1
|
Luo Y, Zhou Y, Xiao N, Xie X, Li L. Partial gelatinization treatment affects the structural, gelatinization, and retrogradation characteristics of maize starch-dietary fiber complexes. Food Res Int 2025; 202:115799. [PMID: 39967122 DOI: 10.1016/j.foodres.2025.115799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/08/2024] [Accepted: 01/18/2025] [Indexed: 02/20/2025]
Abstract
The effect of partial gelatinization (PG) treatment on the structural, gelatinization, and retrogradation characteristics of maize starch (MS)-dietary fiber (pectin, PE; konjac glucomannan, KG) complex was conducted. The result suggests that PG treatment shows an obvious effect in improving thermal stability, decreasing the viscoelastic, inhibiting starch gelatinization and retrogradation of the MS-PE/KG complex. The decreased breakdown viscosity, storage modulus, apparent viscosity, setback value, and hardness value could confirm these results. Furthermore, PG treatment had a better effect on inhibiting the gelatinization and retrogradation of the MS-0.3 %PE complex than other complexes. This result was proved by reduced setback value (by 78.96 %) and hardness value (by 54.46 % and 44.00 % during cold storage at 1 and 14 days, respectively). 0.3 %PE interacts with starch molecules through hydrogen bonding and electrostatic forces during PG treatment forming a strong starch granule structure to impede starch gelatinization and retrogradation. Moreover, the lighter iodine staining, the obvious coating thin layer, and the thicker fluorescence layer have appeared in the MS-PE/KG complex. The relative crystallinity and the short-range order degree of the MS-PE/KG complex were significantly decreased. The current findings provide the theoretical basis for MS modification to improve the quality and prolong the shelf-life of starch-based foods.
Collapse
Affiliation(s)
- Yunmei Luo
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuhao Zhou
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Nan Xiao
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xinan Xie
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Lu Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Lu J, Zhang T, Han Y, Wang S, Zhang J, Xu H. Structural characterization and functional properties of resistant dextrins prepared from different starch sources. Int J Biol Macromol 2024; 282:137124. [PMID: 39486710 DOI: 10.1016/j.ijbiomac.2024.137124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/29/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
The molecular structures of different starch sources differ, and the structure of the prepared resistant dextrin is affected. Seven types of starches (corn, wheat, pea, mung bean, tapioca, sweet potato, and potato) were used to prepare resistant dextrins under identical conditions. The physicochemical properties, molecular structure, micromorphology, glucose dialysis retardation index (GDRI), and cholesterol-binding capacity of different starch-resistant dextrins were analyzed and compared. The results revealed that the starch source exerted a greater effect on the structure of the resistant dextrins, and this was primarily attributed to the difference in the content of amylose and amylopectin. Both high amylose and high amylopectin may be the sources of highly resistant dextrins. The microscopic morphology of resistant dextrins were fragmentary, and the original form of starches was completely lost. Additionally, pea resistant dextrin exhibited higher GDRI values and stronger cholesterol-binding capacity compared to other samples.
Collapse
Affiliation(s)
- Jiadi Lu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Food Ferment Industry Research & Design Institute, Jinan 250000, China
| | - Tingting Zhang
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yanlei Han
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Food Ferment Industry Research & Design Institute, Jinan 250000, China
| | - Shanshan Wang
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Food Ferment Industry Research & Design Institute, Jinan 250000, China
| | - Jiaxiang Zhang
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Food Ferment Industry Research & Design Institute, Jinan 250000, China.
| | - Hui Xu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Food Ferment Industry Research & Design Institute, Jinan 250000, China.
| |
Collapse
|
3
|
Sun H, Ma J, Cao Q, Ren G, Li Z, Xie H, Huang M. Seaweed soluble dietary fibre replacement modulates the metabolite release of cakes after in vitro digestion. Int J Biol Macromol 2024; 274:133348. [PMID: 38925174 DOI: 10.1016/j.ijbiomac.2024.133348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/23/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Soluble dietary fibre (SDF) has gained growing interest because of its multiple functional and nutritional benefits. In the current study, the effect of SDF extracted from eucheuma seaweed on both the physicochemical properties and the released metabolites of yellow cakes was evaluated systematically. The results revealed that the addition of SDF induced increases in specific gravity, specific volume and water content of yellow cakes, and caused a decrease in weight loss and changes in texture and colour. In addition, sensory evaluation showed that up to 10 % substitution of flour with SDF was acceptable. In vitro digestion of cakes demonstrated that flour substitution with SDF at different levels (8 %-14 %) significantly reduced the release of glucose, ranging from 11.24 % to 29.12 %. In addition to the increased apparent viscosity of the cake digesta, the metabolite analysis based on nuclear magnetic resonance spectroscopy identified a total of 29 metabolites, including amino acids, fatty acids and sugars. Notably, the addition of SDF reduced the release of amino acids and fatty acids after digestion. These findings suggested that seaweed SDF was a potential substitute for some food components, which would provide functional benefits to the digestive characteristics.
Collapse
Affiliation(s)
- Hong Sun
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, Jiangsu Province, China
| | - Jingyi Ma
- Department of Food Science and Technology, National University of Singapore, 117542 Singapore, Singapore
| | - Qing Cao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Gerui Ren
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Zhaofeng Li
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Hujun Xie
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Min Huang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, China.
| |
Collapse
|
4
|
Wang N, Ainiwan D, Liu Y, He J, Liu T. Effects of steam explosion-modified rice bran dietary fiber on volatile flavor compounds retention and release of red date-flavored naan (ethnic specialty food of Xinjiang) during storage. Food Chem X 2024; 22:101438. [PMID: 38846796 PMCID: PMC11154202 DOI: 10.1016/j.fochx.2024.101438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 06/09/2024] Open
Abstract
This study explored the effects of steam explosion-modified rice bran dietary fiber (S-RBDF) on red date-flavored naan quality and flavor characteristics. The results revealed that the rheological properties of the dough were improved with the incremental addition of S-RBDF (0-5%). The microstructure revealed that adding an appropriate amount of S-RBDF (1-5%) enabled more starch granules to be embedded in the dough network. Notably, the addition of 5% S-RBDF resulted in naan with an optimum specific volume and texture, which consumers preferred. Additionally, gas chromatography-mass spectrometry analysis showed that adding S-RBDF to naan contributed to the retention and sustained release of pleasant volatile compounds (e.g. red date flavor, etc.), while inhibiting the development of unpleasant volatile compounds by delaying the oxidation and decomposition of lipids and preserving the antioxidant phenolic compounds, thus contributing to flavor maintenance of naan during storage. Overall, these results provided a foundation for developing high-quality flavored naan.
Collapse
Affiliation(s)
- Nan Wang
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
- Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun 130118, China
- Engineering Research Center of Grain Deep-processing and High-effeciency Utilization of Jilin Province, Changchun 130118, China
| | - Dilinuer Ainiwan
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
- Engineering Research Center of Grain Deep-processing and High-effeciency Utilization of Jilin Province, Changchun 130118, China
| | - Yingxu Liu
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
- Engineering Research Center of Grain Deep-processing and High-effeciency Utilization of Jilin Province, Changchun 130118, China
| | - Jialu He
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
- Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun 130118, China
| | - Tingting Liu
- School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
- Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun 130118, China
- Engineering Research Center of Grain Deep-processing and High-effeciency Utilization of Jilin Province, Changchun 130118, China
| |
Collapse
|
5
|
Xiao M, Jia X, Kang J, Liu Y, Zhang J, Jiang Y, Liu G, Cui SW, Guo Q. Unveiling the breadmaking transformation: Structural and functional insights into Arabinoxylan. Carbohydr Polym 2024; 330:121845. [PMID: 38368117 DOI: 10.1016/j.carbpol.2024.121845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/19/2024]
Abstract
To understand the changes in arabinoxylan (AX) during breadmaking, multi-step enzyme digestion was conducted to re-extract arabinoxylan (AX-B) from AX-fortified bread. Their structural changes were compared using HPSEC, HPAEC, FT-IR, methylation analysis, and 1H NMR analysis; their properties changes in terms of enzymatic inhibition activities and in vitro fermentability against gut microbiota were also compared. Results showed that AX-B contained a higher portion of covalently linked protein while the molecular weight was reduced significantly after breadmaking process (from 677.1 kDa to 15.6 kDa); the structural complexity of AX-B in terms of the degree of branching was increased; the inhibition activity against α-amylase (76.81 % vs 73.89 % at 4 mg/mL) and α-glucosidase (64.43 % vs 58.08 % at 4 mg/mL) was improved; the AX-B group produced a higher short-chain fatty acids concentration than AX (54.68 ± 7.86 mmol/L vs 44.03 ± 4.10 mmol/L). This study provides novel knowledge regarding the structural and properties changes of arabinoxylan throughout breadmaking, which help to predict the health benefits of fibre-fortified bread and achieve precision nutrition.
Collapse
Affiliation(s)
- Meng Xiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Xing Jia
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Ji Kang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yan Liu
- College of Food and Health, Zhejiang Agriculture and Forestry University, No. 666, Wusu Road, Linan District, 311300 Hangzhou, Zhejiang Province, China.
