1
|
Yang G, Jiao L, Zhou Y, Gao Z, Liu Y, Zhao C, Dong D. Non-destructive detection of shrimp freshness based on metal-organic framework enrichment-enhanced FTIR spectroscopy. Food Chem 2025; 485:144426. [PMID: 40311578 DOI: 10.1016/j.foodchem.2025.144426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/08/2024] [Accepted: 04/18/2025] [Indexed: 05/03/2025]
Abstract
Rapid and non-destructive determination of shrimp freshness is of great significance to ensure food safety. Volatile-based analysis is an effective means of detecting food freshness. In this study, we proposed a metal-organic framework (MOF) enrichment-enhanced Fourier transform infrared (FTIR) spectroscopy to determine shrimp freshness. The FTIR spectral characteristics of HKUST-1 MOF adsorbing ammonia, a signature volatile of shrimp spoilage, were analyzed. The univariate and multivariate quantitative models of ammonia, and the identification model of shrimp freshness were established by combining with chemometric methods. The results show that the multivariate model has the optimal ability to quantify ammonia. Partial least squares discriminant analysis (PLS-DA) and support vector machine (SVM) enable the identification of shrimp freshness, with a recognition accuracy of 95 %. FTIR spectroscopy combined with MOF enrichment technique of volatiles provides the feasibility for rapid and non-destructive determination of shrimp freshness.
Collapse
Affiliation(s)
- Guiyan Yang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Sensors, Ministry of Agriculture and Rural Affairs, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Leizi Jiao
- Key Laboratory of Agricultural Sensors, Ministry of Agriculture and Rural Affairs, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yunhai Zhou
- Key Laboratory of Agricultural Sensors, Ministry of Agriculture and Rural Affairs, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zhen Gao
- Key Laboratory of Agricultural Sensors, Ministry of Agriculture and Rural Affairs, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yachao Liu
- Key Laboratory of Agricultural Sensors, Ministry of Agriculture and Rural Affairs, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Chunjiang Zhao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Sensors, Ministry of Agriculture and Rural Affairs, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Daming Dong
- Key Laboratory of Agricultural Sensors, Ministry of Agriculture and Rural Affairs, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
2
|
Zheng W, Yang R, Shui S, Zhan F, Wang L, Lu R, Benjakul S, Zhang B. Effects of hot air drying on muscle quality, volatile flavor compounds, and lipid profiles in sword prawn ( Parapenaeopsis hardwickii) based on physicochemical, GC-IMS, and UHPLC-MS/MS-based lipidomics analysis. Food Chem X 2025; 27:102473. [PMID: 40297663 PMCID: PMC12036061 DOI: 10.1016/j.fochx.2025.102473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/13/2025] [Accepted: 04/15/2025] [Indexed: 04/30/2025] Open
Abstract
The changes in physicochemical index, volatile flavor, and lipid profiles in Parapenaeopsis hardwickii during hot air drying were studied. As drying time progressed, the L*, hardness, chewiness, gumminess, peroxide value (PV), and thiobarbituric acid reactive substances (TBARS) of P. hardwickii increased gradually, while the a* and b* values first increased and then decreased, and springness decreased progressively. Hot air drying caused the myofibrils to widen and become disordered. Additionally, 5 volatile organic compounds (VOCs) and 30 lipid molecules were identified as key differential markers to the flavor and lipid profiles, respectively. Pearson correlation analysis revealed a strong relationship between shrimp muscle quality and lipid oxidation, with lipid oxidation promoting the development of characteristic flavors and an increase in their levels. Lysophosphatidylethanolamine (LPE), specifically 20:2e, 18:2e, 18:1e, and 16:1e, were identified as primary lipids contributing to the formation of these characteristic flavor differential markers during hot air drying. Glycerophospholipids (GPs) containing LPE as key substrates driving flavor formation in shrimp during hot air drying. This study offers a comprehensive theoretical framework for controlling flavor quality in shrimp muscle during hot air drying.
Collapse
Affiliation(s)
- Wenxiong Zheng
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Ronglin Yang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Shanshan Shui
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Feili Zhan
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
- College of Food Science and Pharmacy, Ningbo University, Ningbo 315832, China
| | - Lucheng Wang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Rui Lu
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Institute of Agroecology and Alimentasian (IAA)–CITEXVI, University of Vigo, Vigo 36310, Spain
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90110, Thailand
| | - Bin Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
- Pisa Marine Graduate School, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
3
|
Zeng J, Ren X, Li X, Chen P, Zhu S. Development of pH-responsive active intelligent chitosan film incorporated with pomegranate cellulose nanocrystals and curcumin nanoparticles. Int J Biol Macromol 2025; 309:142051. [PMID: 40132719 DOI: 10.1016/j.ijbiomac.2025.142051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/17/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025]
Abstract
Casein Sodium coated curcumin nanocapsules (Cas@Cur) were fabricated by a pH shift method, which improved the water solubility of curcumin (Cur). Hydrogen bonds and hydrophobic interactions were the main forces for the formation of Cas@Cur. Chitosan films (CS) reinforced with pomegranate cellulose nanocrystals (PCNCs), Cas@Cur, PCNC/Cas@Cur, and PCNC/Cur were developed and named CP, CS-Cas@Cur, CP-Cas@Cur and CP-Cur, respectively. The addition of Cas@Cur decreased the moisture content, crystallinity and water contact angle of chitosan film, and increased its water solubility and light barrier property. The CP-Cur film presented the roughest cross-sectional SEM image owing to the hydrophobicity of Cur. CP-Cas@Cur film exhibited the excellent cumulative release of Cur, and was 1.60 and 3.70 times of that of CP-Cur in the semi-fatty and fatty food simulation systems at 2 h, respectively, owing to the controlled-release function of PCNCs and great water solubility of Cas@Cur. Furthermore, the CP-Cas@Cur film displayed excellent antioxidant property, antibacterial activity and sensitive color responsiveness to pH and NH3. Interestingly, the CP-Cas@Cur films exhibited a visible color change at pH 3-7. The application of CP-Cas@Cur film in the preservation of milk and shrimp indicated its potential for the visual monitoring of food freshness.
