 µmol Trolox/ 100 g) and highest ABTS activity (80.19 ± 0.55 and 68.38 ± 0.19%), which are higher activities compared to BHA (88.42 ± 0.24% at 100 µg/mL). Furthermore, all samples gave noticeable cytotoxicity at the same concentration (100 µg/mL), especially the flower extract and compound 3 which showed a relatively high effect on the viability of EACC (81.12 ± 0.24 and 77.21 ± 0.76 %, respectively) relative to vincristine reference drug (90.64 ± 0.39 %). Based on the findings, the extracts and isolates can be considered as potent antioxidant and cytotoxic natural agents, especially flower extract and isoorientin (3), which may supply novel insight into their likely application in pharmaceutical industries.
Collapse
Affiliation(s)
- Mohamed Marzouk
- Chemistry of Tanning Materials and Leather Technology Department, Chemical Industries Research Institute, National Research Centre, 33 El-Bohouth St. (Former El-Tahrir St.), Dokki, Cairo 12622, Egypt
| | - Shimaa M Khalifa
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Girls), Al Azhar University, Cairo 11754, Egypt
| | - Amal H Ahmed
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Girls), Al Azhar University, Cairo 11754, Egypt
| | - Ahmed M Metwaly
- Pharmacognosy & Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Hala Sh Mohammed
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Girls), Al Azhar University, Cairo 11754, Egypt
| | - Hanan A A Taie
- Plant Biochemistry Department, Agricultural and Biology Research Institute, National Research Centre, 33 El-Bohouth St. (Former El-Tahrir St.), Dokki, Cairo 12622, Egypt.
| |
Collapse
|
6
|
Chaparro LM, Neira LF, Molina D, Rivera-Barrera D, Castañeda M, López-Giraldo LJ, Escobar P. Biowaxes from Palm Oil as Promising Candidates for Cosmetic Matrices and Pharmaceuticals for Human Use. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4402. [PMID: 37374583 DOI: 10.3390/ma16124402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023]
Abstract
The production of waxes from vegetable oils, such as palm oil, for use as a base material in products for human applications is an alternative to those derived from petroleum and animals. Seven palm oil-derived waxes, called biowaxes (BW1-BW7) in this work, were obtained by catalytic hydrotreating of refined and bleached African palm oil and refined palm kernel oil. They were characterized by three properties: compositional, physicochemical (melting point, penetration value, and pH), and biological (sterility, cytotoxicity, phototoxicity, antioxidant, and irritant). Their morphologies and chemical structures were studied by SEM, FTIR, UV-Vis, and 1H NMR. The BWs presented structures and compositions similar to natural biowaxes (beeswax and carnauba). They had a high concentration of waxy esters (17%-36%) with long alkyl chains (C, 19-26) per carbonyl group, which are related to high melting points (<20-47.9 °C) and low penetration values (2.1-3.8 mm). They also proved to be sterile materials with no cytotoxic, phototoxic, antioxidant, or irritant activity. The biowaxes studied could be used in cosmetic and pharmacological products for human use.
Collapse
Affiliation(s)
- Laura María Chaparro
- Centro de Investigación de Enfermedades Tropicales (CINTROP-UIS), Departamento de Ciencias Básicas, Escuela de Medicina, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - Laura Fernanda Neira
- Centro de Investigación de Enfermedades Tropicales (CINTROP-UIS), Departamento de Ciencias Básicas, Escuela de Medicina, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - Daniel Molina
- Laboratorio de Resonancia Magnética Nuclear, Escuela de Química, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - Diego Rivera-Barrera
- Laboratorio de Resonancia Magnética Nuclear, Escuela de Química, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - Maribel Castañeda
- Centro de Innovación y Tecnología-ICP-ECOPETROL S.A, Bogotá 110911, Colombia
| | - Luis Javier López-Giraldo
- Grupo de Investigación en Ciencia y Tecnología de Alimentos-CICTA, Escuela de Ingeniería Química, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - Patricia Escobar
- Centro de Investigación de Enfermedades Tropicales (CINTROP-UIS), Departamento de Ciencias Básicas, Escuela de Medicina, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| |
Collapse
|
7
|
An overview of the extraction and characterization of bioactive phenolic compounds from agri-food waste within the framework of circular bioeconomy. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
8
|
Yu W, Sun F, Xu R, Cui M, Liu Y, Xie Q, Guo L, Kong C, Li X, Guo X, Luo L. Chemical composition and anti-inflammatory activities of Castanopsis honey. Food Funct 2023; 14:250-261. [PMID: 36484340 DOI: 10.1039/d2fo02233h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Castanopsis is diffusely spread in tropical and subtropical regions and is an important nectar source plant in China. The Castanopsis honey (CH) is characterized by its bitter taste. However, its composition and functions remain unclear. In this study, the physicochemical parameters, chemical composition, and antioxidant capacity of CH were comprehensively investigated, with the anti-inflammatory effects of the Castanopsis honey extract (CHE) evaluated based on the RAW 264.7 cell inflammatory model. The results revealed a high level of quality in CH based on the quality standards. Among a total of 84 compounds identified in CH, 5 high response compounds and 29 phenols were further quantified by UPLC-Q/TOF-MS. The high content of phenylethylamine (117.58 ± 64.81 mg kg-1) was identified as a potential marker of CH. Furthermore, the CH showed evident antioxidant activities, and the anti-inflammatory activities of CHE were observed to inhibit the release of nitric oxide (NO) and reduce the content of tumor necrosis factor alpha (TNF-α) and improve the content of interleukin-10 (IL-10) by regulating the NF-κB pathway. Our study indicates that CH has sound physicochemical properties and biological activities with a high level of quality, providing strong experimental evidence to support the further economic and agricultural development and application of CH.