| | - Jixiang Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yueru Jiang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Guorong Liu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Steve W Cui
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
6
|
Baskaya-Sezer D. The effects of different fiber fractions from sour cherry (Prunus cerasus L.) pomace and fiber modification methods on cake quality. J Food Sci 2024; 89:2359-2370. [PMID: 38450786 DOI: 10.1111/1750-3841.17012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/01/2024] [Accepted: 02/14/2024] [Indexed: 03/08/2024]
Abstract
Sour cherry pomace is the largest byproduct of sour cherry processing with more than 0.4 million tonnes per year. In this study, sour cherry pomace powder (SCPP) has been treated individually or by a combination of microwave (MW), enzymatic hydrolysis, and high pressure to increase soluble dietary fiber (SDF) content. Then, the untreated or treated forms of SCPP, their SDF, and insoluble dietary fiber (IDF) isolates were added (5%) to the reduced-fat cake. Rheological, physical, and textural properties of the full-fat (50%) and the reduced-fat (25% fat) cakes enriched with dietary fiber (DF) were compared. SDF enrichment minimized the negative effect of fat reduction in the cake. Water absorption, mixing tolerance, hardness, and springiness values of the SDF-enriched samples were found as the lowest. Extensibility, energy, weight loss, and cohesiveness values were found to be the highest values with the addition of SDF. All treatments helped to decrease mixing tolerance, dough development, and stability time. MW was the critical treatment for DF modification. Individual MW-treated DF samples increased resistance to extension of the dough samples as compared to the untreated SDF, IDF, and SCPP. Nevertheless, SDF showed better performance in acting as a fat replacer than IDF and SCPP. PRACTICAL APPLICATION: The soluble dietary fiber (SDF) isolate minimized the negative effect of fat reduction in cakes. Water absorption and mixing tolerance of the dough were measured as the lowest. The hardness and springiness of soluble dietary fiber-enriched cakes were found to be the lowest. Extensibility and weight loss reached the highest value when SDF was used. Treatments helped decrease mixing tolerance, dough development, and stability time.
Collapse
Affiliation(s)
- Duygu Baskaya-Sezer
- Amasya Social Sciences Vocational School, Amasya University, Amasya, Türkiye
| |
Collapse
|
7
|
Zarski A, Kapusniak K, Ptak S, Rudlicka M, Coseri S, Kapusniak J. Functionalization Methods of Starch and Its Derivatives: From Old Limitations to New Possibilities. Polymers (Basel) 2024; 16:597. [PMID: 38475281 DOI: 10.3390/polym16050597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
It has long been known that starch as a raw material is of strategic importance for meeting primarily the nutritional needs of people around the world. Year by year, the demand not only for traditional but also for functional food based on starch and its derivatives is growing. Problems with the availability of petrochemical raw materials, as well as environmental problems with the recycling of post-production waste, make non-food industries also increasingly interested in this biopolymer. Its supporters will point out countless advantages such as wide availability, renewability, and biodegradability. Opponents, in turn, will argue that they will not balance the problems with its processing and storage and poor functional properties. Hence, the race to find new methods to improve starch properties towards multifunctionality is still ongoing. For these reasons, in the presented review, referring to the structure and physicochemical properties of starch, attempts were made to highlight not only the current limitations in its processing but also new possibilities. Attention was paid to progress in the non-selective and selective functionalization of starch to obtain materials with the greatest application potential in the food (resistant starch, dextrins, and maltodextrins) and/or in the non-food industries (hydrophobic and oxidized starch).
Collapse
Affiliation(s)
- Arkadiusz Zarski
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| | - Kamila Kapusniak
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| | - Sylwia Ptak
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| | - Magdalena Rudlicka
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| | - Sergiu Coseri
- "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, 41 A, Gr. Ghica Voda Alley, 700487 Iasi, Romania
| | - Janusz Kapusniak
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| |
Collapse
|
8
|
Li F, Muhmood A, Akhter M, Gao X, Sun J, Du Z, Wei Y, Zhang T, Wei Y. Characterization, health benefits, and food applications of enzymatic digestion- resistant dextrin: A review. Int J Biol Macromol 2023; 253:126970. [PMID: 37730002 DOI: 10.1016/j.ijbiomac.2023.126970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/19/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
Resistant dextrin or resistant maltodextrin (RD), a short-chain glucose polymer that is highly resistant to hydrolysis by human digestive enzymes, has shown broad developmental prospects in the food industry and has gained substantial attention owing to its lack of undesirable effects on the sensory features of food or the digestive system. However, comprehensive fundamental and application information on RD and how RD improves anti-diabetes and obesity have not yet been received. Therefore, the characterization, health benefits and application of RD in various fields are summarized and discussed in the current study. Typically, RD is prepared by the acid thermal method and possesses excellent physicochemical properties, including low viscosity, high solubility, storage stability, and low retro-gradation, which are correlated with its low molecular weight (Mw) and non-digestible glycosidic linkages. In contrast, RD prepared by the simultaneous debranching and crystallization method has low solubility and high crystallinity. The ingestion of RD can positively affect metabolic diseases (diabetes and obesity) in animals and humans by producing short-chain fatty acids (SCFAs), and facilitating the inflammatory response. Moreover, RD has been widely used in the beverage, dairy products, and dessert industries due to its nutritional value and textural properties without unacceptable quality loss. More studies are required to further explore RD application potential in the food industry and its role in the management of different chronic metabolic disorders.
