1
|
Liang T, Jing P, He J. Nano techniques: an updated review focused on anthocyanin stability. Crit Rev Food Sci Nutr 2024; 64:11985-12008. [PMID: 37574589 DOI: 10.1080/10408398.2023.2245893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Anthocyanins (ACNs) are one of the subgroups of flavonoids and getting intensive attraction due to the nutritional values. However, their application of ACNs is limited due to their poor stability and bioavailability. Accordingly, nanoencapsulation has been developed to enhance its stability and bio-efficacy. This review focuses on the nano-technique applications of delivery systems that be used for ACNs stabilization, with an emphasis on physicochemical stability and health benefits. ACNs incorporated with delivery systems in forms of nano-particles and fibrils can achieve advanced functions, such as improved stability, enhanced bioavailability, and controlled release. Also, the toxicological evaluation of nano delivery systems is summarized. Additionally, this review summarizes the challenges and suggests the further perspectives for the further application of ACNs delivery systems in food and medical fields.
Collapse
Affiliation(s)
- Tisong Liang
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Pu Jing
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jian He
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd, Hohhot, China
| |
Collapse
|
2
|
Ivane NMA, Wang W, Ma Q, Wang J, Sun J. Harnessing the health benefits of purple and yellow-fleshed sweet potatoes: Phytochemical composition, stabilization methods, and industrial utilization- A review. Food Chem X 2024; 23:101462. [PMID: 38974195 PMCID: PMC11225668 DOI: 10.1016/j.fochx.2024.101462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/20/2024] [Accepted: 05/09/2024] [Indexed: 07/09/2024] Open
Abstract
Purple-fleshed sweet potato (PFSP) and yellow-fleshed sweet potato (YFSP) are crops highly valued for their nutritional benefits and rich bioactive compounds. These compounds include carotenoids, flavonoids (including anthocyanins), and phenolic acids etc. which are present in both the leaves and roots of these sweet potatoes. PFSP and YFSP offer numerous health benefits, such as antioxidant, anti-inflammatory, anti-cancer, and neuroprotective properties. The antioxidant activity of these sweet potatoes holds significant potential for various industries, including food, pharmaceutical, and cosmetics. However, a challenge in utilizing PFSP and YFSP is their susceptibility to rapid oxidation and color fading during processing and storage. To address this issue and enhance the nutritional value and shelf life of food products, researchers have explored preservation methods such as co-pigmentation and encapsulation. While YFSP has not been extensively studied, this review provides a comprehensive summary of the nutritional value, phytochemical composition, health benefits, stabilization techniques for phytochemical, and industrial applications of both PFSP and YFSP in the food industry. Additionally, the comparison between PFSP and YFSP highlights their similarities and differences, shedding light on their potential uses and benefits in various food products.
Collapse
Affiliation(s)
- Ngouana Moffo A. Ivane
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Lekai South Street, Lianchi, Baoding 071000, China
| | - Wenxiu Wang
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Lekai South Street, Lianchi, Baoding 071000, China
- Hebei Technology Innovation Centre of Agricultural Products Processing, Baoding 071000, China
| | - Qianyun Ma
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Lekai South Street, Lianchi, Baoding 071000, China
- Hebei Technology Innovation Centre of Agricultural Products Processing, Baoding 071000, China
| | - Jie Wang
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Lekai South Street, Lianchi, Baoding 071000, China
- Hebei Technology Innovation Centre of Agricultural Products Processing, Baoding 071000, China
| | - Jianfeng Sun
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Lekai South Street, Lianchi, Baoding 071000, China
- Hebei Technology Innovation Centre of Agricultural Products Processing, Baoding 071000, China
- Hebei Technology Innovation Center of Potato Processing, Hebei 076576, China
| |
Collapse
|
3
|
Yun D, Li C, Sun J, Xu F, Tang C, Liu J. A comparative study on the structure, physical property and halochromic ability of shrimp freshness indicators produced from nine varieties of steamed purple sweet potato. Food Chem 2024; 449:139222. [PMID: 38583398 DOI: 10.1016/j.foodchem.2024.139222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/13/2024] [Accepted: 03/31/2024] [Indexed: 04/09/2024]
Abstract
Nine varieties of purple sweet potato were steamed and used for the production of shrimp freshness indicators. The impact of purple sweet potato's variety on the structure, physical property and halochromic ability of indicators was determined. Results showed different varieties of purple sweet potato had different starch, crude fiber, pectin, protein, fat and total anthocyanin contents. The microstructure, crystallinity, moisture content, water vapor permeability, tensile strength and elongation at break of indicators were affected by crude fiber content in purple sweet potato. The color, transmission and halochromic ability of indicators was associated with the total anthocyanin content in purple sweet potato. Freshness indicators produced from Fuzi No. 1, Ganzi No. 6, Ningzi No. 2, Ningzi No. 4, Qining No. 2 and Qining No. 18 of purple sweet potato were suitable to indicate shrimp freshness. This study provides useful information on screening suitable varieties of purple sweet potato for intelligent packaging.
Collapse
Affiliation(s)
- Dawei Yun
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Chenchen Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Jian Sun
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Xuzhou 221131, Jiangsu, PR China
| | - Fengfeng Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Chao Tang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, PR China.
| |
Collapse
|
4
|
Xue H, Zha M, Tang Y, Zhao J, Du X, Wang Y. Research Progress on the Extraction and Purification of Anthocyanins and Their Interactions with Proteins. Molecules 2024; 29:2815. [PMID: 38930881 PMCID: PMC11206947 DOI: 10.3390/molecules29122815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Anthocyanins, as the most critical water-soluble pigments in nature, are widely present in roots, stems, leaves, flowers, fruits, and fruit peels. Many studies have indicated that anthocyanins exhibit various biological activities including antioxidant, anti-inflammatory, anti-tumor, hypoglycemic, vision protection, and anti-aging. Hence, anthocyanins are widely used in food, medicine, and cosmetics. The green and efficient extraction and purification of anthocyanins are an important prerequisite for their further development and utilization. However, the poor stability and low bioavailability of anthocyanins limit their application. Protein, one of the three essential nutrients for the human body, has good biocompatibility and biodegradability. Proteins are commonly used in food processing, but their functional properties need to be improved. Notably, anthocyanins can interact with proteins through covalent and non-covalent means during food processing, which can effectively improve the stability of anthocyanins and enhance their bioavailability. Moreover, the interactions between proteins and anthocyanins can also improve the functional characteristics and enhance the nutritional quality of proteins. Hence, this article systematically reviews the extraction and purification methods for anthocyanins. Moreover, this review also systematically summarizes the effect of the interactions between anthocyanins and proteins on the bioavailability of anthocyanins and their impact on protein properties. Furthermore, we also introduce the application of the interaction between anthocyanins and proteins. The findings can provide a theoretical reference for the application of anthocyanins and proteins in food deep processing.
Collapse
Affiliation(s)
| | | | | | | | | | - Yu Wang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China; (H.X.); (M.Z.); (Y.T.); (J.Z.); (X.D.)
| |
Collapse
|
5
|
Zang Z, Tian J, Chou S, Lang Y, Tang S, