1
|
Boo YC. Insights into How Plant-Derived Extracts and Compounds Can Help in the Prevention and Treatment of Keloid Disease: Established and Emerging Therapeutic Targets. Int J Mol Sci 2024; 25:1235. [PMID: 38279232 PMCID: PMC10816582 DOI: 10.3390/ijms25021235] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Keloid is a disease in which fibroblasts abnormally proliferate and synthesize excessive amounts of extracellular matrix, including collagen and fibronectin, during the healing process of skin wounds, causing larger scars that exceed the boundaries of the original wound. Currently, surgical excision, cryotherapy, radiation, laser treatment, photodynamic therapy, pressure therapy, silicone gel sheeting, and pharmacotherapy are used alone or in combinations to treat this disease, but the outcomes are usually unsatisfactory. The purpose of this review is to examine whether natural products can help treat keloid disease. I introduce well-established therapeutic targets for this disease and various other emerging therapeutic targets that have been proposed based on the phenotypic difference between keloid-derived fibroblasts (KFs) and normal epidermal fibroblasts (NFs). We then present recent studies on the biological effects of various plant-derived extracts and compounds on KFs and NFs. Associated ex vivo, in vivo, and clinical studies are also presented. Finally, we discuss the mechanisms of action of the plant-derived extracts and compounds, the pros and cons, and the future tasks for natural product-based therapy for keloid disease, as compared with existing other therapies. Extracts of Astragalus membranaceus, Salvia miltiorrhiza, Aneilema keisak, Galla Chinensis, Lycium chinense, Physalis angulate, Allium sepa, and Camellia sinensis appear to modulate cell proliferation, migration, and/or extracellular matrix (ECM) production in KFs, supporting their therapeutic potential. Various phenolic compounds, terpenoids, alkaloids, and other plant-derived compounds could modulate different cell signaling pathways associated with the pathogenesis of keloids. For now, many studies are limited to in vitro experiments; additional research and development are needed to proceed to clinical trials. Many emerging therapeutic targets could accelerate the discovery of plant-derived substances for the prevention and treatment of keloid disease. I hope that this review will bridge past, present, and future research on this subject and provide insight into new therapeutic targets and pharmaceuticals, aiming for effective keloid treatment.
Collapse
Affiliation(s)
- Yong Chool Boo
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea;
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, The Graduate School, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
| |
Collapse
|
2
|
Steingass CB, Burkhardt J, Bäumer V, Kumar K, Mibus-Schoppe H, Zinkernagel J, Esquivel P, Jiménez VM, Schweiggert R. Characterisation of acylated anthocyanins from red cabbage, purple sweet potato, and Tradescantia pallida leaves as natural food colourants by HPLC-DAD-ESI(+)-QTOF-MS/MS and ESI(+)-MS n analysis. Food Chem 2023; 416:135601. [PMID: 36907011 DOI: 10.1016/j.foodchem.2023.135601] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/12/2023] [Accepted: 01/28/2023] [Indexed: 02/08/2023]
Abstract
Anthocyanins in red cabbage, sweet potato, and Tradescantia pallida leaves were characterised. A total of 18 non-, mono-, and diacylated cyanidins was identified in red cabbage by high performance liquid chromatography-diode array detection coupled to high-resolution and multi-stage mass spectrometry. Sweet potato leaves contained 16 different cyanidin- and peonidin glycosides being predominantly mono- and diacylated. In T. pallida leaves, the tetra-acylated anthocyanin tradescantin prevailed. The large proportion of acylated anthocyanins resulted in a superior thermal stability during heating of aqueous model solutions (pH 3.0) coloured with red cabbage and purple sweet potato extracts as compared to that of a commercial Hibiscus-based food dye. However, their stability was still outperformed by that of the most stable Tradescantia extract. Comparing vis spectra from pH 1-10, the latter had an additional, uncommon absorption maximum at approx. 585 nm at slightly acidic to neutral pH values, yielding intensely red to purple colours.