Collapse
Affiliation(s)
- Wenjie Yu
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Fengjie Sun
- School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA 30043, USA
| | - Ruixin Xu
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Meng Cui
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Yongquan Liu
- School of Life Sciences, Nanchang University, Nanchang, 330031, China.,College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Quanyuan Xie
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Limin Guo
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Chenxian Kong
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Xin Li
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Xiali Guo
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Liping Luo
- College of Food and Health, Beijing Technology and Business University (BTBU), Beijing, 100048, China.
| |
Collapse
|
9
|
Liu Y, Zhang Y, Zhang K, Wang Y. Protocatechuic acid reduces H 2O 2-induced migration and oxidative stress of fibroblast-like synoviocytes in rheumatoid arthritis by activating Nrf2-Keap1 signaling pathway. CHINESE J PHYSIOL 2023; 66:28-35. [PMID: 36814154 DOI: 10.4103/cjop.cjop-d-22-00087] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Honeycomb (Nidus vespae) is traditional Chinese medicine and can treat rheumatoid arthritis (RA), and protocatechuic acid (PCA) is a bioactive component of honeycomb. This study aimed to investigate whether PCA could reduce the H2O2-induced migration and oxidative stress of RA fibroblast-like synoviocytes (RA-FLSs). H2O2-induced RA-FLSs were used to simulate the in vitro model of RA. The viability, apoptosis, migration, invasion, and oxidative stress of RA-FLSs were detected by Cell Counting Kit-8 (CCK-8), terminal deoxynucleotidyl transferase dUTP nick-end labeling assay, wound healing, transwell assays, DCFDA staining, and malonaldehyde and superoxide dismutase enzyme-linked immunosorbent assay kits. The expression of migration and invasion-related proteins and Nrf2/Keap1 signaling pathway-related proteins was analyzed by western blotting. As a result, PCA suppressed the viability, migration, invasion, and oxidative and promoted apoptosis of H2O2-induced RA-FLSs by activating the Nrf2/Keap1 signaling pathway. ML-385, an Nrf2 inhibitor, could enhance the viability, migration, invasion, and oxidative and inhibited apoptosis of H2O2-induced RA-FLSs. In conclusion, PCA reduced H2O2-induced migration and oxidative stress of RA-FLSs by activating the Nrf2-Keap1 signaling pathway.