Collapse
Affiliation(s)
- Jun Zeng
- College of Life and Geographic Sciences, Kashi University, Kashi 844000, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Key Laboratory of Biological Resources and Ecology of Pamirs Plateau of Xinjiang Uygur Autonomous Region, Kashi University, Kashi 844000, China
| | - Xiaona Ren
- College of Life and Geographic Sciences, Kashi University, Kashi 844000, China; Key Laboratory of Biological Resources and Ecology of Pamirs Plateau of Xinjiang Uygur Autonomous Region, Kashi University, Kashi 844000, China
| | - Xinpeng Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Ping Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Siming Zhu
- College of Life and Geographic Sciences, Kashi University, Kashi 844000, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China.
| |
Collapse
|
4
|
Han S, Meng D, Liu Y, Xu L, Ma Y, Zhang H, Li H, Zhang W, Rayan AM, Ghamry M. Egg white protein‑sodium alginate smart labels based on pH-driven method and nonphase change 3D printing in mackerel freshness response. Int J Biol Macromol 2025; 293:139404. [PMID: 39746427 DOI: 10.1016/j.ijbiomac.2024.139404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/17/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
The smart labels prepared via the casting method and molten 3D printing method have a long heating time at high temperature and a dense network structure, resulting in a decrease in the color response ability of the labels. Therefore, this study uses a nonphase change foam 3D printing method with a shorter heating time to improve the color sensitivity of smart labels. By the pH driving method, the blending and pregelation of sodium alginate (Alg) can extend the drainage time of the interfacial film to the maximum extent, thus further improving the foam stability of egg white protein (EWP) and endowing the interfacial adsorption layer with better flexibility and fluidity. The pregelled Alg-EWP foam has good 3D printing adaptability, shows obvious shear thinning behavior, and has excellent shear recovery and creep recovery properties. The 3D-printed smart label has significantly higher swelling rate (275 % → 400 %), porosity (19.86 % → 42.86 %) and phenolic retention rate (55.51 % → 97.26 %). In addition, the sensitivity of the smart labels prepared via foam 3D printing significantly increased, indicating mackerel freshness. Therefore, the method of nonphase-change foam 3D printing provides a new strategy for preparing smart labels with increased porosity and color sensitivity.
Collapse
Affiliation(s)
- Siyao Han
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Dekun Meng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Yujia Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Lina Xu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Yunze Ma
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Huajiang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.
| | - Hanyu Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.
| | - Wentao Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.
| | - Ahmed M Rayan
- Food Technology Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Mohamed Ghamry
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| |
Collapse
|
5
|
Qin L, Li H, Lu H, Chen J, Wang H, Liao E. Tandem Mass Tag-based proteomic analysis of protein changes in superchilled crayfish (Procambarus clarkii) presoaked with carrageenan oligosaccharides. Food Chem 2024; 457:140126. [PMID: 38936119 DOI: 10.1016/j.foodchem.2024.140126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/29/2024]
Abstract
To assess the effectiveness of carrageenan oligosaccharides (COs) in enhancing superchilling storage of crayfish, the physicochemical features of muscle and protein abundance in the refrigerated sample (RS), superchilled sample (SS) and COs soaked superchilled sample (CS) were evaluated. Microstructural and SDS-PAGE analyses suggested that CS exhibited fewer pores, with a microstructure and protein subunits distribution more similar to RS. Tandem Mass Tags quantitative proteomic analysis revealed 66 up-regulated differentially abundant proteins (DAPs) in the CS vs. SS batch, including myosin light chain 2, neural cadherin, integrin beta, lectin-like protein, toll-1, reticulon-1, and moesin/ezrin/radixin homolog 1, which facilitate cells adhesion and maintain membrane/cytoskeleton integrity. Eukaryotic Clusters of Orthologous Groups results confirmed that COs treatment increased the stability of crayfish myofibrillar proteins by up-regulating DAPs, which were concentrated in functional categories such as "posttranslation modification, protein turnover, chaperones", "signal transduction mechanisms", "energy production and conversion", and "cytoskeleton".
Collapse
Affiliation(s)
- Lerong Qin
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Han Li
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hongyan Lu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, China
| | - Jiwang Chen
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, China; National Research & Development Branch Center for Crayfish Processing (Qianjiang), Qianjiang 433100, China
| | - Haibin Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, China; National Research & Development Branch Center for Crayfish Processing (Qianjiang), Qianjiang 433100, China
| | - E Liao
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, China; National Research & Development Branch Center for Crayfish Processing (Qianjiang), Qianjiang 433100, China.
