1
|
Qi J, Mao Y, Shi YC. Formation and crystalline structure of spherulites from pea and high amylose maize starches. Int J Biol Macromol 2025; 297:139571. [PMID: 39798731 DOI: 10.1016/j.ijbiomac.2025.139571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/04/2024] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
Starch spherulite is a unique form of resistant starch characterized by a spherical structure with crystalline lamellae that are radially oriented and may find applications in delivery of nutrients and bioactives to the lower gastrointestinal tract. Formation of starch spherulites generally requires heating to a high temperature followed by quenching and long crystallization time. The objectives of this study were to gain a deeper understanding of the factors influencing spherulite formation from pea starch (PS) and high-amylose maize starch (HAMS) and investigate if spherulites could be formed by a slow cooling rate and determine the crystalline structure and morphology of the spherulites formed. Remarkably, spherulite was observed immediately after PS and HAMS (25 % solids) were heated to 180 °C and cooled to 10 °C at a cooling rate of 10 °C/min in a differential scanning calorimeter (DSC) pan. Increasing heating temperature degraded starches more but improved the morphological quality of spherulites. Spherulite was better formed at 25 % solids content than 40 %. Both PS and HAMS formed spherulites with a predominant B-type crystalline pattern with 13-17 % crystallinity at ca. 10 % moisture content. PS displayed a single exothermic peak on cooling due to spherulite formation (recrystallization), whereas HAMS exhibited an extra peak due to the amylose-lipid complex formation. Spherulite production from HAMS and PS was successfully scaled up using a pressure reactor. This study provides a simplified approach for spherulite production, new potential utilization of PS and HAMS, and valuable insights for optimizing formation of starch spherulites.
Collapse
Affiliation(s)
- Jing Qi
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Yimin Mao
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA; NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Yong-Cheng Shi
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
2
|
Shi J, Zeng K, Guo J, Wang P, Ren F, Zhang S, Liu S. Influence of fractions with different molecular weight distributions from high-amylose starches on their digestibility after recrystallization. Carbohydr Polym 2025; 347:122736. [PMID: 39486966 DOI: 10.1016/j.carbpol.2024.122736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 11/04/2024]
Abstract
Type 3 resistant starches (RS3) were prepared from debranched starch (DBS) with different average degree of polymerization (DP) generated from high-amylose pea starch (HAPS) and high-amylose maize starch (HAMS). The results showed that RS3 with DP 35 and DP 39 had the highest RS content (74.5 % and 75.0 %, respectively) after cooking, which were remarkably higher than those of RS3 prepared from mixed fractions (60.6 % and 49.0 %, respectively) and other separated fractions (34.1-63.0 %). The multi-scale structures of RS3, including short-range molecular order, crystalline structure, micro-ordered aggregate structure, microscopic structure, and particle size distribution, were influenced by the average DP. Notably, RS content was positively correlated with the proportion of DP 51-80 and negatively correlated with the proportion of DP 21-30. DBS with DP 51-80 contributed to a more organized micro-ordered aggregate structure at nanometer scale and a larger aggregate structure at micrometer scale, which improved the resistance of RS3 to amylolytic enzymes. However, DBS with DP 21-30 tended to form random coil structure that were more easily to be digested. This research offered new insights into the structure-digestibility relationship of RS3, which is meaningful for the development of RS3 with high resistance to amylolytic enzymes after cooking.
Collapse
Affiliation(s)
- Jiali Shi
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Kaixiao Zeng
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Jiayue Guo
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Pengjie Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Fazheng Ren
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | | | - Siyuan Liu
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Hu N, Qi W, Zhu J, Zhao F, Xiu L, Zheng M, Liu J. Mechanistic studies on the effect of endogenous proteins on the starch retrogradation characteristics of corn before and after postharvest ripening. Food Chem X 2025; 25:102088. [PMID: 39758080 PMCID: PMC11699393 DOI: 10.1016/j.fochx.2024.102088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025] Open
Abstract
The corn starch-protein complexes before postharvest ripening (JD-0) and after postharvest ripening (JD-40) were subjected to protease treatment, and the influence of protein on starch retrogradation was studied. Kinetic studies of starch retrogradation showed that protein reduced the retrogradation rate constant (k) of starch by 25.46 % (JD-0) and 7.48 % (JD-40), respectively. This was mainly reflected in the inhibition of short-range order, relative crystallinity and helix structure formation in the retrogradation process. In addition, low field strength nuclear magnetic resonance (LF-NMR) analyses also revealed that proteins inhibited starch retrogradation by isolating the precipitation of free water during retrogradation, causing the decrease in the viscoelasticity and firmness of the starch gel. Therefore, the inhibitory effect of proteins on starch retrogradation before postharvest ripening of corn-based food products was more relevant.
Collapse
Affiliation(s)
- Nannan Hu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
- School of Life Science, Changchun Sci-Tech University, Changchun, Jilin 130600, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Weihua Qi
- School of Life Science, Changchun Sci-Tech University, Changchun, Jilin 130600, China
| | - Jinying Zhu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Fuyin Zhao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Lin Xiu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Mingzhu Zheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| |
Collapse
|
4
|
Halim A, Torley PJ, Farahnaky A, Majzoobi M. Investigating the Effects of Acid Hydrolysis on Physicochemical Properties of Quinoa and Faba Bean Starches as Compared to Cassava Starch. Foods 2024; 13:3885. [PMID: 39682957 DOI: 10.3390/foods13233885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
In response to the growing demand for high-quality food ingredients, starches from underutilised sources like quinoa and faba bean are gaining attention due to their unique properties and high tolerance to adverse environmental conditions. Acid hydrolysis is a well-established chemical method for producing modified starch with improved solubility, lower gelatinisation temperature, and reduced pasting viscosity. However, various outcomes can be achieved depending on the type of starch and modification conditions. This study comparatively investigated the effects of acid hydrolysis on the functional and physicochemical properties of emerging starches from quinoa and faba bean, with cassava starch serving as a reference from a leading source. The results demonstrated increased dietary fibre content across all three starches, with faba bean starch showing the most significant rise. Acid treatment also enhanced the crystallinity of the starches, with faba bean starch exhibiting the highest increase in relative crystallinity, which led to a shift towards higher temperatures in their thermal properties. Additionally, water solubility and oil adsorption capacity increased, while swelling power decreased following acid treatment. The acid treatment reduced the pasting properties of all samples, indicating that the modified starches were more resistant to heating and shearing in the rapid visco analyser. While quinoa starch gel remained soft after acid hydrolysis, the gel strength of cassava and faba bean starches improved significantly, making them suitable as plant-based gelling agents.