Collapse
Affiliation(s)
- Yan Liu
- Department of Rheumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yucheng Zhang
- Department of Critical Care Medicine, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, Jiangsu, China
| | - Keke Zhang
- School of Integrated Traditional Chinese and Western Medicine, Jiangsu Health Vocational College, Nanjing, Jiangsu, China
| | - Yue Wang
- Department of Rheumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Guo S, Chen M, Wu T, Liu K, Zhang H, Wang J. Probiotic Bifidobacterium animalis ssp. lactis Probio-M8 improves the properties and organic acid metabolism of fermented goat milk. J Dairy Sci 2022; 105:9426-9438. [DOI: 10.3168/jds.2022-22003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
|
11
|
Guo X, Liang Y, Yi S, Qiu S, Liu M, Ning F, Luo L. Honeycomb, a New Food Resource with Health Care Functions: The Difference of Volatile Compounds found in Apis cerana and A. mellifera Honeycombs. Foods 2022; 11:3204. [PMCID: PMC9601661 DOI: 10.3390/foods11203204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The honeycomb composition is very complex, containing honey, royal jelly, pollen, and propolis, and thus contains a large number of bioactive ingredients, such as polyphenols and flavonoids. In recent years, honeycomb as a new functional food resource has been favored by many bee product companies, but the basic research on honeycomb is lacking. The aim of this study is to reveal the chemical differences between A. cerana honeycombs (ACC) and A. mellifera honeycombs (AMC). In this paper, we studied the volatile organic components (VOCs) of ACC and AMC by solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME/GC-MS). A total of 114 VOCs were identified in 10 honeycombs. Furthermore, principal component analysis (PCA) revealed that the chemical composition of ACC and AMC were different. Additionally, orthogonal partial least squares discrimination analysis (OPLS-DA) revealed that benzaldehyde, octanal, limonene, ocimene, linalool, α-terpineol, and decanal are the significant VOCs in AMC extracts, which are mainly derived from propolis. OPLS-DA model also identified 2-phenylethanol, phenethyl acetate, isophorone, 4-oxoisophorone, betula, ethyl phenylacetate, ethyl palmitate, and dihydrooxophorone as potential discriminatory markers of ACC, which likely contribute to protecting the hive against microorganisms and keep it clean.
Collapse
Affiliation(s)
- Xiali Guo
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Yanlang Liang
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Shengxiang Yi
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Shengrong Qiu
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Mingyan Liu
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Fangjian Ning
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Correspondence: (F.N.); (L.L.); Tel./Fax: +86-010-68984003 (F.N.); +86-0791-83969519 (L.L.)
| | - Liping Luo
- School of Life Sciences, Nanchang University, Nanchang 330031, China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Correspondence: (F.N.); (L.L.); Tel./Fax: +86-010-68984003 (F.N.); +86-0791-83969519 (L.L.)
| |
Collapse
|
12
|
Zhang P, Song Y, Wang H, Fu Y, Zhang Y, Pavlovna KI. Optimization of Flavonoid Extraction from Salix babylonica L. Buds, and the Antioxidant and Antibacterial Activities of the Extract. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27175695. [PMID: 36080462 PMCID: PMC9457869 DOI: 10.3390/molecules27175695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022]
Abstract
The present study was designed to evaluate the chemical extraction, chemical composition, and antioxidant and antibacterial properties of the total flavonoids in Willow Buds (TFW). We investigated the optimal extraction of TFW using response surface methodology (RSM). Chemical compounds were analyzed using Q-Orbitrap LC-MS/MS. The DPPH radical scavenging capacity, hydroxy radical inhibitory ability, and superoxide anion radical inhibitory ability were explored to determine the antioxidant properties of flavonoid extractions. The antibacterial effect was assessed via minimal inhibitory concentration. The results demonstrated that the optimal extraction conditions were an ethanol concentration of 50%, a time of 35 min, and a liquid/material ratio of 70:1 mL/g. Under these conditions, the yield of TFW was 7.57%. Eight flavonoids, a phenolic glycoside, and an alkaloid were enriched in the Willow Buds. The TFW exhibited significant antioxidant activity, with IC50 values of 0.18-0.24 mg/mL and antimicrobial activity against Escherichia coli, Salmonella enterica, Staphylococcus aureus, and Streptococcus pneumoniae. TFW may be explored as potential and natural compounds in food and pharmacological applications.
Collapse
Affiliation(s)
- Peng Zhang
- College of Life Engineering, Shenyang Institute of Technology, Fushun 113122, China
- Primorskaya State Academy of Agriculture, Ussuriisk 692510, Russia
- Correspondence: (P.Z.); (K.I.P.); Tel.: +86-56618010 (P.Z.); +7-89089743297 (K.I.P.)
| | - Yuwen Song
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Hongling Wang
- College of Life Engineering, Shenyang Institute of Technology, Fushun 113122, China
| | - Yujie Fu
- College of Life Engineering, Shenyang Institute of Technology, Fushun 113122, China
- Primorskaya State Academy of Agriculture, Ussuriisk 692510, Russia
| | - Yingying Zhang
- College of Life Engineering, Shenyang Institute of Technology, Fushun 113122, China
- Primorskaya State Academy of Agriculture, Ussuriisk 692510, Russia
| | - Korotkova Irina Pavlovna
- Primorskaya State Academy of Agriculture, Ussuriisk 692510, Russia
- Correspondence: (P.Z.); (K.I.P.); Tel.: +86-56618010 (P.Z.); +7-89089743297 (K.I.P.)