Collapse
Affiliation(s)
- Fei Li
- College of Life Science, Qingdao University, Qingdao 266071, China; Shandong Luhua Group Co., Ltd., Laiyang 265200, China
| | - Atif Muhmood
- Department of Agroecology, Aarhus University, Denmark.
| | - Muhammad Akhter
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
| | - Xiang Gao
- College of Life Science, Qingdao University, Qingdao 266071, China; Shandong Huatao Food Co., Ltd., Weifang 262100, China.
| | - Jie Sun
- College of Life Science, Qingdao University, Qingdao 266071, China
| | - Zubo Du
- Shandong Luhua Group Co., Ltd., Laiyang 265200, China.
| | - Yuxi Wei
- College of Life Science, Qingdao University, Qingdao 266071, China.
| | - Ting Zhang
- Henan University of Technology, Grain College, Zhengzhou 450000, China
| | - Yunlu Wei
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
| |
Collapse
|
9
|
Baskaya-Sezer D. The effects of high-pressure, enzymatic, and high-pressure-assisted enzymatic treatment on the properties of soluble dietary fibers and their use in jelly prepared with grape waste extract. J Food Sci 2023; 88:4962-4973. [PMID: 37960937 DOI: 10.1111/1750-3841.16830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023]
Abstract
This study aimed to investigate the physicochemical attributes of soluble dietary fibers (SDFs) of grape, which were isolated after enzymatic (using cellulase [0.1 MPa/60°C/30 min]), high-pressure (HP) (100 MPa/60°C/30 min), or HP-assisted enzymatic treatment (using cellulase [100 MPa/60°C/30 min]), then to evaluate textural properties, color, and microbiological load of jelly prepared using grape waste extract and either pectin or SDF types. HP-assisted enzymatic treatment increased glucose adsorption capacity by more than 50%, and the water-holding capacity of SDF more than twofold as compared to the levels measured in untreated-SDF. After treatments, glucose and galactose contents decreased, whereas fructose, mannose, xylose, arabinose, and rhamnose ratios increased. The arabinose ratio increased more than twice by the effect of HP, whereas the xylose content increased almost fivefold with HP-assisted enzymatic treatment. For the textural properties of jelly, HP-assisted enzymatic treated-SDF provided almost double values in gel strength and adhesiveness than those contributed by untreated-SDF. It was followed by HP-treated SDF jelly. The results showed that HP-assisted enzymatic treatment developed more similar outcomes with enzymatic treatment, rather than HP treatment alone. HP-assisted enzymatic hydrolysis is recommended for treating SDF for use in jelly due to its synergistic effect. PRACTICAL APPLICATION: High-pressure-assisted cellulase treatment provided the best properties to SDF for jelly. In combined treatment, impacts of cellulase treatment were more prominent than HP effects. Therefore, the use of HP assistance for enzymatic hydrolysis shortens the processing time. Moreover, the technological and functional properties (water holding, glucose adsorption capacity, and monosaccharide composition) of the combined treated-fiber can improve. In addition, the color and textural properties of the jelly prepared with this treated-fiber can be enhanced. In this way, it may be possible to obtain a good thickening agent. This material can also be an alternative to pectin.
Collapse
Affiliation(s)
- Duygu Baskaya-Sezer
- Amasya Social Sciences Vocational School, Amasya University, Amasya, Türkiye
| |
Collapse
|
10
|
Wu S, Jia W, He H, Yin J, Xu H, He C, Zhang Q, Peng Y, Cheng R. A New Dietary Fiber Can Enhance Satiety and Reduce Postprandial Blood Glucose in Healthy Adults: A Randomized Cross-Over Trial. Nutrients 2023; 15:4569. [PMID: 37960222 PMCID: PMC10648557 DOI: 10.3390/nu15214569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Dietary fiber plays a potential role in regulating energy intake and stabilizing postprandial blood glucose levels. Soluble dietary fiber has become an important entry point for nutritional research on the regulation of satiety. METHODS this was a double-blind, randomized cross-over trial enrolling 12 healthy subjects to compare the effects of RPG (R+PolyGly) dietary fiber products (bread, powder, and capsule) and pectin administered with a standard meal on satiety, blood glucose, and serum insulin level. RESULTS Adding 3.8% RPG dietary fiber to bread significantly increased the volume, water content, hardness, and chewiness of bread compared to 3.8% pectin bread and white bread and significantly improved the sensory quality of bread. RPG bread had better appetite suppression effects at some time points than the other two groups and the best postprandial blood glucose lowering effects among the three groups. Administration of RPG capsules containing 5.6 g of RPG dietary fiber with meals improved satiety and reduced hunger compared to 6 g of RPG powder and 6 g of pectin, which had the greatest effect on suppressing appetite and reducing prospective food consumption. The peak level of serum glucagon-like peptide-1 (GLP-1) in the RPG capsule group (578.17 ± 19.93 pg/mL) was significantly higher than that in other groups at 0 min and 30 min after eating. RPG powder had the best effect in reducing postprandial blood glucose and increasing serum insulin levels; the total area under the curve (AUC) of serum insulin with RPG powder was higher than other groups (5960 ± 252.46 μU min/mL). CONCLUSION RPG dietary fiber products can improve the sensory properties of food, reduce postprandial blood glucose, and enhance satiety, especially in capsule and powder forms. Further research on the physiological effects of RPG dietary fiber is required to facilitate its use as a functional ingredient in food products.