Collapse
Affiliation(s)
- Anthony Halim
- Discipline of Biosciences and Food Technology, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083, Australia
| | - Peter J Torley
- Discipline of Biosciences and Food Technology, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083, Australia
| | - Asgar Farahnaky
- Discipline of Biosciences and Food Technology, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083, Australia
| | - Mahsa Majzoobi
- Discipline of Biosciences and Food Technology, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083, Australia
| |
Collapse
|
5
|
Setiarto RHB, Adyeni WD, Puspawati NN, Wardana AA, Anshory L, Khusniati T. Physicochemical, enzymatic and fermentation modifications improve resistant starch levels and prebiotic properties of porang ( Amorphophallus oncophyllus) flour. Int J Food Sci Technol 2024; 59:9353-9367. [DOI: 10.1111/ijfs.17580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/26/2024] [Indexed: 01/03/2025]
Abstract
SummaryPorang tubers (Amorphophallus oncophyllus) are one of the Araceae family plants, which naturally contain resistant starch (RS). The RS is able to provide health impacts such as reducing the glycaemic index (GI), preventing the formation of gallstones and cardiovascular disease, and increasing mineral absorption. This research aims to improve the RS and prebiotic properties of porang flour through physical, chemical, enzymatic and microbiological modifications. Research methods include modification with physical treatment of autoclaving‐cooling one and two cycles (AC‐1S and AC‐2S), microwave‐cooling (MWC), heat moisture treatment (HMT), annealing (ANN), chemical treatment with acid hydrolysis (HA), enzymatic treatment with pullulanase debranching (DP) and microbiological treatment with combined heating and cooling fermentation (FAC). The results showed that physical, chemical, enzymatic and fermentation modification techniques increased the characteristics of RS and the prebiotic properties of porang flour. The best modification method for porang flour was obtained in the DP treatment with the morphological characteristics of sharp‐surfaced granules, total starch 39.81%, amylose content 3.73%, amylopectin content 36.08%, reducing sugar content 16.31%, power digestibility 43.81%, very rapidly digestible starch (VRDS) 8.59%, rapidly digestible starch (RDS) 11.08%, slowly digestible starch (SDS) 23.60%, RS 56.73%, resistance to gastric acid 98.60%, lactic acid bacteria (LAB) viability 11.87 log cfu/ml, prebiotic effect 3.07, prebiotic index 2.46 and prebiotic activity 1.77.
Collapse
Affiliation(s)
- R. Haryo Bimo Setiarto
- Research Center for Applied Microbiology National Research and Innovation Agency (BRIN) Main Road Jakarta‐Bogor Km 46, KST Soekarno, Cibinong Bogor West Java 16911 Indonesia
- Research Collaboration Center for Traditional Fermentation National Research and Innovation Agency (BRIN) Bogor West Java 16911 Indonesia
| | - Wayan Dewi Adyeni
- Department of Food Technology, Faculty of Agriculture Technology Udayana University Bali 80115 Indonesia
| | - Ni Nyoman Puspawati
- Department of Food Technology, Faculty of Agriculture Technology Udayana University Bali 80115 Indonesia
| | - Ata Aditya Wardana
- Food Technology Department, Faculty of Engineering Bina Nusantara University Jakarta 11480 Indonesia
| | - Lutfi Anshory
- Research Center for Applied Microbiology National Research and Innovation Agency (BRIN) Main Road Jakarta‐Bogor Km 46, KST Soekarno, Cibinong Bogor West Java 16911 Indonesia
| | - Tatik Khusniati
- Research Center for Applied Microbiology National Research and Innovation Agency (BRIN) Main Road Jakarta‐Bogor Km 46, KST Soekarno, Cibinong Bogor West Java 16911 Indonesia
| |
Collapse
|
6
|
Dong J, Wang Y, Fan R, Zhang B, Li X, Jin Z, Bai Y. Structural and property characterization of low-molecular-weight novel reuterans synthesized from pea starch by Limosilactobacillus reuteri N1 GtfB with 4,6-α-glucanotransferase II activity. Int J Biol Macromol 2024; 281:136396. [PMID: 39383921 DOI: 10.1016/j.ijbiomac.2024.136396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/10/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Promising novel α-glucanotransferases with starch-converting activity have recently emerged from the CAZy GH70 GtfB subfamily. In this study, we thoroughly investigated and elucidated the impact of the newly characterized 4,6-α-glucanotransferase II Limosilactobacillus reuteri N1 GtfB (LrN1 GtfB), which was capable of synthesizing linear (α1 → 6) and branched (α1 → 4,6) linkages, on the fine structure, rheology, and retrogradation properties of pea starch (PS). The results revealed that as the reaction time increased, the total (α1 → 6) linkages in linear chains and branching points of PS increased from 5.6 % to 18.7 %, the molecular weight decreased from 7.3 × 106 g/mol to 7.4 × 104 g/mol, and the percentage of short chains (DP ≤ 12) increased from 47.4 % to 92.7 %, thereby producing low-molecular-weight, short-clustered novel reuterans with new (α1 → 6) linkages in both linear chains and branches. Additionally, LrN1 GtfB-modified PS exhibited lower storage/loss modulus and weaker creep property, indicating a significant attenuation of the strength and rigidity of the modified gel structure. Moreover, products derived from pea starch and LrN1 GtfB exhibited notably low retrogradation properties. These findings provide insights into the potential application of GtfB-type α-glucanotransferases in starch-based products, thereby producing unique-structured α-glucans with versatile properties from starch.
Collapse
Affiliation(s)
- Jingjing Dong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yanli Wang
- College of Food Sciences and Engineering, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Rui Fan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Bo Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoxiao Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuxiang Bai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
7
|
Liu J, Dhital S, Ahmed Junejo S, Fu X, Huang Q, Zhang B. Structural changes and degradation mechanism of type 3 resistant starch during in vitro fecal fermentation. Food Res Int 2024; 190:114639. [PMID: 38945585 DOI: 10.1016/j.foodres.2024.114639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024]
Abstract
The colonic fermentation metabolites of resistant starch (RS) are recognized to have various health benefits. However, the relationship between the structural variation of RS and the colonic fermentation properties, remains inadequately studied, especially for type 3 resistant starch. The in vitro fecal fermentation properties with multi-structure evolution of A- and B-type polymorphic resistant starch spherulites (RSS) were investigated. Both polymorphic types of RSS showed similar fermentation rate and total short-chain fatty acid profiles, while the butyrate concentration of the A-type RSS subjected to 24 h of fermentation was significantly higher compared to B-type RSS. In the case of recrystallized starch spherulites, irrespective of the polymorphic type, gut bacteria preferentially degraded the intermediate chains and crystalline regions, as the local molecule-ordered area potentially serves as suitable attachment sites or surfaces for microbial enzymes.