| |
Collapse
|
6
|
Liu J, Huang J, Jiang L, Lin J, Ge Y, Hu Y. Chitosan/polyvinyl alcohol food packaging incorporated with purple potato anthocyanins and nano-ZnO: Application on the preservation of hairtail (Trichiurus haumela) during chilled storage. Int J Biol Macromol 2024; 277:134435. [PMID: 39098679 DOI: 10.1016/j.ijbiomac.2024.134435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
The objective of this work was to evaluate the potential application of chitosan/PVA food packaging films incorporating nano-ZnO and purple potato anthocyanins for preserving chilled hairtail pieces. The hairtail pieces were packaged with chitosan/PVA (CP) and chitosan/PVA/nano-ZnO/purple potato anthocyanins (CPZP), respectively, and Control named without any packaging. The changes in pH, total volatile basic nitrogen (TVB-N), total bacterial colony (TVC), thiobarbituric acid (TBA), color value, and sensory evaluation scores of hairtail pieces were periodically determined. Notably, pH, TVC, TVB-N and TBA values of CPZP group on day 15 were 11.67 %, 23.71 %, 80.73 %, and 35.07 %, respectively, lower than Control group. In addition, CPZP group also performed the best in color and sensory evaluation. These results indicated that CPZP, an active food packaging, could extend the shelf-life of hairtail at least 6 days. Overall, chitosan/PVA food films incorporated with nano-ZnO and purple potato anthocyanins (180 mg/100 mL) provides a potential application in food preservation.
Collapse
Affiliation(s)
- Jialin Liu
- College of Food Science and Engineering, Yazhou Bay Innovation Institute; Hainan Tropical Ocean University; Marine Food Engineering Technology Research Center of Hainan Province; Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research, Sanya 572022; Institute of Food Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayin Huang
- College of Food Science and Engineering, Yazhou Bay Innovation Institute; Hainan Tropical Ocean University; Marine Food Engineering Technology Research Center of Hainan Province; Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research, Sanya 572022; Institute of Food Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lei Jiang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jianhong Lin
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingliang Ge
- College of Food Science and Engineering, Yazhou Bay Innovation Institute; Hainan Tropical Ocean University; Marine Food Engineering Technology Research Center of Hainan Province; Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research, Sanya 572022.
| | - Yaqin Hu
- College of Food Science and Engineering, Yazhou Bay Innovation Institute; Hainan Tropical Ocean University; Marine Food Engineering Technology Research Center of Hainan Province; Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research, Sanya 572022.
| |
Collapse
|
7
|
Huang X, Li J, He J, Luo J, Cai J, Wei J, Li P, Zhong H. Preparation of curcumin-loaded chitosan/polyvinyl alcohol intelligent active films for food packaging and freshness monitoring. Int J Biol Macromol 2024; 276:133807. [PMID: 38996887 DOI: 10.1016/j.ijbiomac.2024.133807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
To fulfill the current need for intelligent active food packaging. This study incorporated the curcumin inclusion complexes (CUR-CD) into chitosan/polyvinyl alcohol polymer to develop a new intelligent active film. The structures of films were analyzed by Fourier-transform infrared (FT-IR), scanning electron microscope (SEM), and so on. The CP-Cur150 film displays exceptional mechanical properties, water vapor barrier, and UV blocking capabilities as demonstrated by physical analysis. The CP-Cur150 film exhibited free radical scavenging rates on 2,2-diazo-di-3-ethylbenzothiazolin-6-sulfonic (ABTS) (98 %) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) (87 %). Additionally, it showed inhibitory effects on Gram-positive bacteria (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli), reducing live colony counts by approximately 2.7 and 1.3 Log10 CFU/mL, respectively. The films were used to monitor the shrimp's freshness in real time. With the spoilage of shrimp, the film exhibited clear color fluctuations, from light yellow to red. In addition, the evaluation of the impact of films on pork pH, total volatile basic nitrogen, and total bacterial counts demonstrated that the CP-Cur150 film displayed the most significant effectiveness in preserving freshness, thereby extending the shelf life of pork.
Collapse
Affiliation(s)
- Xinghai Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, 530200 Nanning, China
| | - Jianmin Li
- College of Pharmacy, Guangxi University of Chinese Medicine, 530200 Nanning, China
| | - Jingjin He
- College of Pharmacy, Guangxi University of Chinese Medicine, 530200 Nanning, China
| | - Jianwei Luo
- College of Pharmacy, Guangxi University of Chinese Medicine, 530200 Nanning, China
| | - Jinyun Cai
- College of Pharmacy, Guangxi University of Chinese Medicine, 530200 Nanning, China
| | - Jianhua Wei
- College of Pharmacy, Guangxi University of Chinese Medicine, 530200 Nanning, China.
| | - Peiyuan Li
- College of Pharmacy, Guangxi University of Chinese Medicine, 530200 Nanning, China.
| | - Haiyi Zhong
- College of Pharmacy, Guangxi University of Chinese Medicine, 530200 Nanning, China.
| |
Collapse
|
8
|
Yin J, Li Y, Zhong W, Li K, Xu J, Zeng X, Chen H, Pang J, Wu C. Effect of konjac glucomannan-based preservation pads on quality changes in refrigerated large yellow croaker (Pseudosciaena crocea). Int J Biol Macromol 2024; 276:133752. [PMID: 38986984 DOI: 10.1016/j.ijbiomac.2024.133752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/03/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
The purpose of this study was to evaluate the preservation effects of konjac glucomannan (KGM)/oregano essential oil (OEO) Pickering emulsion-based pads (K/OPE pads) on large yellow croaker (Pseudosciaena crocea) fillets stored at 4 °C. The K/OPE pads were fabricated using a freeze-drying technique. The homogeneous distribution of the OEO Pickering emulsions in the KGM matrix was observed using scanning electron microscopy. Fourier transform infrared spectroscopy confirmed that the OEO emulsions were encapsulated in the KGM and there was hydrogen bonding interaction between them. Compared with the KGM pads, the K/OPE pad groups demonstrated enhanced antioxidant and antimicrobial properties. When the content of OPE was increased from 20 % to 40 %, the antioxidant performance of the K/OPE pads increased from 48.09 % ± 0.03 % to 86.65 % ± 0.02 % and the inhibition range of Escherichia coli and Staphylococcus aureus increased to 13.84 ± 0.81 and 16.87 ± 1.53 mm, respectively. At the same time, K/OPE pads were more effective in inhibiting the formation of total volatile alkaline nitrogen and the production of thiobarbituric acid-reactive substances, thereby helping in reducing water loss and maintaining the muscle tissue structure of fish fillets for a longer storage time. Consequently, these K/OPE40 pads extended the shelf life of the fish fillets by an additional 4 days and delayed spoilage during refrigerated storage. The findings suggest that the K/OPE pads can effectively safeguard the quality of refrigerated large yellow croaker fillets, presenting their potential as an active packaging material in the fish preservation industry.
