1
|
Gao F, Zeng G, Hao X, Wang H, Li H. Variation and fractionation of δ 2H, δ 18O, and δ 17O stable isotopes from irrigation water to soil, grapes, and wine for the traceability of geographical origins. Food Chem 2025; 462:141012. [PMID: 39217747 DOI: 10.1016/j.foodchem.2024.141012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 06/28/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
To investigate the variation and fractionation of stable isotopes from irrigation water to soil, grapes, and wine, δ2H, δ18O, and δ17O in different samples from 10 regions in China were determined using a water isotope analyser. The values were significantly different among regions according to the chemometric analysis. All isotopes were significantly and positively correlated with irrigation water-soil and grape-wine. A significant water isotopic fractionation effect was observed from the irrigation water to the soil, grapes, and wine. Stable isotope distribution characteristics correlated with longitude, latitude, altitude, temperature, precipitation, station pressure and wind speed. The linear discriminant analysis (LDA), random forest (RF), support vector machine (SVM), and feed-forward neural network (FNN) models 58.33-100 %, 80-100 %, 53.33-100 %, and 73.33-100 % accurate for distinguishing the geographical origins of all samples from training and test data, respectively. These findings provide a theoretical basis for authenticating the geographic origin of Chinese wines using stable isotope analysis.
Collapse
Affiliation(s)
- Feifei Gao
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; College of Enology, Shaanxi Engineering Research Center for Viti-viniculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Guihua Zeng
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; College of Enology, Shaanxi Engineering Research Center for Viti-viniculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoyun Hao
- School of Chemical Engineering, Xi'an University, Xi'an, Shaanxi 710065, China
| | - Hua Wang
- College of Enology, Shaanxi Engineering Research Center for Viti-viniculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hua Li
- College of Enology, Shaanxi Engineering Research Center for Viti-viniculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Giannioti Z, Suman M, Roncone A, Rollo E, Tonidandel L, Barbero A, Catellani D, Larcher R, Bontempo L. Isotopic, mycotoxin, and pesticide analysis for organic authentication along the production chain of wheat-derived products. Food Chem 2024; 452:139519. [PMID: 38728888 DOI: 10.1016/j.foodchem.2024.139519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/08/2024] [Accepted: 04/28/2024] [Indexed: 05/12/2024]
Abstract
Wheat-based products are staples in diets worldwide. Organic food frauds continuously threaten consumer trust in the agri-food system. A multi-method approach was conducted for the organic authentication and safety assessment of pasta and bakery products along their production chain. Bulk and Compound-Specific (CS) Isotope Ratio Mass Spectrometry (IRMS) suggested the δ15Nbulk, δ15Nleucine and δ15Nproline as promising organic markers, with CS able to distinguish between pairs which bulk analysis could not. Processing significantly affected the values of δ15Nleucine, δ13Cproline and δ13Cleucine. Multi-mycotoxin analysis (HT-2, T-2, DON, ZEN, OTA, AFB1) revealed higher contamination in conventional than organic samples, while both milling and baking significantly reduced mycotoxin content. Lastly, from the evaluation of 400 residues, isopyrazam was present at the highest concentration (0.12 mg/kg) in conventional wheat, exhibiting a 0.12 Processing Factor (PF), while tebuconazole levels remained unchanged in pasta production (90 °C) and reduced below LOQ in biscuits and crackers (180-250 °C).