Collapse
Affiliation(s)
- Christof B Steingass
- Department of Beverage Research, Chair Analysis & Technology of Plant-based Foods, Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany.
| | - Jonas Burkhardt
- Department of Beverage Research, Chair Analysis & Technology of Plant-based Foods, Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany
| | - Vicky Bäumer
- Department of Beverage Research, Chair Analysis & Technology of Plant-based Foods, Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany
| | - Keshav Kumar
- Department of Beverage Research, Chair Analysis & Technology of Plant-based Foods, Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany
| | - Heiko Mibus-Schoppe
- Department of Urban Horticulture and Plant Use, Von-Lade-Strasse 1, 65366 Geisenheim, Germany
| | - Jana Zinkernagel
- Department of Vegetable Crops, Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany
| | - Patricia Esquivel
- Escuela de Tecnología de Alimentos, Universidad de Costa Rica, 11501-2060 San Pedro, Costa Rica
| | - Víctor M Jiménez
- CIGRAS/IIA, Cátedra Humboldt, Universidad de Costa Rica, 11501-2060 San Pedro, Costa Rica
| | - Ralf Schweiggert
- Department of Beverage Research, Chair Analysis & Technology of Plant-based Foods, Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany
| |
Collapse
|
3
|
Imtiaz F, Islam M, Saeed H, Ahmed A, Asghar M, Saleem B, Farooq MA, Khan DH, Peltonen L. Novel phytoniosomes formulation of Tradescantia pallida leaves attenuates diabetes more effectively than pure extract. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
4
|
Imtiaz F, Islam M, Saeed H, Ahmed A, Rathore HA. Assessment of the antidiabetic potential of extract and novel phytoniosomes formulation of Tradescantia pallida leaves in the alloxan-induced diabetic mouse model. FASEB J 2023; 37:e22818. [PMID: 36856606 PMCID: PMC11977607 DOI: 10.1096/fj.202201395rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/30/2022] [Accepted: 01/30/2023] [Indexed: 03/02/2023]
Abstract
Diabetes inflicts health and economic burdens on communities and the present antidiabetic therapies have several drawbacks. Tradescantia pallida leaves have been used as a food colorant and food preservative; however, to our knowledge antidiabetic potential of the leaves of T. pallida has not been explored yet. The current study aimed to investigate the antidiabetic potential of T. pallida leaves extract and its comparison with the novel nisosome formulation of the extract. The leaves extract and phytoniosomes of T. pallida in doses of 15, 25 and 50 mg/kg were used to assess the oral glucose loaded, and alloxan-induced diabetic mice models. The biological parameters evaluated were; change in body weight, blood biochemistry, relative organ to body weight ratio and histopathology of the liver, pancreas and kidney. Results revealed that the extract 50 mg/kg and phytoniosomes 25 and 50 mg/kg remarkably reduced the blood glucose level in all hyperglycemic mice by possibly inhibiting α-amylase and α-glucosidase production. Body weight and blood biochemical parameters were considerably improved in phytoniosomes 50 mg/kg treated group. The relative body weight was similar to those of healthy mice in extract 50 mg/kg, phytoniosomes 25 mg/kg, and phytoniosomes 50 mg/kg treated groups. Histopathology showed the regeneration of cells in the CHN50 treated group. Hyphenated chromatographic analysis revealed potent metabolites, which confirmed the antidiabetic potential of the extract by inhibiting α-amylase and α-glucosidase using in silico analysis. The present data suggested that phytoniosomes have shown better antidiabetic potential than crude extract of these leaves.