Collapse
Affiliation(s)
- Jiaying Liu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Sushil Dhital
- Department of Chemical and Biological Engineering, Monash University, Clayton Campus, VIC 3800, Australia
| | - Shahid Ahmed Junejo
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Xiong Fu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Qiang Huang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Bin Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, Guangzhou 510640, China.
| |
Collapse
|
8
|
Miao T, Zhang X, Zhang C, Wu J, Zhu Y, Xiao M, Zhang N, Zhong Y, Liu Y, Lin Y, Wu Y, Li W, Song C, Liu Y, Wang X. Type 3 resistant starch from Canna edulis reduce lipid levels in patients with mild hyperlipidemia through altering gut microbiome: A double- blind randomized controlled trial. Pharmacol Res 2024; 205:107232. [PMID: 38825157 DOI: 10.1016/j.phrs.2024.107232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/04/2024]
Abstract
Type 3 resistant starch from Canna edulis (Ce-RS3) is an insoluble dietary fiber which could improve blood lipids in animals, but clinically robust evidence is still lacking. We performed a double-blind randomized controlled trial to assess the effects of Ce-RS3 on lipids in mild hyperlipidemia. One hundred and fifteen patients were included followed the recruitment criteria, and were randomly allocated to receive Ce-RS3 or placebo (native starch from Canna edulis) for 12 weeks (20 g/day). In addition to serum lipids, complete blood counts, serum inflammatory factors, antioxidant indexes, and dietary survey, 16 S rRNA sequencing technique was utilized to analyze the gut microbiota alterations. Targeted quantitative metabolomics (TQM) was used to detect metabolite changes. Compared with the placebo, Ce- RS3 significantly decreased levels of total cholesterol, lowdensity lipoprotein cholesterol, and non-high-density lipoprotein cholesterol, and increased the glutathione peroxidase. Based on the 16 S rRNA sequencing, TQM, the correlation analysis, as well as the Kyoto Encyclopedia of Genes (KEGG) and Genomes and Human Metabolome Database (HMDB) analysis, we found that Ce-RS3 could increase the abundances of genera Faecalibacterium and Agathobacter, while reduce the abundances of genera norank_f_Ruminococcaceae and Christensenellaceae_R-7_ group to regulate phenylalanine metabolism, which could reduce the fatty acid biosynthesis and fatty acid elongation in the mitochondria to lower blood lipids. Conclusively, we firstly confirmed the feasibility of Ce-RS3 for clinical application, which presents a novel, effective therapy for the mild hyperlipidemia. (Chictr. org. cn. Clinical study on anti-mild hyperlipidemia of Canna edulis RS3 resistant starch, ID Number: ChiCTR2200062871).
Collapse
Affiliation(s)
- Tingting Miao
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xinsheng Zhang
- The First Medical Center of PLA General Hospital of China, Beijing 100089, China
| | - Caijuan Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jiahui Wu
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yingli Zhu
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Maochun Xiao
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Nan Zhang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yucheng Zhong
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yu Liu
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yasi Lin
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yuanhua Wu
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guizhou 550001, China
| | - Wenmao Li
- Qianxinan Autonomous Prefecture Hospital of Traditional Chinese Medicine, Xingyi 562400, China
| | - Chunying Song
- Qianxinan Autonomous Prefecture Hospital of Traditional Chinese Medicine, Xingyi 562400, China
| | - Yinghua Liu
- The First Medical Center of PLA General Hospital of China, Beijing 100089, China.
| | - Xueyong Wang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
9
|
Huang G, McClements DJ, He K, Zhang Z, Lin Z, Xu Z, Zou Y, Jin Z, Chen L. Review of formation mechanisms and quality regulation of chewiness in staple foods: Rice, noodles, potatoes and bread. Food Res Int 2024; 187:114459. [PMID: 38763692 DOI: 10.1016/j.foodres.2024.114459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024]
Abstract
Staple foods serve as vital nutrient sources for the human body, and chewiness is an essential aspect of food texture. Age, specific preferences, and diminished eating functions have broadened the chewiness requirements for staple foods. Therefore, comprehending the formation mechanism of chewiness in staple foods and exploring approaches to modulate it becomes imperative. This article reviewed the formation mechanisms and quality control methods for chewiness in several of the most common staple foods (rice, noodles, potatoes and bread). It initially summarized the chewiness formation mechanisms under three distinct thermal processing methods: water medium, oil medium, and air medium processing. Subsequently, proposed some effective approaches for regulating chewiness based on mechanistic changes. Optimizing raw material composition, controlling processing conditions, and adopting innovative processing techniques can be utilized. Nonetheless, the precise adjustment of staple foods' chewiness remains a challenge due to their diversity and technical study limitations. Hence, further in-depth exploration of chewiness across different staple foods is warranted.
Collapse
Affiliation(s)
- Guifang Huang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | | | - Kuang He
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zipei Zhang
- Food Science Program, University of Missouri, Columbia, MO 65211, USA
| | - Ziqiang Lin
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhenlin Xu
- School of Food Science and Technology, South China Agricultural University, Guangzhou 510642, China
| | - Yidong Zou
- Skystone Feed Co., Ltd., Wuxi 214258, China
| | - Zhengyu Jin
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Long Chen
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
10
|
Akhila PP, Sunooj KV, Bangar SP, Aaliya B, Navaf M, Indumathy B, Yugeswaran S, Sinha SK, Mir SA, Mounir S, George J, Nemțanu MR. Assessing the impact of plasma-activated water-assisted heat-moisture treatment on the extrusion-recrystallization process of hausa potato starch. Carbohydr Polym 2024; 335:122081. [PMID: 38616099 DOI: 10.1016/j.carbpol.2024.122081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 04/16/2024]
Abstract
The study explored the plasma-activated water (PAW)-assisted heat-moisture treatment (HMT) on the structural, physico-chemical properties, and in vitro digestibility of extrusion-recrystallized starch. Native starch of hausa potatoes underwent modification through a dual process involving PAW-assisted HMT (PHMT) followed by extrusion-recrystallization (PERH) using a twin-screw extruder. The PHMT sample showed surface roughness and etching with a significantly greater (p ≤ 0.05) RC (20.12 %) and ΔH (5.86 J/g) compared to DHMT. In contrast, PERH-induced structural damage, resulting in an irregular block structure, and altered the crystalline pattern from A to B + V-type characterized by peaks at 17.04°, 19.74°, 22°, and 23.94°. DSC analysis showed two endothermic peaks in all the extrusion-recrystallized samples, having the initial peak attributed to the melting of structured amylopectin chains and the second one linked to the melting of complexes formed during retrogradation. Dual-modified samples displayed notably increased transition temperatures (To1 74.54 and 74.17 °C, To2 122.65 and 121.49 °C), along with increased RS content (43.76 %-45.30 %). This study envisages a novel approach for RS preparation and broadens the utilization of PAW in starch modification synergistically with environmentally friendly techniques.