Collapse
Affiliation(s)
- Zoe Giannioti
- Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all'Adige, TN, Italy; Centre for Agriculture, Food and Environment (C3A), University of Trento and Fondazione Edmund Mach Via E. Mach 1, 38098 San Michele all'Adige, TN, Italy
| | - Michele Suman
- Advanced Laboratory Research, Barilla G. e R. Fratelli S.P.A., Parma, Italy; Department for Sustainable Food Process, Catholic University Sacred Heart, Piacenza, Italy
| | - Alberto Roncone
- Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all'Adige, TN, Italy
| | - Eleonora Rollo
- Advanced Laboratory Research, Barilla G. e R. Fratelli S.P.A., Parma, Italy; Department for Sustainable Food and Drug, University of Parma, Parco Area delle Scienze, 95/A-43124 Parma, Italy
| | - Loris Tonidandel
- Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all'Adige, TN, Italy
| | - Alice Barbero
- Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all'Adige, TN, Italy
| | - Dante Catellani
- Advanced Laboratory Research, Barilla G. e R. Fratelli S.P.A., Parma, Italy
| | - Roberto Larcher
- Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all'Adige, TN, Italy
| | - Luana Bontempo
- Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all'Adige, TN, Italy.
| |
Collapse
|
3
|
Macan Schönleben A, Yin S, Strak E, Johnson A, Belova L, Ait Bamai Y, van Nuijs ALN, Poma G, Covaci A. Stable isotope ratios and current-use pesticide levels in edible insects: Implications on chemical food safety. Food Res Int 2024; 179:114020. [PMID: 38342520 DOI: 10.1016/j.foodres.2024.114020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 02/13/2024]
Abstract
In the past years, the European Union (EU) has added edible insects to the list of novel foods, allowing an increasing number of insect-based products into the European market. With insects gaining more popularity in the Western world, it is crucial to investigate their chemical food safety. This study aimed at investigating possible isotopic patterns in different edible insect species (n = 52) from Asia, Africa and Europe using stable isotope ratio analysis (SIRA) to provide a framework for future investigations on food authenticity and traceability. Additionally, complementary mass-spectrometric screening approaches were applied to gain a comprehensive overview of contamination levels of current-use pesticides (CUPs) in edible insects, to assess their chemical food safety. SIRA revealed significant differences between countries in δ13CVPDB- (p < 0.001) and δ15Nair- (p < 0.001) values. While it was not possible to distinguish between individual countries using principal component analysis (PCA) and linear discriminative analysis (LDA), the latter could be used to distinguish between larger geographical areas (i.e. Africa, Europe and Asia). In general, African samples had a more distinct isotopic profile compared to European and Asian samples. When comparing the isotopic compositions of samples containing pesticides with samples with no detected pesticides, differences in sulphur compositions could be observed. Additionally, LDA was able to correctly classify the presence of pesticides in a sample with 76% correct classification based on the sulphur composition. These findings show that SIRA could be a useful tool to provide a framework for future investigations on food authenticity and traceability of edible insects. A total of 26 CUPs were detected using suspect screening and an additional 30 CUPS were quantified using target analysis, out of which 9 compounds had a detection frequency higher than 30%. Most detected pesticides were below the maximum residue levels (MRLs) for meat, suggesting low contamination levels. However, dichlorvos and fipronil could be detected in the same order of magnitude as the MRLs, even in samples purchased in Europe. These findings indicate a limited chemical risk for edible insects regarding pesticide contamination. Nevertheless, the study also highlights that further and more extensive investigations are needed to give a comprehensive assessment of the chemical risk of edible insects as a novel food source in Europe. With insects recently being potentially more incorporated into daily diets, more attention should be paid to possible chemical hazards to accurately assess their risk and to ensure food safety.