Collapse
Affiliation(s)
- Jing Yin
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yaoling Li
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| | - Weiquan Zhong
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Kehao Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jingting Xu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xingxing Zeng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hongbin Chen
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China.
| | - Jie Pang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Chunhua Wu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
9
|
Qin L, Li H, Zhang Y, Chen J, Wang H, Liao E. Inhibitory effects of glutathione peroxidase on microbial spoilage of crayfish ( Procambarus clarkii) during refrigerated storage. Food Chem X 2024; 22:101388. [PMID: 38665628 PMCID: PMC11043841 DOI: 10.1016/j.fochx.2024.101388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/17/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The variety of enzyme-based biological preservatives is limited. This study evaluated the effects of glutathione peroxidase (GSH-Px) on the quality of crayfish during refrigerated storage by measuring the pH, total volatile basic nitrogen, trimethylamine, and microbial contamination in crayfish muscle simulation system. The results revealed that 0.3% GSH-Px (CK3) not only suppressed the degradation of nitrogenous substances but also decreased the contamination levels of total viable, Enterobacteriaceae, and Pseudomonas counts (P < 0.05). Furthermore, the populations of Lactococcus, Aeromonas, and Massilia differed in the CK3 group compared to the other groups (P < 0.05) at the end of the storage (day 15). Moreover, the principal coordinate analysis showed that the colony composition of CK3 stored for 15 days was similar to that of the control group stored for 10 days. Therefore, GSH-Px exhibits antibacterial activity against Gram-negative bacteria and has good application potential in freshwater aquatic product preservation.
Collapse
Affiliation(s)
- Lerong Qin
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Han Li
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Ying Zhang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, China
- National Research & Development Branch Center for Crayfish Processing (Qianjiang), Qianjiang 433100, China
| | - Jiwang Chen
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, China
- National Research & Development Branch Center for Crayfish Processing (Qianjiang), Qianjiang 433100, China
- National Research & Development Center for Se-rich Agricultural Products Processing Technology, Wuhan, 430023, China
| | - Haibin Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, China
- National Research & Development Branch Center for Crayfish Processing (Qianjiang), Qianjiang 433100, China
- National Research & Development Center for Se-rich Agricultural Products Processing Technology, Wuhan, 430023, China
| | - E Liao
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, China
- National Research & Development Branch Center for Crayfish Processing (Qianjiang), Qianjiang 433100, China
- National Research & Development Center for Se-rich Agricultural Products Processing Technology, Wuhan, 430023, China
| |
Collapse
|
10
|
Xu L, Chen H, Liang Z, Chen S, Xia Y, Zhu S, Yu M. Growth Reduction of Vibrionaceae and Microflora Diversity in Ice-Stored Pacific White Shrimp ( Penaeus vannamei) Treated with a Low-Frequency Electric Field. Foods 2024; 13:1143. [PMID: 38672816 PMCID: PMC11049124 DOI: 10.3390/foods13081143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
A novel storage technique that combines the low-frequency electric field (LFEF) and ice temperature was used to extend the shelf life of Pacific white shrimp (Penaeus vannamei). The study investigated the effect of LFEF treatment on the quality and microbial composition of Penaeus vannamei during storage at ice temperature. The results showed that the LFEF treatment significantly extended the shelf life of shrimp during storage at ice temperature. The total volatile base nitrogen (TVB-N) and pH of samples increased over time, while the total viable count (TVC) showed a trend of first decreasing and then increasing. Obviously, shrimp samples treated with LFEF had a lower pH, TVB-N and TVC values than the untreated samples (p < 0.05) at the middle and late stages of storage. LFEF treatment increased the diversity and altered the composition of the microbial communities in Penaeus vannamei. Additionally, the treatment led to a decrease in the relative abundance of dominant spoilage bacteria, including Aliivibrio, Photobacterium and Moritella, in Penaeus vannamei stored at ice temperature for 11 days. Furthermore, correlation analysis indicated that TVB-N and pH had a significant and positive correlation with Pseudoalteromonas, suggesting that Pseudoalteromonas had a greater impact on shrimp quality. This study supports the practical application of accelerated low-frequency electric field-assisted shrimp preservation as an effective means of maintaining shrimp meat quality.
Collapse
Affiliation(s)
- Lijuan Xu
- Department of Food and Environmental Engineering, Yangjiang Polytechnic, Yangjiang 529500, China; (L.X.); (H.C.); (Z.L.)
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Haiqiang Chen
- Department of Food and Environmental Engineering, Yangjiang Polytechnic, Yangjiang 529500, China; (L.X.); (H.C.); (Z.L.)