Collapse
Affiliation(s)
- Simou Wu
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (S.W.); (W.J.)
| | - Wen Jia
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (S.W.); (W.J.)
| | - Huimin He
- Recovery Plus USA, New York, NY 10019, USA; (H.H.); (J.Y.); (H.X.); (C.H.)
| | - Jun Yin
- Recovery Plus USA, New York, NY 10019, USA; (H.H.); (J.Y.); (H.X.); (C.H.)
| | - Huilin Xu
- Recovery Plus USA, New York, NY 10019, USA; (H.H.); (J.Y.); (H.X.); (C.H.)
| | - Chengyuan He
- Recovery Plus USA, New York, NY 10019, USA; (H.H.); (J.Y.); (H.X.); (C.H.)
| | - Qinqiu Zhang
- Sichuan Key Laboratory of Fruit and Vegetable Postharvest Physiology, College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (Q.Z.); (Y.P.)
| | - Yue Peng
- Sichuan Key Laboratory of Fruit and Vegetable Postharvest Physiology, College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (Q.Z.); (Y.P.)
| | - Ruyue Cheng
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; (S.W.); (W.J.)
| |
Collapse
|
11
|
Sasaki H, Hayashi K, Imamura M, Hirota Y, Hosoki H, Nitta L, Furutani A, Shibata S. Combined resistant dextrin and low-dose Mg oxide administration increases short-chain fatty acid and lactic acid production by gut microbiota. J Nutr Biochem 2023; 120:109420. [PMID: 37516314 DOI: 10.1016/j.jnutbio.2023.109420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/23/2023] [Accepted: 07/22/2023] [Indexed: 07/31/2023]
Abstract
The consumption of resistant dextrin improves constipation, while its fermentation and degradation by the intestinal microbiota produce short-chain fatty acids (SCFA) and lactic acid, which have beneficial effects on host metabolism and immunity. Mg oxide (MgO) is an important mineral that is used to treat constipation. Therefore, resistant dextrin and MgO are often administered together to improve constipation. However, limited information is available regarding the effect of this combination on SCFA and lactic acid production. Crl:CD1(ICR) mice were fed a Mg-free diet with 5% resistant dextrin, followed by oral administration of MgO. We collected the cecum contents and measured SCFA and lactic acid levels. Additionally, the human subjects received resistant dextrin and Mg supplements as part of their habitual diet. The results of this study demonstrate that intestinal microbiota cannot promote SCFA and lactic acid production in the absence of Mg. In a mouse model, low doses of MgO promoted the production of SCFA and lactic acid, whereas high doses decreased their production. In humans, the combined consumption of resistant dextrin and Mg supplements increased the production of SCFA and lactic acid. The production of SCFA and lactic acid from dietary fiber may be augmented by the presence of MgO.
Collapse
Affiliation(s)
- Hiroyuki Sasaki
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Katsuki Hayashi
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Momoko Imamura
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Yuro Hirota
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Haruka Hosoki
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Lyie Nitta
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Akiko Furutani
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan; Faculty of Home Economics, Aikoku Gakuen Junior College, Edogawa-ku, Tokyo, Japan
| | - Shigenobu Shibata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan.
| |
Collapse
|
12
|
Compound treatment of thiolated citrus high-methoxyl pectin and sodium phosphate dibasic anhydrous improved gluten network structure. Food Chem 2023; 404:134770. [DOI: 10.1016/j.foodchem.2022.134770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/18/2022]
|
13
|
Carbohydrate-based functional ingredients derived from starch: Current status and future prospects. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Physical barrier effects of dietary fibers on lowering starch digestibility. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
xin T, Tang S, Su T, Huang Z, Huang F, Zhang R, Dong L, Deng M, Shen Y, Su D. Impact of replacing wheat flour with lychee juice by-products on bread quality characteristics and microstructure. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Preparation of high-quality resistant dextrin through pyrodextrin by a multienzyme complex. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Zhao L, Wu J, Liu Y, Wang H, Cao C. Effect of Lactobacillus rhamnosus GG fermentation on the structural and functional properties of dietary fiber in bamboo shoot and its application in bread. J Food Biochem 2022; 46:e14231. [PMID: 35535563 DOI: 10.1111/jfbc.14231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 12/01/2022]
Abstract
The purpose of this study was to investigate the effects of Lactobacillus rhamnosus GG (LGG) fermentation on the composition, structure, and functional properties of dietary fiber (DF) in bamboo shoot. Then, we added it to bread to evaluate the texture properties, digestive properties, and functionality of bread. After LGG fermentation, the DF was decomposed into pieces, which had stronger water-swelling capacity and nitrite adsorption capacity. The ability of producing short-chain fatty acids was significantly improved and the digestive resistance was remarkable enhanced as well. Except the bread hardness was increased, there was no significant difference in other texture properties when adding 3% FTDF-LGG to bread. It had good adsorption capacity of cholesterol and more than 25% reduced the release of reducing sugar. Overall, the technic of LGG fermentation had improved functional properties of DF in bamboo shoot, which could be applied to bread production for exerting its effects in the future. PRACTICAL APPLICATIONS: Bamboo shoots are immature and tender stems of bamboo, rich in nutritional value, and rich in DF. Bamboo shoot DF has been proven to have a variety of biological activities, and is the main material for bamboo shoot to exert functional activities. In this study, bamboo shoot DF was modified by LGG fermentation, which showed stronger functional activity, and was successfully applied to bread. This study lays the foundation for the fermented modified bamboo shoot DF and its application in food.