Collapse
Affiliation(s)
| | | | - Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, 29634, USA
| | - Basheer Aaliya
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India
| | - Muhammed Navaf
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India
| | | | | | - Suraj Kumar Sinha
- Department of Physics, Pondicherry University, Puducherry 605014, India
| | - Shabir Ahmad Mir
- Department of Food Science and Technology, Government College for Women, MA Road, 14 Srinagar, Jammu, and Kashmir, India
| | - Sabah Mounir
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Johnsy George
- Food Engineering and Packaging Division, Defence Food Research Laboratory, Siddartha Nagar, Mysore 570011, India
| | - Monica-Roxana Nemțanu
- Electron Accelerators Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomiştilor St., P.O. Box MG-36, 077125 Bucharest-Măgurele, Romania
| |
Collapse
|
11
|
Zhang C, Tang L, Wang N, Wu J, Zhang D, Li H, Li Y, Yang L, Zhang N, Zhang Y, Wang X. Study of the self-assembly, drug encapsulating and delivering characteristics of short chain amylose-based type 3 resistant starch nanoparticles from Canna edulis. Int J Biol Macromol 2024; 262:130107. [PMID: 38350585 DOI: 10.1016/j.ijbiomac.2024.130107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/15/2024]
Abstract
In developing type 3 resistant starch (RS3) from Canna edulis for use as functional food ingredients, we investigated the synthesis of C. edulis RS3 nanoparticles. Simultaneously, we explored the potential of C. edulis short-chain amylose (SCA)-based RS3 nanoparticles (RS3N) as a targeted delivery system, with a specific focus on colon targeting, yielding promising insights. Our study revealed that the degree of polymerization (DP) of C. edulis SCA, particularly the chains of DP 36- 100, exhibited a robust correlation with the particle size and physicochemical characteristics of C. edulis SCA-based RS3N. Additionally, recrystallization temperature variation (4, 25, and 45 °C) significantly influenced the self-assembly behavior of C. edulis SCA, with the preparation at 4 °C resulting in more uniform particle size distributions. In further expanding the scope of applications for C. edulis SCA-based RS3N, we harnessed the potential of Fe3O4 and curcumin (CUR) as guest molecules to assess drug encapsulation and colon-targeting capabilities. Incorporating Fe3O4 into the self-assembly system led to the production of magnetic RS3N, confirming the successful encapsulation of Fe3O4 within C. edulis SCA-based RS3N. Furthermore, in vitro experiments have demonstrated that CUR-RS3N was stable in the gastrointestinal tract and gradually released curcumin with fermentation in the colonic environment. Collectively, these findings provide invaluable insights into the intricate self-assembly behavior of C. edulis SCA with varying fine structures and recrystallization temperatures during RS3N formation. Moreover, they underscore the colon-targeted properties of C. edulis SCA-based RS3N, opening promising avenues for its application within the food industry, particularly in advanced controlled drug delivery systems.
Collapse
Affiliation(s)
- Chi Zhang
- School of Medicine, Linyi University, Linyi 276000, Shandong, China
| | - Leimengyuan Tang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Nan Wang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Jiahui Wu
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Dachuan Zhang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Houxier Li
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Yan Li
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Li Yang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Nan Zhang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Yuan Zhang
- College of Biochemical Engineering, Beijing Union University, No. 18, Fatou Xili District, Chaoyang District, Beijing 100023, China.
| | - Xueyong Wang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China.
| |
Collapse
|
12
|
Zarski A, Kapusniak K, Ptak S, Rudlicka M, Coseri S, Kapusniak J. Functionalization Methods of Starch and Its Derivatives: From Old Limitations to New Possibilities. Polymers (Basel) 2024; 16:597. [PMID: 38475281 DOI: 10.3390/polym16050597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
It has long been known that starch as a raw material is of strategic importance for meeting primarily the nutritional needs of people around the world. Year by year, the demand not only for traditional but also for functional food based on starch and its derivatives is growing. Problems with the availability of petrochemical raw materials, as well as environmental problems with the recycling of post-production waste, make non-food industries also increasingly interested in this biopolymer. Its supporters will point out countless advantages such as wide availability, renewability, and biodegradability. Opponents, in turn, will argue that they will not balance the problems with its processing and storage and poor functional properties. Hence, the race to find new methods to improve starch properties towards multifunctionality is still ongoing. For these reasons, in the presented review, referring to the structure and physicochemical properties of starch, attempts were made to highlight not only the current limitations in its processing but also new possibilities. Attention was paid to progress in the non-selective and selective functionalization of starch to obtain materials with the greatest application potential in the food (resistant starch, dextrins, and maltodextrins) and/or in the non-food industries (hydrophobic and oxidized starch).