- Guangdong Provincial Engineering and Technology Research Center of Food Low Temperature Processing, Yangjiang 529566, China
| | - Zuanhao Liang
- Department of Food and Environmental Engineering, Yangjiang Polytechnic, Yangjiang 529500, China; (L.X.); (H.C.); (Z.L.)
- Guangdong Provincial Engineering and Technology Research Center of Food Low Temperature Processing, Yangjiang 529566, China
| | - Shanshan Chen
- Institute of Food and Health, Yangtze Delta Region Institute of Tsinghua University Zhejiang, Jiaxing 314006, China; (S.C.); (Y.X.)
| | - Yu Xia
- Institute of Food and Health, Yangtze Delta Region Institute of Tsinghua University Zhejiang, Jiaxing 314006, China; (S.C.); (Y.X.)
| | - Siming Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ming Yu
- Department of Food and Environmental Engineering, Yangjiang Polytechnic, Yangjiang 529500, China; (L.X.); (H.C.); (Z.L.)
- Guangdong Provincial Engineering and Technology Research Center of Food Low Temperature Processing, Yangjiang 529566, China
- Institute of Food and Health, Yangtze Delta Region Institute of Tsinghua University Zhejiang, Jiaxing 314006, China; (S.C.); (Y.X.)
| |
Collapse
|
11
|
Fei L, Ma Z, Yue A, Cui P, Qiu Y, Lyu F, Zhang J. Effect of low-voltage electrostatic field-assisted partial freezing on large yellow croaker protein properties and metabolomic analysis during storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2359-2371. [PMID: 37985177 DOI: 10.1002/jsfa.13145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/15/2023] [Accepted: 11/21/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Large yellow croaker is highly perishable during storage because of high protein and moisture content. The degradation of the fish is mainly attributed to microbial growth and enzyme activity, so it is important to find an efficient storage method to extend its shelf life. METHODOLOGY This study investigated the effect of a low-voltage electrostatic field combined with partial freezing treatment on the physicochemical properties of myofibrillar protein (MP) and metabolomic analysis of large yellow croaker during preservation. The samples in chilled storage (C), partial freezing storage (PF) and 6 kV/m low-voltage electrostatic field partial freezing storage (LVEF-PF) were analyzed during an 18 day storage period. RESULTS In comparison with the C and PF groups, LVEF-PF delayed the oxidation of MP by inhibiting the formation of carbonyl groups (2.25 nmol/mg pro), and maintaining higher sulfhydryl content (29.73 nmol/mg pro). Fourier transform infrared (FTIR) spectroscopy and fluorescence spectroscopy analysis also demonstrated that the LVEF-PF treatment maintained the stability of the protein structure by increasing the a-helix ratio (19.88%) and reducing the random coil ratio (17.83%). Scanning electron microscopy showed that, compared with the LVEF-PF group, there was more degeneration and aggregation of MP in the C and PF groups after 18 days' storage. The results of untargeted metabolomic analysis showed that 415 kinds of differential metabolites were identified after storage, and the difference levels of differential metabolites were least between the samples treated with LVEF-PF stored on the ninth day and the fresh samples. The main differential metabolic pathways during storage were amino acid metabolism and lipid metabolism. CONCLUSION The LVEF-PF treatment could maintain the stability of myofibrillar protein in large yellow croaker during storage. These results showed a potential application of the LVEF-PF method for aquatic product preservation. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lifeng Fei
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Ze Ma
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Aodong Yue
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Pengbo Cui
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Yue Qiu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Fei Lyu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Jianyou Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China
- National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
12
|
Fan Q, Yan X, Jia H, Li M, Yuan Y, Yue T. Antibacterial properties of hexanal-chitosan nanoemulsion against Vibrio parahaemolyticus and its application in shelled shrimp preservation at 4 °C. Int J Biol Macromol 2024; 257:128614. [PMID: 38061528 DOI: 10.1016/j.ijbiomac.2023.128614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/19/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023]
Abstract
Vibrio parahaemolyticus has been considered as the leading pathogen associated with seafood-borne disease. Hexanal possesses antibacterial property but the hydrophobicity and volatility limit its application. The purpose of this study was to prepare hexanal-chitosan nanoemulsion (HCN), investigate its antibacterial ability against V. parahaemolyticus, and examine the combination of HCN with sodium alginate coating on the quality attributes of shrimp during cold storage. The mean droplet size of HCN fabricated by ultrasonic emulsification was 91.28 nm. HCN showed regular spherical shape and exhibited good centrifugation stability and storage stability at 4 °C. HCN exerted anti-V. parahaemolyticus effect with the minimum inhibitory concentration and minimal bactericidal concentration of both 5 mg/mL. Furthermore, HCN induced morphological changes and destroyed bacterial membrane, resulting in cell death. The results of preservation test showed that HCN alone and its combination with sodium alginate coating effectively retarded the quality deterioration and microbial spoilage of shelled shrimps during refrigerated storage. Comparatively, the combination treatment exhibited better preservation effect. The present study suggested that HCN prepared by ultrasonic emulsification is an effective alternative to control V. parahaemolyticus contamination in seafood and also shows great application potential in the quality maintaining of seafood during cold storage.