Collapse
Affiliation(s)
- Lili Zhao
- Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Jiayi Wu
- Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Yihang Liu
- Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Haixiang Wang
- Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Chongjiang Cao
- Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
18
|
Rao D, Wang L, Huo R, Su L, Guo Z, Yang W, Wei B, Tao X, Chen S, Wu J. Trehalose promotes high-level heterologous expression of 4,6-α-glucanotransferase GtfR2 in Escherichia coli and mechanistic analysis. Int J Biol Macromol 2022; 210:315-323. [DOI: 10.1016/j.ijbiomac.2022.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 11/05/2022]
|
19
|
Exploring the Role of Acacia ( Acacia seyal) and Cactus ( Opuntia ficus-indica) Gums on the Dough Performance and Quality Attributes of Breads and Cakes. Foods 2022; 11:foods11091208. [PMID: 35563930 PMCID: PMC9105275 DOI: 10.3390/foods11091208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
Two hydrocolloids, acacia gum and cactus gum, were tested in the current study to see if they could improve the quality of the dough or have an effect on the shelf life of pan bread and sponge cake. Both gums considerably (p < 0.05) enhanced the dough development time, softness, and mixing tolerance index while decreasing the water absorption. Although the dough was more stable with the addition of acacia gum than with cactus gum, the control sample had the highest peak, final, breakdown, and setback viscosities. Acacia gum, on the other hand, resulted in a higher wheat-flour-slurry pasting temperature (84.07 °C) than cactus gum (68.53 °C). The inclusion of both gums, particularly 3%, reduces the gel’s textural hardness, gumminess, chewiness, springiness, and adhesiveness. Lightness (L*) and yellowness (b*) were both increased by the addition of acacia gum to bread and cake, whereas the addition of cactus gum increased both color parameters for cakes. The use of acacia gum increased the bread and cake’s volume. Cactus gum, on the other hand, caused a decrease in bread hardness after 24 h and 96 h. The cake containing acacia gum, on the other hand, was the least stiff after both storage times. Similarly, sensory attributes such as the crumb color and overall acceptability of the bread and cake were improved by 3% with acacia gum. For these and other reasons, the addition of cactus and acacia gums to bread and cake increased their organoleptic qualities, controlled staining, and made them softer.
Collapse
|
20
|
Extraction and Characterization of Cellulose from Jerusalem Artichoke Residue and Its Application in Blueberry Preservation. Foods 2022; 11:foods11081065. [PMID: 35454652 PMCID: PMC9031470 DOI: 10.3390/foods11081065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022] Open
Abstract
The utilization of industrial by-products is becoming more and more important for resource utilization. In this study, soluble dietary fiber (SDF) was extracted from Jerusalem artichoke residue, and a series of characterizations of SDF were carried out. The results showed that SDF had good properties. SDF (0%, 0.1%, 0.2%, 0.3%, and 0.4%) and chitosan (2%) were further used to prepare the coating that was used for the preservation of blueberry. The chemical structure of the film was obtained by FT-IR and XRD analysis. The microstructure of the film was analyzed by SEM, and the properties of the film were tested. The blueberry fresh-keeping test proved that the SDF-added film could effectively prolong the quality of blueberries in storage for 16 days. After 16 days of storage, compared with the control group, the decay rate of the coating group with 0.2% SDF decreased by 16.3%, the consumption of organic acids decreased by 43.7%, and the content of anthocyanin increased by 29.3%. SDF has a potential application in food preservation.