Collapse
Affiliation(s)
- Fariha Imtiaz
- Section of Pharmaceutical Chemistry, Punjab University College of Pharmacy, Allama Iqbal CampusUniversity of the PunjabLahorePakistan
| | - Muhammad Islam
- Section of Pharmaceutical Chemistry, Punjab University College of Pharmacy, Allama Iqbal CampusUniversity of the PunjabLahorePakistan
| | - Hamid Saeed
- Section of Pharmaceutics, Punjab University College of Pharmacy, Allama Iqbal CampusUniversity of the PunjabLahorePakistan
| | - Abrar Ahmed
- Section of Pharmacognosy, Punjab University College of Pharmacy, Allama Iqbal CampusUniversity of the PunjabLahorePakistan
| | - Hassaan Anwer Rathore
- Department of Pharmaceutical Sciences, College of PharmacyQU Health, Qatar UniversityDohaQatar
| |
Collapse
|
5
|
Imtiaz F, Islam M, Saeed H, Ahmed A. Phenolic compounds from Tradescantia pallida ameliorate diabetes by inhibiting enzymatic and non-enzymatic pathways. J Biomol Struct Dyn 2023; 41:11872-11888. [PMID: 36597930 DOI: 10.1080/07391102.2022.2164059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/24/2022] [Indexed: 01/05/2023]
Abstract
Diabetes is a chronic metabolic disorder marked by postprandial hyperglycemia due to several etiologies including abnormal carbohydrate digestion and glycation of hemoglobin. The prolong use of synthetic drugs results in characteristic side effects which necessitates the discovery of safe and cost-effective substitutes. The aim of the current study is to isolate and evaluate the antidiabetic potential of the phenolic compounds from the leaves of Tradescantia pallida. Syringic acid, p-coumaric acid, morin and catechin (compounds 1-4) were isolated and characterized from Tradescantia pallida leaves using column chromatography and spectroscopic techniques. The in vitro antidiabetic potential of the phenolic compounds were assessed using α-amylase and non-enzymatic glycosylation of hemoglobin protein assays. A mechanistic insight of interactions between phenolic compounds and human α-amylase and hemoglobin protein were scrutinized by employing molecular docking method. Prime Molecular Mechanics/Generalized Born Surface Area (MM-GBSA) calculations were carried out to find the binding energies of the ligand-protein complexes. Morin and catechin were further analyzed to find the dynamic and thermodynamic constraints of the complexes under specific biological conditions using molecular dynamic simulation trajectories. The stability and flexibility of the complexes were justified by fluctuation of α-carbon chain, Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF) and type of interactions involved which authenticated the in vitro inhibitory potential of morin and catechin against enzymatic and non-enzymatic pathways. The current study could be fruitful in rational designing of safe antidiabetic drugs of natural origin.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fariha Imtiaz
- Section of Pharmaceutical Chemistry, Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Muhammad Islam
- Section of Pharmaceutical Chemistry, Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Hamid Saeed
- Section of Pharmaceutics, Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Abrar Ahmed
- Section of Pharmacognosy, Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
6
|
Prediction of α-Glucosidase Inhibitory Activity of LC-ESI-TQ-MS/MS-Identified Compounds from Tradescantia pallida Leaves. Pharmaceutics 2022; 14:pharmaceutics14122578. [PMID: 36559071 PMCID: PMC9783651 DOI: 10.3390/pharmaceutics14122578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
Diabetes is a chronic disease that leads to abnormal carbohydrate digestion and hyperglycemia. The long-term use of marketed drugs results in secondary infections and side effects that demand safe and natural substitutes for synthetic drugs. The objective of this study is to evaluate the antidiabetic potential of compounds from the leaves of Tradescantia pallida. Thirteen phenolic compounds were identified from the ethyl acetate fraction of leaves of Tradescantia pallida using liquid chromatography-mass spectrometry. The compounds were then studied for the type of interactions between polyphenols and human α-glucosidase protein using molecular docking analysis. Prime Molecular Mechanics/Generalized Born Surface Area (MM-GBSA) calculations were performed to measure the binding free energies responsible for the formation of ligand-protein complexes. The compounds were further investigated for the thermodynamic constraints under a specified biological environment using molecular dynamic simulations. The flexibility of the ligand-protein systems was verified by Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF) and molecular interactions. The results authenticated the antidiabetic potential of polyphenols identified from the leaves of Tradescantia pallida. Our investigations could be helpful in the design of safe antidiabetic agents, but further in vitro and in vivo investigations are required.
Collapse
|
7
|
Butnariu M, Quispe C, Herrera-Bravo J, Fernández-Ochoa Á, Emamzadeh-Yazdi S, Adetunji CO, Memudu AE, Otlewska A, Bogdan P, Antolak H, Tamimi K, Baghalpour N, Mahroo Bakhtiyari J, Sen S, Acharya K, Segura-Carretero A, Cádiz-Gurrea MDLL, Lim SHE, Pentea M, Sarac I, Durna Daştan S, Abdull Razis AF, Sunusi U, Kamal RM, Setzer WN, Sharifi-Rad J. A Review on Tradescantia: Phytochemical Constituents, Biological Activities and Health-Promoting Effects. FRONT BIOSCI-LANDMRK 2022; 27:197. [PMID: 35748273 DOI: 10.31083/j.fbl2706197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/06/2022]
Abstract
Tradescantia is a genus of herbaceous and perennial plants belonging to the Commelinaceae family and organized into three infrageneric classifications and 12 sections. More than 80 species within the genus have been used for centuries for medicinal purposes. Phytochemical compounds (from various species of the genus) such as coumarins, alkaloids, saponins, flavonoids, phenolics, tannins, steroids and terpenoids have recently been characterized and described with antioxidant, cytotoxic, anti-inflammatory, anticancer or antimicrobial properties. The objective of this review is to describe the different aspects of the genus Tradescantia, including its botanical characteristics, traditional uses, phytochemical composition, biological activities, and safety aspects.