Collapse
Affiliation(s)
- Qiuxia Fan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Xiaohai Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hang Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Menghui Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yahong Yuan
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| |
Collapse
|
13
|
Huang J, Hu Z, Li G, Chin Y, Pei Z, Yao Q, Li D, Hu Y. The stable co-pigmented roselle anthocyanin active film extended shelf life of Penaeus vannamei better: Mechanism revealed by the TMT-labeled proteomic strategy. Food Chem 2024; 432:137238. [PMID: 37651784 DOI: 10.1016/j.foodchem.2023.137238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/06/2023] [Accepted: 08/20/2023] [Indexed: 09/02/2023]
Abstract
In order to investigate the influences of modified RAE-based film on shrimp quality, the proteomic approach was performed to elucidate preservation mechanism. Results showed that the modified RAE-based film kept better shrimp quality compared with natural RAE-based film in terms of determined biochemical parameters and estimated shelf-life. Totally, 49 differentially abundance proteins (DAPs) were identified compared with shrimp without packaging. Bioinformatics analysis demonstrated that the modified RAE-based film could maintain functional DAPs which were mainly distributed in the binding, catalytic activity, etc., and metabolic signaling pathways like melanogenesis signaling pathway were remarkably enriched. Meanwhile, there were 25 DAPs showing close relationship with quality traits, and some of them, such as myosin chains, troponin I and heat shock protein were considered as the potential biomarkers to evaluate shrimp quality deterioration. In conclusion, this study revealed the preservation mechanism of modified RAE-based active film on shrimp quality at the protein molecular level.
Collapse
Affiliation(s)
- Jiayin Huang
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya, Hainan 572022, China; Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya, Hainan 572022, China; Institute of Food Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhiheng Hu
- Institute of Food Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Key Laboratory of Herpetological Research, College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, Hainan 572022, China
| | - Gaoshang Li
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya, Hainan 572022, China; Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya, Hainan 572022, China; Institute of Food Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yaoxian Chin
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya, Hainan 572022, China; Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya, Hainan 572022, China
| | - Zhisheng Pei
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya, Hainan 572022, China; Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya, Hainan 572022, China
| | - Qian Yao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China
| | - Dan Li
- Department of Food Science & Technology, Faculty of Science, National University of Singapore, 117542, Singapore
| | - Yaqin Hu
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya, Hainan 572022, China; Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Sanya, Hainan 572022, China.
| |
Collapse
|
14
|
Huang X, Tu Z, Liu W, Wu C, Wang H. Effect of three culture patterns on quality changes of crayfish meats during partial freezing storage. Food Chem 2023; 414:135683. [PMID: 36808028 DOI: 10.1016/j.foodchem.2023.135683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/21/2023]
Abstract
The quality changes and main metabolites of rice-crayfish (DT), intensive crayfish (JY), and lotus pond crayfish (OT) under three culture patterns during partial freezing were studied. Compared with the DT and JY groups, the OT samples had higher thiobarbituric acid reactive substances (TBARS), K values and color values. The microstructure of the OT samples deteriorated most obviously during storage, and they had the lowest water-holding capacity and the worst texture. Furthermore, differential metabolites of crayfish under different culture patterns were identified by UHPLC-MS, and the most abundant differential metabolites of the OT groups were found. The main differential metabolites include alcohols polyols and carbonyl compounds; amines; amino acids, peptides, and analogues; carbohydrates and carbohydrate conjugates; fatty acids and conjugates. In conclusion, based on the analysis of existing data, the OT groups were considered to be the most serious deterioration during partial freezing compared with the other two culture patterns.
Collapse
Affiliation(s)
- Xiaoliang Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Zongcai Tu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; National R&D Center of Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, China
| | - Wenyu Liu
- Ji 'an Agricultural and Rural Industry Development Service Center, Jian 343000, China
| | - Chunlin Wu
- Ji 'an Agricultural and Rural Industry Development Service Center, Jian 343000, China
| | - Hui Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
15
|
Zhang J, Fei L, Cui P, Walayat N, Ji S, Chen Y, Lyu F, Ding Y. Effect of low voltage electrostatic field combined with partial freezing on the quality and microbial community of large yellow croaker. Food Res Int 2023; 169:112933. [PMID: 37254359 DOI: 10.1016/j.foodres.2023.112933] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/30/2023] [Accepted: 05/01/2023] [Indexed: 06/01/2023]
Abstract
The effect of low voltage electrostatic field combined with partial freezing (LVEF- PF) treatment on storage quality and microbial community of large yellow croaker was studied. Three different methods including chilled (C), partial freezing (PF) and 6 kV/m electrostatic field combined partial freezing storage were used to preserve large yellow croaker for 18 days. Total viable counts (TVC), sensory evaluation, and physiochemical index including pH, total volatile basic nitrogen (TVB-N), K value and centrifugal loss were examined. During storage, the large yellow croaker was susceptible to microbial growth and spoilage. However, LVEF-PF treatment was found to be effective in enhancing sensory quality, inhibiting microbial growth, and maintaining myofibril microstructure. Low field nuclear magnetic resonance showed that LVEF-PF treatment reduced the migration of immobilized water to free water. At 18th day, the TVC value of LVEF-PF, PF and chilled group were 3.56 log CFU/g, 5.11 log CFU/g, 7.73 log CFU/g, respectively. Therefore, from the results of TVB-N and TVC value, the shelf life of LVEF-PF group was at least 3 days longer than PF group, and 6 days longer than the chilled group. High-throughput sequencing showed that the microbial community diversity significantly decreased during storage. The predominant bacteria in chilled, PF, LVEF-PF group at 18th day were Pseudomonas, Psychrobacter and Shewanella, respectively, and the relative abundance of spoilage bacteria such as Pseudomonas and Psychrobacter were reduced by LVEF-PF treatment, that corresponding with lower values of TVB-N and TVC value. LVEF-PF treatment could be used as a new processing and storage method to delay deterioration and prolong shelf life of large yellow croaker.