Collapse
Affiliation(s)
| | - Shanshan Yin
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Ethan Strak
- Food Forensics, 5 Frensham Road, NR3 2BT Norwich, United Kingdom
| | - Alison Johnson
- Food Forensics, 5 Frensham Road, NR3 2BT Norwich, United Kingdom
| | - Lidia Belova
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Yu Ait Bamai
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | | | - Giulia Poma
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
4
|
Athaillah Z, Yarnes C, Wang SC. Bulk and Compound-Specific Stable Isotope Analysis for the Authentication of Walnuts ( Juglans regia) Origins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71. [PMID: 37917953 PMCID: PMC10655176 DOI: 10.1021/acs.jafc.3c03770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 11/04/2023]
Abstract
Walnuts are grown in various countries, and as product origin information is becoming more important to consumers, new techniques to differentiate walnut geographical authenticity are needed. We conducted bulk stable isotope analysis (BSIA) and compound-specific stable isotope analysis (CSIA) on walnuts grown in seven countries. The BSIA consisted of δ13Cbulk, δ15Nbulk, and δ34Sbulk, and CSIA covered δ2Hfatty acid, δ13Cfatty acid, δ13Camino acid, δ15Namino acid, and δ2Hamino acid. Analysis of variance (ANOVA) and linear discriminant analysis (LDA) were used for statistical analysis to compare samples from the USA and China. Parameters that yielded significant variations are δ2HC18:1n-9, δ13CC18:2n-6, δ13CC18:3n-3, δ13CGly, δ13CLeu, δ13CVal, δ2HGlu, δ2HIle, δ2HLeu, and δ2HThr. Our findings suggested that CSIA of fatty acids and amino acids can be useful to differentiate the geographical provenance of walnuts.
Collapse
Affiliation(s)
- Zatil
A. Athaillah
- Food
Science and Technology Department of University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Chris Yarnes
- Stable
Isotope Facility of University of California, Davis, Davis, California 95616, United States
| | - Selina C. Wang
- Food
Science and Technology Department of University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
5
|
Liu H, Nie J, Liu Y, Wadood SA, Rogers KM, Yuan Y, Gan RY. A review of recent compound-specific isotope analysis studies applied to food authentication. Food Chem 2023; 415:135791. [PMID: 36868070 DOI: 10.1016/j.foodchem.2023.135791] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
Compound-specific stable isotope analysis (CSIA) of food products is a relatively new and novel technique used to authenticate food and detect adulteration. This paper provides a review of recent on-line and off-line CSIA applications of plant and animal origin foods, essential oils and plant extracts. Different food discrimination techniques, applications, scope, and recent studies are discussed. CSIA δ13C values are widely used to verify geographical origin, organic production, and adulteration. The δ15N values of individual amino acids and nitrate fertilizers have proven effective to authenticate organic foods, while δ2H and δ18O values are useful to link food products with local precipitation for geographical origin verification. Most CSIA techniques focus on fatty acids, amino acids, monosaccharides, disaccharides, organic acids, and volatile compounds enabling more selective and detailed origin and authentication information than bulk isotope analyses.. In conclusion, CSIA has a stronger analytical advantage for the authentication of food compared to bulk stable isotope analysis, especially for honey, beverages, essential oils, and processed foods.
Collapse
Affiliation(s)
- Hongyan Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science & Technology Center, Chengdu 610213, China.
| | - Jing Nie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yi Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science & Technology Center, Chengdu 610213, China
| | - Syed Abdul Wadood
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Karyne M Rogers
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; National Isotope Centre, GNS Science, Lower Hutt 5040, New Zealand
| | - Yuwei Yuan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore 138669, Singapore.
| |
Collapse
|
6
|
Hesse T, Nachev M, Khaliq S, Jochmann MA, Franke F, Scharsack JP, Kurtz J, Sures B, Schmidt TC. A new technique to study nutrient flow in host-parasite systems by carbon stable isotope analysis of amino acids and glucose. Sci Rep 2023; 13:1054. [PMID: 36658208 PMCID: PMC9852285 DOI: 10.1038/s41598-022-24933-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/22/2022] [Indexed: 01/20/2023] Open
Abstract
Stable isotope analysis of individual compounds is emerging as a powerful tool to study nutrient origin and conversion in host-parasite systems. We measured the carbon isotope composition of amino acids and glucose in the cestode Schistocephalus solidus and in liver and muscle tissues of its second intermediate host, the three-spined stickleback (Gasterosteus aculeatus), over the course of 90 days in a controlled infection experiment. Similar linear regressions of δ13C values over time and low trophic fractionation of essential amino acids indicate that the parasite assimilates nutrients from sources closely connected to the liver metabolism of its host. Biosynthesis of glucose in the parasite might occur from the glucogenic precursors alanine, asparagine and glutamine and with an isotope fractionation of - 2 to - 3 ‰ from enzymatic reactions, while trophic fractionation of glycine, serine and threonine could be interpreted as extensive nutrient conversion to fuel parasitic growth through one-carbon metabolism. Trophic fractionation of amino acids between sticklebacks and their diets was slightly increased in infected compared to uninfected individuals, which could be caused by increased (immune-) metabolic activities due to parasitic infection. Our results show that compound-specific stable isotope analysis has unique opportunities to study host and parasite physiology.