Collapse
Affiliation(s)
- Arkadiusz Zarski
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| | - Kamila Kapusniak
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| | - Sylwia Ptak
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| | - Magdalena Rudlicka
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| | - Sergiu Coseri
- "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, 41 A, Gr. Ghica Voda Alley, 700487 Iasi, Romania
| | - Janusz Kapusniak
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Ave., 42-200 Czestochowa, Poland
| |
Collapse
|
13
|
Niu H, Zhao F, Ji W, Ma L, Lu B, Yuan Y, Yue T. Structural, physicochemical properties and noodle-making potential of quinoa starch and type 3, type 4, and type 5 quinoa resistant starch. Int J Biol Macromol 2024; 258:128772. [PMID: 38103670 DOI: 10.1016/j.ijbiomac.2023.128772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/30/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
This study prepared type 3, type 4, and type 5 quinoa resistant starch (QRS3, QRS4, and QRS5) from quinoa starch (QS), compared their structural and physicochemical properties and evaluated their noodle-making potential. The results showed that the molecular weight of QRS3 decreased, the number of short-chain molecules increased, and its crystal type changed to B-type after gelatinization, enzymatic hydrolysis, and retrogradation. QRS4 is a phosphorylated cross-linked starch, with a surface morphology, particle size range, and crystal type similar to QS, but displaying modified thermodynamic properties. QRS5 is a complex of amylose and palmitic acid. It displays typical V-type crystals, mainly composed of long chain molecules and primarily exhibits a block morphology. The noodles prepared by replacing 20 % wheat flour with QS, QRS3 and QRS5 have higher hardness and are suitable for people who like elasticity and chewiness. QRS4 noodles are softer and suitable for people like elderly and infants who prefer soft foods. In conclusion, significant differences were evident between the fine structures, crystal types, physicochemical properties and potential applications of QS and the three QRSs. The results may expand the application of QS and QRS in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Haili Niu
- College of Food Science and Technology, Northwest University, Xi'an 710069, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Shaanxi, Xi'an 710069, China; Research Center of Food Safety Risk Assessment and Control, Shaanxi, Xi'an 710069, China; Innovative Transformation Platform of Food Safety and Nutritional Health, Shaanxi, Xi'an 710069, China
| | - Fangjia Zhao
- College of Food Science and Technology, Northwest University, Xi'an 710069, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Shaanxi, Xi'an 710069, China; Research Center of Food Safety Risk Assessment and Control, Shaanxi, Xi'an 710069, China; Innovative Transformation Platform of Food Safety and Nutritional Health, Shaanxi, Xi'an 710069, China
| | - Wenxin Ji
- College of Food Science and Technology, Northwest University, Xi'an 710069, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Shaanxi, Xi'an 710069, China; Research Center of Food Safety Risk Assessment and Control, Shaanxi, Xi'an 710069, China; Innovative Transformation Platform of Food Safety and Nutritional Health, Shaanxi, Xi'an 710069, China
| | - Langtian Ma
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Bozhi Lu
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yahong Yuan
- College of Food Science and Technology, Northwest University, Xi'an 710069, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Shaanxi, Xi'an 710069, China; Research Center of Food Safety Risk Assessment and Control, Shaanxi, Xi'an 710069, China; Innovative Transformation Platform of Food Safety and Nutritional Health, Shaanxi, Xi'an 710069, China
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an 710069, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Shaanxi, Xi'an 710069, China; Research Center of Food Safety Risk Assessment and Control, Shaanxi, Xi'an 710069, China; Innovative Transformation Platform of Food Safety and Nutritional Health, Shaanxi, Xi'an 710069, China.
| |
Collapse
|
14
|
Li G, Ge X, Guo C, Liu B. Effect of Ultrasonic Treatment on Structure and Physicochemical Properties of Pea Starch. Foods 2023; 12:2620. [PMID: 37444355 DOI: 10.3390/foods12132620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
The effects of ultrasonic treatment on the structure and physicochemical properties of pea starch were investigated in this study. The results showed that ultrasonic treatment increased the hydrolysis rate and particle size of pea starch. In the process of treatment, there were some depressions and pores on the surface of pea starch granules. Although the crystallization type of starch was retained, its crystallinity decreased. The pasting temperature of pea starch remained stable after ultrasonic treatment, but its peak viscosity, trough viscosity, cold viscosity, breakdown viscosity and setback viscosity all declined significantly. The transparency of starch paste decreased, but proper ultrasonic treatment could improve the strength of starch gel. The obtained results can provide a reference for the physical modification of pea starch.
Collapse
Affiliation(s)
- Gang Li
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xiaohong Ge
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Changsheng Guo
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Benguo Liu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| |
Collapse
|
15
|
Wang M, Liu G, Li J, Wang W, Hu A, Zheng J. Structural and physicochemical properties of resistant starch under combined treatments of ultrasound, microwave, and enzyme. Int J Biol Macromol 2023; 232:123331. [PMID: 36682665 DOI: 10.1016/j.ijbiomac.2023.123331] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/04/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
The structural characteristics and physicochemical properties of native corn starch (NCS) and resistant starch (RS) prepared by enzymatic hydrolysis (RS-E), microwave-enzymatic hydrolysis (RS-ME), ultrasound assisted enzymatic hydrolysis (RS-UE), and microwave-ultrasound assisted enzymatic hydrolysis (RS-MUE) were investigated. The results showed that the combined treatments of ultrasound, microwave, and enzyme resulted in increases in RS content, amylose content, and solubility with a decrease in swelling power. RS-MUE exhibited the lowest digestibility, with a 41.71 % RS content. Particle-size distribution and scanning electron microscopy analyses demonstrated that RS samples exhibited larger granule sizes and rougher surfaces with irregular shapes. The Fourier transform infrared spectroscopy and X-ray diffraction pattern analysis demonstrated that no new groups were created during the modification processes, the crystal structure of all RS samples changed from A to B + V, and the short-range order and relative crystallinity of RS-E, RS-ME, RS-UE, and RS-MUE increased. RS-MUE exhibited the highest molecular order R1047/1022 value (0.8769) and relative crystallinity (45.54 %). These results suggested that the new technology combining microwave, ultrasound, and enzyme for improving RS content is effective and has potential for application in the production of RS and low glycemic index foods.
Collapse
Affiliation(s)
- Mengting Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China
| | - Guangxin Liu
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China
| | - Jing Li
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China
| | - Wei Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China
| | - Aijun Hu
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China.
| | - Jie Zheng
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; Key Laboratory of Marine Resource Chemistry and Food Technology (Tianjin University of Science & Technology), Ministry of Education, Tianjin 300457, PR China.
| |
Collapse
|
16
|
Scott G, Awika JM. Effect of protein-starch interactions on starch retrogradation and implications for food product quality. Compr Rev Food Sci Food Saf 2023; 22:2081-2111. [PMID: 36945176 DOI: 10.1111/1541-4337.13141] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/16/2023] [Accepted: 02/23/2023] [Indexed: 03/23/2023]
Abstract
Starch retrogradation is a consequential part of food processing that greatly impacts the texture and acceptability of products containing both starch and proteins, but the effect of proteins on starch retrogradation has only recently been explored. With the increased popularity of plant-based proteins in recent years, incorporation of proteins into starch-based products is more commonplace. These formulation changes may have unforeseen effects on ingredient functionality and sensory outcomes of starch-containing products during storage, which makes the investigation of protein-starch interactions and subsequent impact on starch retrogradation and product quality essential. Protein can inhibit or promote starch retrogradation based on its exposed residues. Charged residues promote charge-dipole interactions between starch-bound phosphate and protein, hydrophobic groups restrict amylose release and reassociation, while hydrophilic groups impact water/molecular mobility. Covalent bonds (disulfide linkages) formed between proteins may enhance starch retrogradation, while glycosidic bonds formed between starch and protein during high-temperature processing may limit starch retrogradation. With these protein-starch interactions in mind, products can be formulated with proteins that enhance or delay textural changes in starch-containing products. Future work to understand the impact of starch-protein interactions on retrogradation should focus on integrating the fields of proteomics and carbohydrate chemistry. This interdisciplinary approach should result in better methods to characterize mechanisms of interaction between starch and proteins to optimize their food applications. This review provides useful interpretations of current literature characterizing the mechanistic effect of protein on starch retrogradation.