Collapse
Affiliation(s)
- Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timisoara, 300645 Calea 119, Timis, Romania
| | - Cristina Quispe
- Faculty of Health Science, Universidad Arturo Prat, 1110939 Iquique, Chile
| | - Jesús Herrera-Bravo
- Departament of Basic Sciences, Faculty of Sciences, Universidad Santo Tomas, 8370003 Santiago, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, 4811230 Temuco, Chile
| | - Álvaro Fernández-Ochoa
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain
- Research and Development Functional Food Centre (CIDAF), Bioregión Building, Health Science Technological Park, 18071 Granada, Spain
| | - Simin Emamzadeh-Yazdi
- Department of Plant and Soil Sciences, University of Pretoria, 0002 Gauteng, South Africa
| | - Charles Oluwaseun Adetunji
- Applied Microbiology, Biotechnology and Nanotechnology Laboratory, Department of Microbiology, Edo State University Uzairue, Iyamho, 312101 Edo State Nigeria, Nigeria
| | - Adejoke Elizabeth Memudu
- Department of Anatomy, Faculty of Basic Medical Sciences, Edo State University Uzairue, Iyamho, 312101 Edo State Nigeria, Nigeria
| | - Anna Otlewska
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90 - 924 Lodz, Poland
| | - Paulina Bogdan
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90 - 924 Lodz, Poland
| | - Hubert Antolak
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90 - 924 Lodz, Poland
| | - Katayoun Tamimi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, 1991953381 Tehran, Iran
| | - Navid Baghalpour
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, 1991953381 Tehran, Iran
| | - Javad Mahroo Bakhtiyari
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, 1991953381 Tehran, Iran
| | - Surjit Sen
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, 700019 Kolkata, India
- Department of Botany, Fakir Chand College, Diamond Harbour, 743331 West Bengal, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, 700019 Kolkata, India
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain
- Research and Development Functional Food Centre (CIDAF), Bioregión Building, Health Science Technological Park, 18071 Granada, Spain
| | - María de la Luz Cádiz-Gurrea
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain
- Research and Development Functional Food Centre (CIDAF), Bioregión Building, Health Science Technological Park, 18071 Granada, Spain
| | - Swee Hua Erin Lim
- Health Science Division, Abu Dhabi Women's College, Higher Colleges of Technology, 41012 Abu Dhabi, UAE
- Perdana University-Royal College of Surgeons in Ireland, 43400 Serdang, Serdang, Malaysia
| | - Marius Pentea
- Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timisoara, 300645 Calea 119, Timis, Romania
| | - Ioan Sarac
- Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" from Timisoara, 300645 Calea 119, Timis, Romania
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Usman Sunusi
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Biochemistry, Bayero University Kano, PMB 3011 Kano, Nigeria
| | - Ramla Muhammad Kamal
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Pharmacology, Federal University Dutse, PMB 7156 Dutse, Jigawa State, Nigeria
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
- Aromatic Plant Research Center, Lehi, UT 84043, USA
| | | |
Collapse
|
8
|
Favara GM, de Oliveira FF, Ferro CG, Kraide HD, Carmo EYN, Chinelato GA, Kitajima EW, Rezende JAM. First report of costus stripe mosaic virus infecting Tradescantia spathacea plants in Brazil. PLANT DISEASE 2021; 105:3314. [PMID: 33787308 DOI: 10.1094/pdis-02-21-0342-pdn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tradescantia spathacea (family Commelinaceae) is cultivated worldwide as an ornamental (Golczyk et al., 2013) and as medicinal plant (Tan et al., 2020). In 2019, 90 of ~180 plants of T. spathacea, grown in two beds of 4 m2 and exhibiting leaf mosaic were found in an experimental area at ESALQ/USP (Piracicaba municipality, São Paulo state, Brazil). Potyvirus-like flexuous