Collapse
Affiliation(s)
- Tobias Hesse
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| | - Milen Nachev
- Aquatic Ecology, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany.,Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| | - Shaista Khaliq
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| | - Maik A Jochmann
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany. .,Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany.
| | - Frederik Franke
- Institute for Evolution & Biodiversity, University of Münster, Hüfferstr. 1, 48149, Münster, Germany.,Bavarian State Institute of Forestry, Hans-Carl-Von-Carlowitz-Platz 1, 85354, Freising, Germany
| | - Jörn P Scharsack
- Institute for Evolution & Biodiversity, University of Münster, Hüfferstr. 1, 48149, Münster, Germany.,Thünen Institute of Fisheries Ecology, Herwigstr. 31, 27572, Bremerhaven, Germany
| | - Joachim Kurtz
- Institute for Evolution & Biodiversity, University of Münster, Hüfferstr. 1, 48149, Münster, Germany
| | - Bernd Sures
- Aquatic Ecology, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany.,Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany.,Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| |
Collapse
|
7
|
Khatri PK, Paolini M, Larcher R, Ziller L, Alina Magdas D, Marincas O, Roncone A, Bontempo L. Validation of gas chromatographic methods for lavender essential oil authentication based on volatile organic compounds and stable isotope ratios. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Ecofriendly shiitake authentication using bulk and amino acid-specific stable isotope models. Food Chem 2022; 397:133819. [DOI: 10.1016/j.foodchem.2022.133819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/20/2022]
|
9
|
Isotopic Characterization of Italian Industrial Hemp (Cannabis sativa L.) Intended for Food Use: A First Exploratory Study. SEPARATIONS 2022. [DOI: 10.3390/separations9060136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, Italian industrial hemp (Cannabis sativa L.) intended for food use was isotopically characterized for the first time. The stable isotope ratios of five bioelements were analyzed in different parts of the plant (i.e., roots, stems, inflorescences, and seeds) sampled in eight different regions of Italy, and in five hemp seed oils. The values of δ2H, δ13C, δ18O, and δ34S differed according to the latitude and, therefore, to the geographical origin of the samples and the climate conditions of plant growth, while the δ15N values allowed us to distinguish between crops grown under conventional and organic fertilization. The findings from this preliminary study corroborate the reliability of using light stable isotope ratios to characterize hemp and its derived food products and contribute to the creation of a first isotopic database for this plant, paving the way for future studies on authentication, traceability, and verification of organic labeling.
Collapse
|
10
|
Rocchetti G, Senizza B, Zengin G, Bonini P, Bontempo L, Camin F, Trevisan M, Lucini L. The Hierarchical Contribution of Organic vs. Conventional Farming, Cultivar, and Terroir on Untargeted Metabolomics Phytochemical Profile and Functional Traits of Tomato Fruits. FRONTIERS IN PLANT SCIENCE 2022; 13:856513. [PMID: 35401596 PMCID: PMC8992384 DOI: 10.3389/fpls.2022.856513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
In this work, the impact of terroir, cultivar, seasonality, and farming systems on functional traits of tomato was hierarchically investigated. Untargeted metabolomics, antioxidant capacity, colorimetric assays, and enzyme inhibition were determined. The total phenolic and carotenoid contents significantly varied between growing years, whereas an interaction between the farming system and growing year (p < 0.01) was observed for total phenolics, carotenoids, and flavonoids, and for acetylcholinesterase inhibition. Hierarchical clustering showed that geographical origin and growing year were the major contributors to the differences in phytochemical profiles. Nonetheless, supervised modeling allowed highlighting the effect of the farming system. Several antioxidants (L-ascorbic acid, α-tocopherol, and 7,3',4'-trihydroxyflavone) decreased, whereas the alkaloid emetine and phytoalexin phenolics increased under organic farming. Taken together, our findings indicate that cultivar and pedo-climatic conditions are the main determinants for the functional quality of tomato, whereas the farming system plays a detectable but hierarchically lower.