Collapse
Affiliation(s)
- Gabrielle Scott
- Department of Food Science and Technology, Texas A&M University, College Station, Texas, USA
| | - Joseph M Awika
- Department of Food Science and Technology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
17
|
Retrogradation behavior of starch dough prepared from damaged cassava starch and its application in functional gluten-free noodles. Int J Biol Macromol 2023; 236:123996. [PMID: 36907304 DOI: 10.1016/j.ijbiomac.2023.123996] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/14/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023]
Abstract
A novel starch-based model dough used to exploit staple foods was demonstrated to be feasible, which was based on damaged cassava starch (DCS) obtained by mechanical activation (MA). This study focused on the retrogradation behavior of starch dough and the feasibility of its application in functional gluten-free noodles. Starch retrogradation behavior was investigated by low field-nuclear magnetic resonance (LF-NMR), X-ray diffraction (XRD), scanning electron microscope (SEM), texture profile and resistant starch (RS) content analysis. During starch retrogradation, water migration, starch recrystallization and microstructure changes were observed. Short-term retrogradation could significantly alter the texture properties of starch dough, and long-term retrogradation promoted the formation of RS. The damage level influenced starch retrogradation, and damaged starch with the increasing damage level was beneficial to facilitate the starch retrogradation. Gluten-free noodles made from the retrograded starch had acceptable sensory quality, with darker color and better viscoelasticity than Udon noodles. This work provides a novel strategy for the proper utilization of starch retrogradation for the development of functional foods.
Collapse
|
18
|
Yuan TZ, Ai Y. Pasting and gelation behaviors and in vitro digestibility of high-amylose maize starch blended with wheat or potato starch evaluated at different heating temperatures. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
19
|
Zhang X, Zhao L, Zhou W, Liu X, Hu Z, Wang K. Variations in the Multilevel Structure, Gelatinization and Digestibility of Litchi Seed Starches from Different Varieties. Foods 2022; 11:2821. [PMID: 36140947 PMCID: PMC9497979 DOI: 10.3390/foods11182821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Litchi seed starches from six varieties, as compared with maize starch, were studied for their multilevel structures, thermal and digestion properties to understand the distinct feather of each variety and provide guidance for their utilization in multi-industries. The results showed different varieties of litchi seed starch shared similar appearances with granules in oval shape and with a smooth surface. Starch granules of all the varieties exhibited typical bimodal size distributions consisting of small (<40 μm) and large granules (40−110 μm), although their relative proportions were largely dependent on variety. Huaizhi had the largest D50 value, whilst Guiwei showed the lowest. All the litchi seed starches had A-type crystalline with relative crystallinity varying from 20.67% (Huaizhi) to 26.76% (Guiwei). Similarly, the semi-crystalline structure varied apparently with variety. As to the chain-length distribution, only slight differences were observed among varieties, except Huaizhi displayed apparently higher amylose content (34.3%) and Guiwei showed the lowest (23.6%). Significant differences were also present in the gelatinization properties. Huaizhi seed starch showed significantly higher gelatinization temperatures and lower enthalpy change than the others. The digestibility of cooked litchi seed starches was only slightly different among varieties, suggesting variety is not the most critical factor regulating the digestibility of cooked litchi seed starch.
Collapse
Affiliation(s)
- Xin Zhang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agricultural, Guangzhou 510642, China
| | - Lei Zhao
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agricultural, Guangzhou 510642, China
| | - Wanxia Zhou
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Guangzhou Uniasia Cosmetics Technology Co., Ltd., Guangzhou 510640, China
| | - Xuwei Liu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agricultural, Guangzhou 510642, China
| | - Zhuoyan Hu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agricultural, Guangzhou 510642, China
| | - Kai Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agricultural, Guangzhou 510642, China
| |
Collapse
|
20
|
Li D, Yuan TZ, Li J, Wanasundara JPD, Tulbek MC, Ai Y. Understanding structure, functionality, and digestibility of faba bean starch for potential industrial uses. Cereal Chem 2022. [DOI: 10.1002/cche.10594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dongxing Li
- Department of Food and Bioproduct SciencesUniversity of SaskatchewanSaskatoonCanada
| | - Tommy Z. Yuan
- Department of Food and Bioproduct SciencesUniversity of SaskatchewanSaskatoonCanada
| | - Jiayi Li
- Department of Food and Bioproduct SciencesUniversity of SaskatchewanSaskatoonCanada
| | | | | | - Yongfeng Ai
- Department of Food and Bioproduct SciencesUniversity of SaskatchewanSaskatoonCanada
| |
Collapse
|
21
|
Biochemical markers for low glycemic index and approaches to alter starch digestibility in rice. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Characterization of resistant starch nanoparticles prepared via debranching and nanoprecipitation. Food Chem 2022; 369:130824. [PMID: 34438341 DOI: 10.1016/j.foodchem.2021.130824] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/16/2021] [Accepted: 08/07/2021] [Indexed: 11/24/2022]
Abstract
Cyperus esculentus starch was treated by pullulanase debranching and nanoprecipitation to prepare resistant starch nanoparticles. Amylose contents, rheological properties of debranched starch and the size, crystalline structure, resistant starch contents of the prepared starch nanoparticles were investigated. The results of amylose contents showed that enzymatic hydrolysis 4 h was the most appropriate enzymatic hydrolysis time. Dynamic light scattering analysis and scanning electron microscopy observations showed that when the starch solution was added to the ethanol, the larger the amount of ethanol, the more conducive to the formation of small size starch nanoparticles. When volume ratio of starch solution/ethanol was 1/5, the particle size was 271.1 nm, the content of resistant starch was higher (15.28%). X-ray diffraction results indicated that resistant starch nanoparticles had V-type crystalline structure. Pullulanase debranching and nanoprecipitation can be utilized to prepare smaller size of Cyperus esculentus resistant starch with higher efficiency.