Collapse
|
21
|
Study on the Effect of Crushed Rice-Lotus Seed Starch Reconstituted Rice on Lipid Metabolism Histology in Rats. J FOOD QUALITY 2022. [DOI: 10.1155/2022/9105936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The study investigated the changes of lipid metabolism histology in rats under the three groups of dietary modifications after dietary intervention in (Sprague-Dawley, SD) SD rats using lotus seed reconstituted rice, ordinary rice, and high-fat feed made from lotus seed starch-rice flour after extrusion and puffing. It was found that the high-fat feed could lead to the disorder of lipid metabolism in rats, and the accumulation of lipid metabolism substances caused by the high-fat feed was significantly increased; the intervention of ordinary rice and high-dose reconstituted rice revealed that the high-dose reconstituted rice could improve the disorder of lipid metabolism and the accumulation of lipid substances caused by the high-fat feed to a greater extent. The main lipid substances were PC, TAG, Cer, CE, SM, PE, LPC, Acar, DAG, FAHFA, OxPI, PI, SQDG, Cer/NS, GlcADG, HBMP, Cer/NDS, HexCer/NS, etc., and the study confirmed that the reconstituted rice made from lotus seeds in this experiment was better than ordinary rice, and the high-dose reconstituted rice obtained from the study has a better modulating effect on lipid metabolism disorders and organism damage caused by high-fat feed.
Collapse
|
22
|
Zhou Z, Ye F, Lei L, Zhou S, Zhao G. Fabricating low glycaemic index foods: Enlightened by the impacts of soluble dietary fibre on starch digestibility. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Effects of Konjac glucomannan with different viscosities on the rheological and microstructural properties of dough and the performance of steamed bread. Food Chem 2022; 368:130853. [PMID: 34425337 DOI: 10.1016/j.foodchem.2021.130853] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 07/16/2021] [Accepted: 08/09/2021] [Indexed: 02/08/2023]
Abstract
Konjac glucomannan (KGM) is used as an additive to improve the properties of wheat products. The effects of three types of KGM on the rheological properties and microstructure of dough, as well as the performance of steamed bread were investigated in this study. Particularly, dough with KGM displayed new features such as reduced peak viscosity, breakdown and setback. As the viscosity of KGM increased, the stability of the dough structure increased, while the viscosity and fluidity of the dough decreased. More interestingly, the gluten film of dough also increased with increasing substitution level and viscosity of KGM. Consistently, KGM with higher viscosity improved the quality of steamed bread. Generally, three types of KGM have different effects on the rheological characteristics and microstructure of dough, as well as the performance of steamed bread, which provide useful information for the proper application of KGM in wheat-based foods.
Collapse
|
24
|
Nguyen SN, Drawbridge P, Beta T. Resistant Starch in Wheat‐, Barley‐, Rye‐, and Oat‐Based Foods: A Review. STARCH-STARKE 2022. [DOI: 10.1002/star.202100251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Si Nhat Nguyen
- Department of Food & Human Nutritional Sciences University of Manitoba Winnipeg MB R3T 2N2 Canada
| | - Pamela Drawbridge
- Department of Food & Human Nutritional Sciences University of Manitoba Winnipeg MB R3T 2N2 Canada
| | - Trust Beta
- Department of Food & Human Nutritional Sciences University of Manitoba Winnipeg MB R3T 2N2 Canada
| |
Collapse
|
25
|
Ho LH, Tan TC, Chong LC. Designer foods as an effective approach to enhance disease preventative properties of food through its health functionalities. FUTURE FOODS 2022. [DOI: 10.1016/b978-0-323-91001-9.00031-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
26
|
Md Yunos NSH, Omar FN, Hafid HS, Mohammed MAP, Baharuddin AS, Wakisaka M. Experimental and numerical study of wheat and rice doughs. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Effect of Continuous and Discontinuous Microwave-Assisted Heating on Starch-Derived Dietary Fiber Production. Molecules 2021; 26:molecules26185619. [PMID: 34577093 PMCID: PMC8471463 DOI: 10.3390/molecules26185619] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 11/24/2022] Open
Abstract
Dietary fiber can be obtained by dextrinization, which occurs while heating starch in the presence of acids. During dextrinization, depolymerization, transglycosylation, and repolymerization occur, leading to structural changes responsible for increasing resistance to starch enzymatic digestion. The conventional dextrinization time can be decreased by using microwave-assisted heating. The main objective of this study was to obtain dietary fiber from acidified potato starch using continuous and discontinuous microwave-assisted heating and to investigate the structure and physicochemical properties of the resulting dextrins. Dextrins were characterized by water solubility, dextrose equivalent, and color parameters (L* a* b*). Total dietary fiber content was measured according to the AOAC 2009.01 method. Structural and morphological changes were determined by means of SEM, XRD, DSC, and GC-MS analyses. Microwave-assisted dextrinization of potato starch led to light yellow to brownish products with increased solubility in water and diminished crystallinity and gelatinization enthalpy. Dextrinization products contained glycosidic linkages and branched residues not present in native starch, indicative of its conversion into dietary fiber. Thus, microwave-assisted heating can induce structural changes in potato starch, originating products with a high level of dietary fiber content.