Collapse
Affiliation(s)
- Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Biancamaria Senizza
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Konya, Turkey
| | | | - Luana Bontempo
- Traceability Unit, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Federica Camin
- Traceability Unit, Fondazione Edmund Mach, San Michele all’Adige, Italy
- Center Agriculture Food Environment, University of Trento, San Michele all’Adige, Italy
| | - Marco Trevisan
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
11
|
Mie A, Novak V, Franko MA, Bügel SG, Laursen KH. Fertilizer Type Affects Stable Isotope Ratios of Nitrogen in Human Blood Plasma─Results from Two-Year Controlled Agricultural Field Trials and a Randomized Crossover Dietary Intervention Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3391-3399. [PMID: 35263104 PMCID: PMC8949720 DOI: 10.1021/acs.jafc.1c04418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
The stable nitrogen isotope ratio δ15N is used as a marker of dietary protein sources in blood. Crop fertilization strategies affect δ15N in plant foods. In a double-blinded randomized cross-over dietary intervention trial with 33 participants, we quantified the effect of fertilizer type (conventional: synthetic fertilizer and organic: animal or green manure) on δ15N in blood plasma. At study baseline, plasma δ15N was +9.34 ± 0.29‰ (mean ± standard deviation). After 12 days intervention with a diet based on crops fertilized with animal manure, plasma δ15N was shifted by +0.27 ± 0.04‰ (mean ± standard error) compared to synthetic fertilization and by +0.22 ± 0.04‰ compared to fertilization with green manure (both p < 0.0001). Accordingly, differences in the δ15N values between fertilizers are propagated to the blood plasma of human consumers. The results indicate a need to consider agricultural practices when using δ15N as a dietary biomarker.
Collapse
Affiliation(s)
- Axel Mie
- Department
of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm 11883, Sweden
- Department
of Environmental Science, Stockholm University, Stockholm 106 91, Sweden
| | - Vlastimil Novak
- Plant
Nutrients and Food Quality Research Group, Plant and Soil Science
Section and Copenhagen Plant Science Centre, Department of Plant and
Environmental Sciences, University of Copenhagen, Frederiksberg C 1871, Denmark
| | - Mikael Andersson Franko
- Department
of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm 11883, Sweden
| | - Susanne Gjedsted Bügel
- Preventive
and Clinical Nutrition, Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg C 1871, Denmark
| | - Kristian Holst Laursen
- Plant
Nutrients and Food Quality Research Group, Plant and Soil Science
Section and Copenhagen Plant Science Centre, Department of Plant and
Environmental Sciences, University of Copenhagen, Frederiksberg C 1871, Denmark
| |
Collapse
|
12
|
Metagenomic Survey of Tomato Rhizosphere Microbiome Using the Shotgun Approach. Microbiol Resour Announc 2022; 11:e0113121. [PMID: 35112900 PMCID: PMC8812306 DOI: 10.1128/mra.01131-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Food sustainability, e.g., fruit and vegetables, is a major agricultural problem that requires monitoring. Rhizosphere microbiomes' abundance and functionality are essential in promoting tomato plants' growth and health. We selected farms in South Africa's North West Province and present the metagenomes of their tomato rhizospheres and associated functional potentials.