Collapse
|
23
|
Fan L, Ye Q, Lu W, Chen D, Zhang C, Xiao L, Meng X, Lee YC, Wang HMD, Xiao C. The properties and preparation of functional starch: a review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2015375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Lvting Fan
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
- College of Food Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Qin Ye
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Wenjing Lu
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Di Chen
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Cen Zhang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Lihan Xiao
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Xianghe Meng
- College of Food Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Yi-Chieh Lee
- Department of Life Science, National Chung Hsing University, Taichung City, Taiwan
| | - Hui-Min David Wang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung City, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City, Taiwan
| | - Chaogeng Xiao
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
24
|
Li J, Li L, Zhu J, Ai Y. Utilization of maltogenic α-amylase treatment to enhance the functional properties and reduce the digestibility of pulse starches. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Xiao Y, Wu X, Zhang B, Luo F, Lin Q, Ding Y. Understanding the aggregation structure, digestive and rheological properties of corn, potato, and pea starches modified by ultrasonic frequency. Int J Biol Macromol 2021; 189:1008-1019. [PMID: 34455004 DOI: 10.1016/j.ijbiomac.2021.08.163] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/20/2022]
Abstract
Corn starch (CS), potato starch (PtS), and pea starch (PS) were modified by ultrasonic frequency (codes as UFCS, UFPtS and UFPS), and changes in aggregation structure, digestibility and rheology were investigated. For UFCS, the apparent amylose content and gelatinization enthalpy (∆H) decreased, while the R1047/1022 values and relative crystallinity (RC) increased under lower ultrasonic frequencies (20 kHz and 25 kHz). For UFPtS, the apparent amylose content, R1047/1022 values and RC increased, while the ∆H decreased under a higher ultrasonic frequency (28 kHz). For UFPS, the apparent amylose content, R1047/1022 values, RC, ∆H decreased at 20 kHz, 25 kHz and 28 kHz. Cracks were observed on the surface of UFCS, UFPtS and UFPS. These aggregation structure changes increased the resistant starch content to 31.11% (20 kHz) and 26.45% (25 kHz) for UFCS and to 39.68% (28 kHz) for UFPtS, but decreased the resistant starch content to 18.46% (28 kHz) for UFPS. Consistency coefficient, storage modulus, and loss modulus of UFCS, UFPtS and UFPS increased, while the flow behavior index and damping factor decreased. Results indicated that CS, PtS and PS had diverse digestion and rheology behaviors after ultrasonic frequency modification, which fulfilled different demands in starch-based products.
Collapse
Affiliation(s)
- Yiwei Xiao
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaonian Wu
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Biao Zhang
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Feijun Luo
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qinlu Lin
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yongbo Ding
- National Engineering Laboratory for Rice and By-product Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
26
|
Zhang C, Qiu M, Wang T, Luo L, Xu W, Wu J, Zhao F, Liu K, Zhang Y, Wang X. Preparation, structure characterization, and specific gut microbiota properties related to anti-hyperlipidemic action of type 3 resistant starch from Canna edulis. Food Chem 2021; 351:129340. [PMID: 33662904 DOI: 10.1016/j.foodchem.2021.129340] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 01/27/2021] [Accepted: 02/08/2021] [Indexed: 01/04/2023]
Abstract
Type 3 resistant starch (RS3) was developed from Canna edulis (Ce) native starch (NS) through dual enzymatic hydrolysis and recrystallization. Thereafter, the processed Ce-RS3 was subjected to systematic characterizations for its structural properties, anti-hyperlipidemic effect, and in vivo gut microbiota modulatory function. The Ce-RS3 content was increased to 49.11% after processing under optimal conditions. Compared with NS, Ce-RS3 maintained its B-type crystallization without introducing new chemical groups. Meanwhile, it displayed coarse surfaces, higher crystallinity, more ordered structures, and a higher proportion of chains with degree of polymerization (DP) 37-100. Ce-RS3 intervention significantly alleviated dyslipidemia in hyperlipidemic mice, which was associated with increased gut microbial diversity and unique microbial enrichment, potentially mediated by its fine structure. These observations are valuable for developing RS3 from C. edulis for prebiotics applications and support the potential strategy that utilizes well-designed RS to modulate specific bacterial populations to improve health.
Collapse
Affiliation(s)
- Chi Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No.11 North 3rd Ring East Road, Chao-Yang District, Beijing 100029, China; Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Chao-Yang District, Beijing 100029, China; College of Biochemical Engineering, Beijing Union University, No. 18, Fatou Xili District, Chaoyang District, Beijing 100023, China
| | - Minyi Qiu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No.11 North 3rd Ring East Road, Chao-Yang District, Beijing 100029, China; Pharmacy Department, Peking University People's Hospital, No. 11, Xizhimen Street, Xicheng District, Beijing 100044, China
| | - Ting Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Chao-Yang District, Beijing 100029, China
| | - Linglong Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No.11 North 3rd Ring East Road, Chao-Yang District, Beijing 100029, China
| | - Wenjuan Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No.11 North 3rd Ring East Road, Chao-Yang District, Beijing 100029, China
| | - Jiahui Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No.11 North 3rd Ring East Road, Chao-Yang District, Beijing 100029, China
| | - Fangyuan Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No.11 North 3rd Ring East Road, Chao-Yang District, Beijing 100029, China
| | - Kaiyang Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No.11 North 3rd Ring East Road, Chao-Yang District, Beijing 100029, China
| | - Yuan Zhang
- College of Biochemical Engineering, Beijing Union University, No. 18, Fatou Xili District, Chaoyang District, Beijing 100023, China.
| | - Xueyong Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, No.11 North 3rd Ring East Road, Chao-Yang District, Beijing 100029, China; Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Chao-Yang District, Beijing 100029, China.
| |
Collapse
|
27
|
Xia C, Zhong L, Wang J, Zhang L, Chen X, Ji H, Ma S, Dong W, Ye X, Huang Y, Li Z, Cui Z. Structural and digestion properties of potato starch modified using an efficient starch branching enzyme AqGBE. Int J Biol Macromol 2021; 184:551-557. [PMID: 34171255 DOI: 10.1016/j.ijbiomac.2021.06.135] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/24/2021] [Accepted: 06/20/2021] [Indexed: 11/25/2022]
Abstract
Modified potato starch with slower digestion may aid the development of new starch derivatives with improved nutritional values, and strategies to increase nutritional fractions such as resistant starch (RS) are desired. In this study, a correspondence between starch structure and enzymatic resistance was provided based on the efficient branching enzyme AqGBE, and modified starches with different amylose content (Control, 100%; PS1, 90%; PS2, 72%; PS3, 32%; PS4, 18%) were prepared. Through SEM observation, NMR and X-ray diffraction analyses, we identified that an increased proportion of α-1,6-linked branches in potato starch changes its state of granule into large pieces with crystallinity. Molecular weight and chain-length distribution analysis showed a decrease of molecular weight (from 1.1 × 106 to 1.1 × 105 g/mol) without an obvious change of chain-length distribution in PS1, while PS2-4 exhibited an increased proportion of DP 6-12 with a stable molecular weight distribution, indicating a distinct model of structural modification by AqGBE. The enhancement of peak viscosity was related to increased hydrophobic interactions and pieces state of PS1, while the contents of SDS and RS in PS1 increased by 37.7 and 49.4%, respectively. Our result provides an alternative way to increase the RS content of potato starch by branching modification.