| |
Collapse
|
13
|
Nassarawa SS, Nayik GA, Gupta SD, Areche FO, Jagdale YD, Ansari MJ, Hemeg HA, Al-Farga A, Alotaibi SS. Chemical aspects of polyphenol-protein interactions and their antibacterial activity. Crit Rev Food Sci Nutr 2022; 63:9482-9505. [PMID: 35475717 DOI: 10.1080/10408398.2022.2067830] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The hunt for novel antibiotics has become a global public health imperative due to the rise in multidrug-resistant microorganisms, untreatable infection cases, overuse, and inefficacy of modern antibiotics. Polyphenols are getting much attention in research due to their multiple biological effects; their use as antimicrobial agents is attributed to their activity and that microbes have a hard time developing resistance to these natural compounds. Polyphenols are secondary metabolites produced in higher plants. They are known to possess various functional properties in the human body. Polyphenols also exhibit antibacterial activities against foodborne pathogens. Their antibacterial mechanism is based on inhibiting bacterial biofilm formation or inactivating enzymes. This review focused on polyphenol-protein interactions and the creation of this complex as a possible antibacterial agent. Also, different phenolic interactions on bacterial proteins, efflux pump, cell membrane, bacterial adhesion, toxins, and other bacterial proteins will be explored; these interactions can work in a synergic combination with antibiotics or act alone to assure bacterial inhibition. Additionally, our review will focus on polyphenol-protein interaction as a possible strategy to eradicate bacteria because polyphenols have shown a robust enzyme-inhibitory characteristic and a high tendency to complex with proteins, a response that neutralizes any bactericidal potential.
Collapse
Affiliation(s)
| | - Gulzar Ahmad Nayik
- Department of Food Science and Technology, Government Degree College Shopian, Srinagar, Jammu and Kashmir, India
| | - S Dutta Gupta
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Franklin Ore Areche
- Professional School of Agroindustrial Engineering, National University of Huancavelica, Huancavelica, Peru
| | - Yash D Jagdale
- MIT School of Food Technology, MIT Art, Design and Technology University, Pune, Maharashtra, India
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University), Bareilly, Uttar Pradesh, India
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Monawra, Saudi Arabia
| | - Ammar Al-Farga
- Department of Biochemistry, College of Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Saqer S Alotaibi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| |
Collapse
|
14
|
Zhang Z, Chen S, Wei X, Xiao J, Huang D. Characterization, Antioxidant Activities, and Pancreatic Lipase Inhibitory Effect of Extract From the Edible Insect Polyrhachis vicina. Front Nutr 2022; 9:860174. [PMID: 35464030 PMCID: PMC9021923 DOI: 10.3389/fnut.2022.860174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/01/2022] [Indexed: 11/30/2022] Open
Abstract
Oxidative stress and obesity are critical risk factors for metabolic syndrome. The consumption of functional food ingredients can a viable strategy to alleviate oxidative stress and obesity. In this study, the hydro-ethanolic extract of the edible insect Polyrhachis vicina was prepared and its bioactive components were characterized. The total polyphenol contents, total flavonoid contents, antioxidant and pancreatic lipase (PL) inhibitory activities of the extract were determined in vitro. In total, 60 bioactive components were tentatively identified in the P. vicina extract. Polyphenols and fatty acids were further quantified using LC-MS and GC-MS, respectively. P. vicina extract possessed excellent antioxidant and PL inhibition activities. Salicylic acid, gallic acid, liquiritigenin, and naringenin, which were the major polyphenols in the P. vicina extract, interacted with PL through hydrogen bonding, hydrophilic or hydrophobic and pi-cation interactions. Thus, P. vicina extract can be used as a nutraceutical to alleviate oxidative stress-induced disease and manage obesity.