Collapse
Affiliation(s)
- Jianyou Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Lifeng Fei
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Pengbo Cui
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Noman Walayat
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shengqiang Ji
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Yiling Chen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China
| | - Fei Lyu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
16
|
Yu Q, Liu J, Yang J, Lou Y, Li Y, Zhang M. Postharvest Preservation Technologies for Marine-Capture Shrimp: A Review. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03049-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
17
|
Intelligent colorimetric soy protein isolate-based films incorporated with curcumin through an organic solvent-free pH-driven method: Properties, molecular interactions, and application. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
18
|
Xu W, Ma Q, Sun J, Li Y, Wang J, Tang Y, Liu Y, Mu J, Wang W. Changes in quality characteristics of shrimp (Penaeus chinensis) during refrigerated storage and their correlation with protein degradation. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
19
|
Peng S, Wei H, Zhan S, Yang W, Lou Q, Deng S, Yu X, Huang T. Spoilage mechanism and preservation technologies on the quality of shrimp: An overview. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
20
|
Xu W, Zhang F, Wang J, Ma Q, Sun J, Tang Y, Wang J, Wang W. Real-Time Monitoring of the Quality Changes in Shrimp ( Penaeus vannamei) with Hyperspectral Imaging Technology during Hot Air Drying. Foods 2022; 11:3179. [PMID: 37430926 PMCID: PMC9601712 DOI: 10.3390/foods11203179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
Hot air drying is the most common processing method to extend shrimp's shelf life. Real-time monitoring of moisture content, color, and texture during the drying process is important to ensure product quality. In this study, hyperspectral imaging technology was employed to acquire images of 104 shrimp samples at different drying levels. The water distribution and migration were monitored by low field magnetic resonance and the correlation between water distribution and other quality indicators were determined by Pearson correlation analysis. Then, spectra were extracted and competitive adaptive reweighting sampling was used to optimize characteristic variables. The grey-scale co-occurrence matrix and color moments were used to extract the textural and color information from the images. Subsequently, partial least squares regression and least squares support vector machine (LSSVM) models were established based on full-band spectra, characteristic spectra, image information, and fused information. For moisture, the LSSVM model based on full-band spectra performed the best, with residual predictive deviation (RPD) of 2.814. For L*, a*, b*, hardness, and elasticity, the optimal models were established by LSSVM based on fused information, with RPD of 3.292, 2.753, 3.211, 2.807, and 2.842. The study provided an in situ and real-time alternative to monitor quality changes of dried shrimps.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wenxiu Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
21
|
Wang L, Pan X, Jiang L, Chu Y, Gao S, Jiang X, Zhang Y, Chen Y, Luo S, Peng C. The Biological Activity Mechanism of Chlorogenic Acid and Its Applications in Food Industry: A Review. Front Nutr 2022; 9:943911. [PMID: 35845802 PMCID: PMC9278960 DOI: 10.3389/fnut.2022.943911] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/06/2022] [Indexed: 01/01/2023] Open
Abstract
Chlorogenic acid (CGA), also known as coffee tannic acid and 3-caffeoylquinic acid, is a water-soluble polyphenolic phenylacrylate compound produced by plants through the shikimic acid pathway during aerobic respiration. CGA is widely found in higher dicotyledonous plants, ferns, and many Chinese medicine plants, which enjoy the reputation of “plant gold.” We have summarized the biological activities of CGA, which are mainly shown as anti-oxidant, liver and kidney protection, anti-bacterial, anti-tumor, regulation of glucose metabolism and lipid metabolism, anti-inflammatory, protection of the nervous system, and action on blood vessels. We further determined the main applications of CGA in the food industry, including food additives, food storage, food composition modification, food packaging materials, functional food materials, and prebiotics. With a view to the theoretical improvement of CGA, biological activity mechanism, and subsequent development and utilization provide reference and scientific basis.
Collapse
Affiliation(s)
- Liang Wang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoqi Pan
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lishi Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Chu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Song Gao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xingyue Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuhui Zhang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Chen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yan Chen
| | - Shajie Luo
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Shajie Luo
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Cheng Peng
| |
Collapse
|
22
|
Wang X, Xie X, Zhang T, Zheng Y, Guo Q. Effect of edible coating on the whole large yellow croaker (Pseudosciaena crocea) after a 3-day storage at −18 °C: With emphasis on the correlation between water status and classical quality indices. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Pan C, Sun K, Yang X, Wang D, Hu X, Chen S. Insights on Litopenaeus vannamei quality deterioration during partial freezing storage from combining traditional quality studies and label-free based proteomic analysis. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Jia G, Chen Y, Sun A, Orlien V. Control of ice crystal nucleation and growth during the food freezing process. Compr Rev Food Sci Food Saf 2022; 21:2433-2454. [DOI: 10.1111/1541-4337.12950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/01/2022] [Accepted: 03/05/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Guoliang Jia
- College of Biological Sciences and Technology Beijing Forestry University Beijing China
- Beijing Key Laboratory of Forest Food Processing and Safety Beijing Forestry University Beijing China
| | - Yimeng Chen
- College of Biological Sciences and Technology Beijing Forestry University Beijing China
- Beijing Key Laboratory of Forest Food Processing and Safety Beijing Forestry University Beijing China
| | - AiDong Sun