Collapse
|
13
|
Abstract
Stable isotope analysis of teeth and bones is regularly applied by archeologists and paleoanthropologists seeking to reconstruct diets, ecologies, and environments of past hominin populations. Moving beyond the now prevalent study of stable isotope ratios from bulk materials, researchers are increasingly turning to stable isotope ratios of individual amino acids to obtain more detailed and robust insights into trophic level and resource use. In the present article, we provide a guide on how to best use amino acid stable isotope ratios to determine hominin dietary behaviors and ecologies, past and present. We highlight existing uncertainties of interpretation and the methodological developments required to ensure good practice. In doing so, we hope to make this promising approach more broadly accessible to researchers at a variety of career stages and from a variety of methodological and academic backgrounds who seek to delve into new depths in the study of dietary composition.
Collapse
Affiliation(s)
| | - Ricardo Fernandes
- University of Oxford, Oxford, England, United Kingdom, and with the Faculty of Arts at Masaryk University, Czech Republic
| | - Yiming V Wang
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Patrick Roberts
- School of Social Sciences, University of Queensland, in St Lucia, Queensland, Australia
| |
Collapse
|
14
|
Pironti C, Ricciardi M, Motta O, Camin F, Bontempo L, Proto A. Application of 13C Quantitative NMR Spectroscopy to Isotopic Analyses for Vanillin Authentication Source. Foods 2021; 10:foods10112635. [PMID: 34828916 PMCID: PMC8625575 DOI: 10.3390/foods10112635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 11/30/2022] Open
Abstract
The carbon stable isotope ratio (δ13C) is a valuable chemical parameter in the investigation of the geographic origin, quality, and authenticity of foods. The aim of this study is the evaluation of the feasibility of 13C-NMR (Nuclear Magnetic Resonance) spectroscopy to determine the carbon stable isotope ratio, at natural abundance, of small organic molecules, such as vanillin, without the use of IRMS (Isotope Ratio Mass Spectrometry). The determination of vanillin origin is an active task of research, and differentiating between its natural and artificial forms is important to guarantee the quality of food products. To reach our goal, nine vanillin samples were analyzed using both 13C quantitative NMR spectroscopy (under optimized experimental conditions) and IRMS, and the obtained δ13C values were compared using statistical analysis (linear regression, Bland–Altman plot, and ANOVA (analysis of variance)). The results of our study show that 13C-NMR spectroscopy can be used as a valuable alternative methodology to determine the bulk carbon isotope ratio and to identify the origin of vanillin. This makes it attractive for the analysis in the same experiment of site-specific and total isotope effects for testing authenticity, quality, and typicality of food samples. Moreover, the improvement of NMR spectroscopy makes it possible to avoid the influence of additives on carbon stable isotope ratio analysis and to clearly identify fraud and falsification in commercial samples.
Collapse
Affiliation(s)
- Concetta Pironti
- Department of Medicine and Surgery, University of Salerno, via S. Allende, 84081 Baronissi, SA, Italy; (C.P.); (M.R.)
| | - Maria Ricciardi
- Department of Medicine and Surgery, University of Salerno, via S. Allende, 84081 Baronissi, SA, Italy; (C.P.); (M.R.)
| | - Oriana Motta
- Department of Medicine and Surgery, University of Salerno, via S. Allende, 84081 Baronissi, SA, Italy; (C.P.); (M.R.)
- Correspondence: ; Tel.: +39-089963083
| | - Federica Camin
- Fondazione Edmund Mach, Research and Innovation Center, Food Quality and Nutrition Department, 38010 San Michele all’Adige, TN, Italy; (F.C.); (L.B.)