Collapse
Affiliation(s)
- Chengyao Xia
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lingli Zhong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Juying Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lei Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaopei Chen
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hangyan Ji
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shiyun Ma
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
28
|
Suárez-Diéguez T, Pérez-Moreno F, Ariza-Ortega JA, López-Rodríguez G, Nieto JA. Obtention and characterization of resistant starch from creole faba bean (Vicia faba L. creole) as a promising functional ingredient. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
29
|
Ren Y, Yuan TZ, Chigwedere CM, Ai Y. A current review of structure, functional properties, and industrial applications of pulse starches for value-added utilization. Compr Rev Food Sci Food Saf 2021; 20:3061-3092. [PMID: 33798276 DOI: 10.1111/1541-4337.12735] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/28/2021] [Accepted: 02/06/2021] [Indexed: 12/22/2022]
Abstract
Pulse crops have received growing attention from the agri-food sector because they can provide advantageous health benefits and offer a promising source of starch and protein. Pea, lentil, and faba bean are the three leading pulse crops utilized for extracting protein concentrate/isolate in food industry, which simultaneously generates a rising volume of pulse starch as a co-product. Pulse starch can be fractionated from seeds using dry and wet methods. Compared with most commercial starches, pea, lentil, and faba bean starches have relatively high amylose contents, longer amylopectin branch chains, and characteristic C-type polymorphic arrangement in the granules. The described molecular and granular structures of the pulse starches impart unique functional attributes, including high final viscosity during pasting, strong gelling property, and relatively low digestibility in a granular form. Starch isolated from wrinkled pea-a high-amylose mutant of this pulse crop-possesses an even higher amylose content and longer branch chains of amylopectin than smooth pea, lentil, and faba bean starches, which make the physicochemical properties and digestibility of the former distinctively different from those of common pulse starches. The special functional properties of pulse starches promote their applications in food, feed, bioplastic and other industrial products, which can be further expanded by modifying them through chemical, physical and/or enzymatic approaches. Future research directions to increase the fractionation efficiency, improve the physicochemical properties, and enhance the industrial utilization of pulse starches have also been proposed. The comprehensive information covered in this review will be beneficial for the pulse industry to develop effective strategies to generate value from pulse starch.
Collapse
Affiliation(s)
- Yikai Ren
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Tommy Z Yuan
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Canada
| | | | - Yongfeng Ai
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
30
|
Li C, Hu Y. Effects of acid hydrolysis on the evolution of starch fine molecular structures and gelatinization properties. Food Chem 2021; 353:129449. [PMID: 33714112 DOI: 10.1016/j.foodchem.2021.129449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/03/2021] [Accepted: 02/20/2021] [Indexed: 02/06/2023]
Abstract
Effects of acid hydrolysis on amylose molecular structures and their relations to starch gelatinization properties were investigated. First-order kinetics models were applied to fit the evolution curve of starch chain-length and molecular size by acid hydrolysis treatment. Results showed that a single hydrolysis phase was involved in the degradation of waxy maize starch chains, while two distinct phases existed for the degradation of maize, high amylose maize and sago starch chains. The fast hydrolysis phase involved degradation of amylose chains with DP > ~300 and amylopectin long intra-cluster branches, while amylose chains with DP < ~300 was involved in the slow hydrolysis phase. Amylose molecules with DP ~ 300 were proposed to impact starch gelatinization properties by interaction with cut-off amylopectin double helices and formation of amylose crystallites/entanglements. This study could help food industry precisely control amylose molecular structures by acid hydrolysis treatment to develop starchy foods with desirable properties.
Collapse
Affiliation(s)
- Cheng Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development of Yangzhou University, Yangzhou 225009, Jiangsu, China.
| | - Yiming Hu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200031, China
| |
Collapse
|
31
|
Cui W, Ma Z, Li X, Hu X. Structural rearrangement of native and processed pea starches following simulated digestion in vitro and fermentation characteristics of their resistant starch residues using human fecal inoculum. Int J Biol Macromol 2021; 172:490-502. [PMID: 33472022 DOI: 10.1016/j.ijbiomac.2021.01.092] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/27/2020] [Accepted: 01/14/2021] [Indexed: 12/11/2022]
Abstract
Pea starches, in both native (NPS) and retrograded-autoclaved forms (RAPS), were subjected to simulated gastrointestinal (GI) digestion in vitro, their multi-scale structural characteristics, morphological features, molecular distribution and thermal properties were characterized. A gradual increase in the short-/long-range crystallinity, melting enthalpy of gelatinization on increasing digestion time was observed for both the native and retrograded-autoclaved pea starch samples based on the X-ray diffraction, Fourier-transform infrared spectra, solid-state 13CNMR and differential scanning calorimetry measurements. It was especially noticed that the growth rate of crystallinity and double helices, as well as the decrease in Mw values were evidently greater for RAPS than for NPS. To investigate how different molecular fine structure of pea starch substrate affects the gut microbiota shifts and dynamic short-chain fatty acid profile, their resistant starch residues obtained from both native and retrograded-autoclaved pea starch after 8 h of simulated GI tract digestion was used as the fermentation substrate. The levels of acetate, propionate and butyrate gradually increased with the increasing fermentation time for NPS and RAPS. In comparison to the blank control (i.e., the group without the addition of carbohydrate), the fermented NPS and RAPS obviously resulted in an increased abundance of Firmicutes and Bacteroidetes, accompanied by a decrease in Proteobacteria, Actinobacteria and Verrucomicrobia. Both NPS and RAPS promoted different shifts in the microbial community at the genus level, with an increase in the abundance of Bacteroides, Megamonas and Bifidobacterium, as well as a reduction in the abundance of Fusobacterium, Faecalibacterium and Lachnoclostridium in comparison to the blank control samples.
Collapse
Affiliation(s)
- Wenxin Cui
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Zhen Ma
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, China.
| | - Xiaoping Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Xinzhong Hu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| |
Collapse
|