filamentous particles were observed by transmission electron microscopy in foliar extracts of two symptomatic plants stained with 1% uranyl acetate. Total RNA was extracted using the Purelink viral RNA/DNA kit (Thermo Fisher Scientific) from leaves of two symptomatic plants and separately subjected to a reverse transcription polymerase chain reaction (RT-PCR). The potyviruses degenerate pairs of primers CIFor/CIRev (Ha et al. 2008), which amplifies a fragment corresponding to part of the cylindrical inclusion protein gene, and WCIEN/PV1 (Maciel et al. 2011), which amplifies a fragment containing part of the capsid protein gene and the 3' untranslated region, were used. The expected amplicons (~700bp) were obtained from both total RNA extracts. Two amplicons from one sample were purified using the Wizard SV Gel and PCR Clean-Up System kit (Promega) and directly sequenced in both directions at Macrogen Inc (Seoul, South Korea). The obtained nucleotide sequences (GenBank MW430005 and MW503934) shared 95.32% and 97.79% nucleotide identity, respectively, with the corresponding sequences of the Brazilian isolate of the potyvirus costus stripe mosaic virus (CoSMV, MK286375) (Alexandre et al. 2020). Extract from an infected plant of T. spathacea was mechanically inoculated in 10 healthy plants of T. spathacea and two plants each of the following species: Capsicum annuum, Chenopodium amaranticolor, Commelina benghalensis, Datura stramonium, Gomphrena globosa, Nicandra physaloides, Nicotiana tabacum cvs. Turkish and Samsun, Solanum lycopersicum, T. palida, and T. zebrina. All T. spathacea plants exhibited mosaic and severe leaf malformation. C. benghalensis plants developed mild mosaic, whereas infected T. zebrina plants were asymptomatic. The plants of other species were not infected. RT-PCR with specific CoSMV primers CoSMVHC-F and CoSMVHC-R (Alexandre et al. 2020) confirmed the infection. Nucleotide sequences of amplicons obtained from experimentally inoculated T. spathacea and T. zebrina (MW430007 and MW430008) shared 94.56% and 94.94% identity with the corresponding sequence of a Brazilian CoSMV isolate (MK286375). None of eight virus-free plants of T. spathacea inoculated with CoSMV using Aphis craccivora exhibited symptoms, nor was CoSMV detected by RT-PCR. Lack of CoSMV transmission by A. solanella, Myzus persicae, and Uroleucon sonchi was previously reported (Alexandre et al. 2020). T. spathacea plants are commonly propagated vegetatively, and by seeds. Virus-free seeds, if available, can provide an efficient and easy way to obtain healthy plants. Only three viruses were reported in plants of the genus Tradescantia: Commelina mosaic virus, tradescantia mild mosaic virus, and a not fully characterized potyvirus (Baker and Zettler, 1988; Ciuffo et al., 2006; Kitajima 2020). CoSMV was recently reported infecting Costus spiralis and C. comosus (Alexandre et al. 2020). As far as we know, this is the first report of CoSMV infecting T. spathacea plants.
Collapse
Affiliation(s)
- Gabriel Madoglio Favara
- Universidade de Sao Paulo Escola Superior de Agricultura Luiz de Queiroz, 54538, Plant Pathology and Nematology, Avenida Padua dias, 11, 11, 11, 11, Piracicaba, SP, Brazil, 13418-260;
| | - Felipe Franco de Oliveira
- Universidade de São Paulo - Câmpus Luiz de Queiroz, 54538, Fitopatologia e Nematologia, Piracicaba, São Paulo, Brazil;
| | | | - Heron Delgado Kraide
- Universidade de São Paulo Escola Superior de Agricultura Luiz de Queiroz, 54538, Fitopatologia e Nematologia, Piracicaba, São Paulo, Brazil;
| | - Eike Yudi Nishimura Carmo
- Universidade de Sao Paulo Escola Superior de Agricultura Luiz de Queiroz, 54538, Fitopatologia e Nematologia, Piracicaba, São Paulo, Brazil;
| | | | - Elliot W Kitajima
- Esalq/USP, NAP/MEPA, Av.Padua Dias 11, Piracicaba, SP, Brazil, 13418-900;
| | - Jorge Alberto Marques Rezende
- Universidade de São Paulo - ESALQ, Fitopatologia e Nematologia, Av. Padua Dias 11, Piracicaba, São Paulo, Brazil, 13418-900;
| |
Collapse
|