Collapse
|
15
|
Preliminary Study on the In Vitro Antitumor Effects of Nidus Vespae on Gastric Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:1549359. [PMID: 34194516 PMCID: PMC8203390 DOI: 10.1155/2021/1549359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/26/2021] [Indexed: 12/21/2022]
Abstract
Objective The aim of this study was to investigate the in vitro antitumor effects of Nidus Vespae on gastric cancer and its ability to promote immune function. Methods Cell viability was detected by the Cell Counting Kit-8 (CCK-8) assay. Cell cycle distribution and apoptosis were detected using flow cytometry. The THP-1 human monocytic cell line was used as a source of monocytic effector cells for analyzing proliferation and dendritic cell (DC) induction. Enzyme-linked immunosorbent assay was used to detect cytokine production, and multicolor flow cytometry was used to study the phenotype and functionality of THP-1 DCs. Results A high concentration (>10 mg/mL) of Nidus Vespae decoction (NVD) inhibited SGC-7901 gastric cancer cell growth by inducing G2/M cell cycle arrest and apoptosis. However, a low concentration (≤10 mg/mL) of NVD significantly increased the proliferative ability of THP-1 in serum-containing medium and caused an increase in dendritic protrusions with the typical morphology of DCs compared to the negative control in serum-free medium. The THP-1 DCs had significantly increased expression of cluster of differentiation 11c (CD11c), CD40, CD80, CD83, and CD86, as well as secretion of tumor necrosis factor-alpha. Furthermore, the supernatant of THP-1 DCs significantly inhibited the proliferation of gastric cancer cells by inducing apoptosis and G1/S cell cycle arrest. Conclusions Our findings suggest that NVD not only directly inhibits the growth of gastric cancer cells but also exerts indirect antitumor effects by enhancing immune function. These results provide an important theoretical basis for the clinical application of Nidus Vespae in gastric cancer treatment.
Collapse
|
16
|
Martinello M, Mutinelli F. Antioxidant Activity in Bee Products: A Review. Antioxidants (Basel) 2021; 10:antiox10010071. [PMID: 33430511 PMCID: PMC7827872 DOI: 10.3390/antiox10010071] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022] Open
Abstract
Bee products have been used since ancient times both for their nutritional value and for a broad spectrum of therapeutic purposes. They are deemed to be a potential source of natural antioxidants that can counteract the effects of oxidative stress underlying the pathogenesis of many diseases. In view of the growing interest in using bioactive substances from natural sources to promote health and reduce the risk of developing certain illnesses, this review aims to update the current state of knowledge on the antioxidant capacity of bee products such as honey, pollen, propolis, beeswax, royal jelly and bee venom, and on the analytical methods used. The complex, variable composition of these products and the multitude of analytical methods used to study their antioxidant activities are responsible for the wide range of results reported by a plethora of available studies. This suggests the need to establish standardized methods to more efficiently evaluate the intrinsic antioxidant characteristics of these products and make the data obtained more comparable.
Collapse
|
17
|
Zhu M, Zhao H, Wang Q, Wu F, Cao W. A Novel Chinese Honey from Amorpha fruticosa L.: Nutritional Composition and Antioxidant Capacity In Vitro. Molecules 2020; 25:E5211. [PMID: 33182368 PMCID: PMC7664916 DOI: 10.3390/molecules25215211] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 01/03/2023] Open
Abstract
False indigo (Amorpha fruticosa L., A. fruticosa) is the preferred tree indigenous for windbreak and sand control in Northwest China, while information on nutritional and bioactive characteristics of its honey is rare. Herein, 12 honey of Amorpha fruticosa L. (AFH) were sampled in Northwest China and the nutritional composition was determined. Sixteen mineral element and ten dominant polyphenols content were identified and quantified by ICP-MS (Inductively coupled plasma mass spectrometry) and HPLC-QTOF-MS (High performance liquid chromatography-Quadrupole time-of-flight mass spectrometry), respectively. Moreover, AFH demonstrated high levels of DPPH (1,1-Diphenyl-2-picrylhydrazyl) radical scavenging activity (IC50 100.41 ± 15.35 mg/mL), ferric reducing antioxidant power (2.04 ± 0.29 µmol FeSO4·7H2O/g), and ferrous ion-chelating activity (82.56 ± 16.01 mg Na2EDTA/kg), which were significantly associated with total phenolic contents (270.07 ± 27.15 mg GA/kg) and ascorbic acid contents (213.69 ± 27.87 mg/kg). The cell model verified that AFH exhibited dose-dependent preventive effects on pBR322 plasmid DNA and mouse lymphocyte DNA damage in response to oxidative stress. Taken together, our findings provide evidence for the future application of AFH as a potential antioxidant dietary in food industry.
Collapse
Affiliation(s)
- Min Zhu
- School of Chemical Engineering, Northwest University, Xi'an 710069, China
| | - Haoan Zhao
- School of Chemical Engineering, Northwest University, Xi'an 710069, China
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Qian Wang
- School of Chemical Engineering, Northwest University, Xi'an 710069, China
| | - Fanhua Wu
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Wei Cao
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
- Bee Product Research Center of Shaanxi Province, Xi'an 710065, China
| |
Collapse
|