- Centre Agriculture Food Environment C3A, University of Trento, 38010 San Michele all’Adige, TN, Italy
- International Atomic Energy Agency, IAEA, International Centre, P.O. Box 100, A-1400 Vienna, Austria
| | - Luana Bontempo
- Fondazione Edmund Mach, Research and Innovation Center, Food Quality and Nutrition Department, 38010 San Michele all’Adige, TN, Italy; (F.C.); (L.B.)
| | - Antonio Proto
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy;
| |
Collapse
|
15
|
Ramirez MD, Besser AC, Newsome SD, McMahon KW. Meta‐analysis of primary producer amino acid δ
15
N values and their influence on trophic position estimation. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13678] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthew D. Ramirez
- Graduate School of Oceanography University of Rhode Island Narragansett RI USA
| | - Alexi C. Besser
- Department of Biology University of New Mexico Albuquerque NM USA
| | - Seth D. Newsome
- Department of Biology University of New Mexico Albuquerque NM USA
| | - Kelton W. McMahon
- Graduate School of Oceanography University of Rhode Island Narragansett RI USA
| |
Collapse
|
16
|
Artavia G, Cortés-Herrera C, Granados-Chinchilla F. Selected Instrumental Techniques Applied in Food and Feed: Quality, Safety and Adulteration Analysis. Foods 2021; 10:1081. [PMID: 34068197 PMCID: PMC8152966 DOI: 10.3390/foods10051081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/13/2021] [Accepted: 03/19/2021] [Indexed: 12/28/2022] Open
Abstract
This review presents an overall glance at selected instrumental analytical techniques and methods used in food analysis, focusing on their primary food science research applications. The methods described represent approaches that have already been developed or are currently being implemented in our laboratories. Some techniques are widespread and well known and hence we will focus only in very specific examples, whilst the relatively less common techniques applied in food science are covered in a wider fashion. We made a particular emphasis on the works published on this topic in the last five years. When appropriate, we referred the reader to specialized reports highlighting each technique's principle and focused on said technologies' applications in the food analysis field. Each example forwarded will consider the advantages and limitations of the application. Certain study cases will typify that several of the techniques mentioned are used simultaneously to resolve an issue, support novel data, or gather further information from the food sample.
Collapse
Affiliation(s)
- Graciela Artavia
- Centro Nacional de Ciencia y Tecnología de Alimentos, Sede Rodrigo Facio, Universidad de Costa Rica, San José 11501-2060, Costa Rica;
| | - Carolina Cortés-Herrera
- Centro Nacional de Ciencia y Tecnología de Alimentos, Sede Rodrigo Facio, Universidad de Costa Rica, San José 11501-2060, Costa Rica;
| | | |
Collapse
|
17
|
Creydt M, Fischer M. Food authentication in real life: How to link nontargeted approaches with routine analytics? Electrophoresis 2020; 41:1665-1679. [PMID: 32249434 DOI: 10.1002/elps.202000030] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 12/20/2022]
Abstract
In times of increasing globalization and the resulting complexity of trade flows, securing food quality is an increasing challenge. The development of analytical methods for checking the integrity and, thus, the safety of food is one of the central questions for actors from science, politics, and industry. Targeted methods, for the detection of a few selected analytes, still play the most important role in routine analysis. In the past 5 years, nontargeted methods that do not aim at individual analytes but on analyte profiles that are as comprehensive as possible have increasingly come into focus. Instead of investigating individual chemical structures, data patterns are collected, evaluated and, depending on the problem, fed into databases that can be used for further nontargeted approaches. Alternatively, individual markers can be extracted and transferred to targeted methods. Such an approach requires (i) the availability of authentic reference material, (ii) the corresponding high-resolution laboratory infrastructure, and (iii) extensive expertise in processing and storing very large amounts of data. Probably due to the requirements mentioned above, only a few methods have really established themselves in routine analysis. This review article focuses on the establishment of nontargeted methods in routine laboratories. Challenges are summarized and possible solutions are presented.
Collapse
Affiliation(s)
- Marina Creydt
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Hamburg, Germany
| | - Markus Fischer
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Hamburg, Germany
| |
Collapse
|