Collapse
|
28
|
Chen SX, Ni ZJ, Thakur K, Wang S, Zhang JG, Shang YF, Wei ZJ. Effect of grape seed power on the structural and physicochemical properties of wheat gluten in noodle preparation system. Food Chem 2021; 355:129500. [PMID: 33780794 DOI: 10.1016/j.foodchem.2021.129500] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/17/2022]
Abstract
Noodles were prepared using wheat flour supplemented with 1%, 3%, and 5% grape seed power (GSP). The farinograph properties of wheat flour, the textural properties of the dough, and thermal properties of the gluten were determined. The microstructure was analyzed by scanning electron and atomic force microscopy, and the effects of the addition of GSP on the physicochemical and structural properties (free sulfhydryl content, surface hydrophobic region, and secondary structure) of wheat gluten protein were analyzed. 1% GSP promoted the aggregation of gluten proteins by promoting hydrophobic interactions and hydrogen bonding, thus enhanced the noodle quality. Whereas, 3% and 5% GSP addition disrupted the disulfide bonds between gluten protein molecules and formed macromolecular aggregates linked to gluten proteins through non-covalent bonds and hydrophobic interactions, which prevented the formation of the gluten protein reticulation structure. Our study emphasized the interaction between wheat proteins and GSP in noodle making dough.
Collapse
Affiliation(s)
- Sheng-Xiong Chen
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China
| | - Zhi-Jing Ni
- Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, PR China
| | - Kiran Thakur
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, PR China
| | - Shaoyun Wang
- College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, PR China
| | - Jian-Guo Zhang
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, PR China
| | - Ya-Fang Shang
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China.
| | - Zhao-Jun Wei
- School of Food Science and Biological Engineering, Hefei University of Technology, Hefei 230009, PR China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, PR China.
| |
Collapse
|
29
|
Dietary fiber-gluten protein interaction in wheat flour dough: Analysis, consequences and proposed mechanisms. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106203] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Kłosok K, Welc R, Fornal E, Nawrocka A. Effects of Physical and Chemical Factors on the Structure of Gluten, Gliadins and Glutenins as Studied with Spectroscopic Methods. Molecules 2021; 26:508. [PMID: 33478043 PMCID: PMC7835854 DOI: 10.3390/molecules26020508] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 11/17/2022] Open
Abstract
This review presents applications of spectroscopic methods, infrared and Raman spectroscopies in the studies of the structure of gluten network and gluten proteins (gliadins and glutenins). Both methods provide complimentary information on the secondary and tertiary structure of the proteins including analysis of amide I and III bands, conformation of disulphide bridges, behaviour of tyrosine and tryptophan residues, and water populations. Changes in the gluten structure can be studied as an effect of dough mixing in different conditions (e.g., hydration level, temperature), dough freezing and frozen storage as well as addition of different compounds to the dough (e.g., dough improvers, dietary fibre preparations, polysaccharides and polyphenols). Additionally, effect of above mentioned factors can be determined in a common wheat dough, model dough (prepared from reconstituted flour containing only wheat starch and wheat gluten), gluten dough (lack of starch), and in gliadins and glutenins. The samples were studied in the hydrated state, in the form of powder, film or in solution. Analysis of the studies presented in this review indicates that an adequate amount of water is a critical factor affecting gluten structure.
Collapse
Affiliation(s)
- Konrad Kłosok
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland; (K.K.); (R.W.)
| | - Renata Welc
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland; (K.K.); (R.W.)
| | - Emilia Fornal
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland;
| | - Agnieszka Nawrocka
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland; (K.K.); (R.W.)
| |
Collapse
|
31
|
Zhen Y, Zhang T, Jiang B, Chen J. Purification and Characterization of Resistant Dextrin. Foods 2021; 10:185. [PMID: 33477619 PMCID: PMC7831330 DOI: 10.3390/foods10010185] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/05/2021] [Accepted: 01/13/2021] [Indexed: 12/29/2022] Open
Abstract
In this study, an efficient method for the purification of resistant dextrin (RD) using membrane filtration and anion exchange resin decolorization was developed, then the purified RD was characterized. In the membrane filtration stage, suspended solids in RD were completely removed, and the resulting product had a negligible turbidity of 2.70 ± 0.18 NTU. Furthermore, approximately half of the pigments were removed. Static decolorization experiments revealed that the D285 anion exchange resin exhibited the best decolorization ratio (D%), 84.5 ± 2.03%, and recovery ratio (R%), 82.8 ± 1.41%, among all the tested resins. Under optimal dynamic decolorization conditions, the D% and R% of RD were 86.26 ± 0.63% and 85.23 ± 0.42%, respectively. The decolorization efficiency of the D285 resin was superior to those of activated carbon and H2O2. Moreover, the chemical characteristics and molecular weight of RD did not change significantly after purification. The nuclear magnetic resonance spectroscopy of RD showed the formation of new glycosidic linkages that are resistant to digestive enzymes. The superior water solubility (99.14%), thermal stability (up to 200 °C), and rheological properties of RD make it possible to be widely used in food industry.
Collapse
Affiliation(s)
- Yuanhang Zhen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Y.Z.); (T.Z.); (J.C.)
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Y.Z.); (T.Z.); (J.C.)
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Y.Z.); (T.Z.); (J.C.)
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Jingjing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Y.Z.); (T.Z.); (J.C.)
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|