- College of Biological Sciences and Technology Beijing Forestry University Beijing China
- Beijing Key Laboratory of Forest Food Processing and Safety Beijing Forestry University Beijing China
| | - Vibeke Orlien
- Department of Food Science Faculty of Science University of Copenhagen Frederiksberg C Denmark
| |
Collapse
|
25
|
Lan W, Yang X, Gong T, Xie J. Predicting the shelf life of Trachinotus ovatus during frozen storage using a back propagation (BP) neural network model. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2021.12.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Zhao Y, Lan W, Shen J, Xu Z, Xie J. Combining ozone and slurry ice treatment to prolong the shelf-life and quality of large yellow croaker (Pseudosciaena crocea). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112615] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
27
|
Qin L, Wu Y, Chen J, Xia W, Liao E, Wang H. Effects of superchilling on quality of crayfish (
Procambarus clarkii
): water migration, biogenic amines accumulation, and nucleotides catabolism. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lerong Qin
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan 430023 China
| | - Yuxin Wu
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan 430023 China
| | - Jiwang Chen
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan 430023 China
- Ministry of Education and Hubei Key Laboratory for Processing and Transformation of Agricultural Products Wuhan Polytechnic University Wuhan 430023 China
- National R&D Center for Se‐rich Agricultural Products Processing Technology Wuhan Polytechnic University Wuhan 430023 China
| | - Wenshui Xia
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan 430023 China
- School of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - E Liao
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan 430023 China
- Ministry of Education and Hubei Key Laboratory for Processing and Transformation of Agricultural Products Wuhan Polytechnic University Wuhan 430023 China
- National R&D Center for Se‐rich Agricultural Products Processing Technology Wuhan Polytechnic University Wuhan 430023 China
| | - Haibin Wang
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan 430023 China
- Ministry of Education and Hubei Key Laboratory for Processing and Transformation of Agricultural Products Wuhan Polytechnic University Wuhan 430023 China
- National R&D Center for Se‐rich Agricultural Products Processing Technology Wuhan Polytechnic University Wuhan 430023 China
| |
Collapse
|
28
|
Liu J, Shao Y, Yuan C, Takaki K, Li Y, Ying Y, Hu Y. Eugenol-chitosan nanoemulsion as an edible coating: Its impact on physicochemical, microbiological and sensorial properties of hairtail (Trichiurus haumela) during storage at 4 °C. Int J Biol Macromol 2021; 183:2199-2204. [PMID: 34058208 DOI: 10.1016/j.ijbiomac.2021.05.183] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/11/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022]
Abstract
Effects of the eugenol-chitosan nanoemulsion as an edible coating on the quality of hairtail (Trichiurus haumela) during storage at 4 °C were evaluated. For all samples, such parameters as pH, thiobarbituric acid (TBA), total volatile basic nitrogen (TVB-N), water holding capacity (WHC), electrical conductivity (EC), total bacteria count (TVC) and sensory were examined periodically. The results demonstrated that eugenol-chitosan nanoemulsion coating showed better preservative effects than chitosan nanoemulsion alone. Therefore, a coating based on eugenol-chitosan nanoemulsion could be regarded as an effective food-grade biopreservative to maintain the quality of hairtail fish and prolong its shelf life during chilled storage.
Collapse
Affiliation(s)
- Jialin Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China
| | - Ying Shao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China
| | - Chunhong Yuan
- Department of Food Production and Environmental Management, Faculty of Agriculture, Iwate University, Ueda 4-3-5, Morioka 020-8551, Japan
| | - Koichi Takaki
- Faculty of Science and Engineering, Iwate University, Ueda 4-3-5, Morioka 020-8551,Japan
| | - Yujin Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Yubin Ying
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China
| | - Yaqin Hu
- College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China.
| |
Collapse
|
29
|
Cai WQ, Chen YW, Dong XP, Shi YG, Wei JL, Liu FJ. Protein oxidation analysis based on comparative proteomic of Russian sturgeon (Acipenser gueldenstaedti) after sous-vide cooking. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
30
|
Liu W, Mei J, Xie J. Effect of locust bean gum-sodium alginate coatings incorporated with daphnetin emulsions on the quality of Scophthalmus maximus at refrigerated condition. Int J Biol Macromol 2020; 170:129-139. [PMID: 33338530 DOI: 10.1016/j.ijbiomac.2020.12.089] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/02/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
In this study, the microbiological, physicochemical, and flavor changes of turbot (Scophthalmus maximus) coated with a composite active coating of locust bean gum (LBG) and sodium alginate (SA) supplemented with daphnetin emulsions (0.16, 0.32, 0.64 mg·mL-1) were determined during 18 days of refrigerated storage (4 ± 1 °C). Results showed that LBG-SA coatings containing 0.32 mg·mL-1 daphnetin emulsions could significantly lower the total viable count (TVC), psychrophiles, Pseudomonas spp. and H2S-producing bacteria counts, and inhibit the productions of off-flavor compounds including the total volatile basic nitrogen (TVB-N), trimethylamine (TMA) and ATP-related compounds. 32 volatile compounds were identified by solid phase microextraction combined with gas chromatography-mass spectrometer method (SPME-GC/MS) during refrigerated storage and the treated turbot samples significantly lowered the relative content of fishy flavor compounds. Further, the LBG-SA coatings containing daphnetin could also delay the myofibril degradation of the turbot samples. These results indicated that the LBG-SA coatings with 0.32 mg·mL-1 daphnetin were a potential alternative way to improve the quality of turbot during refrigerated storage.
Collapse
Affiliation(s)
- Wenru Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China.
| |
Collapse
|
31
|
Cao Q, Huang Y, Zhu QF, Song M, Xiong S, Manyande A, Du H. The mechanism of chlorogenic acid inhibits lipid oxidation: An investigation using multi-spectroscopic methods and molecular docking. Food Chem 2020; 333:127528. [DOI: 10.1016/j.foodchem.2020.127528] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/06/2020] [Accepted: 07/05/2020] [Indexed: 02/06/2023]
|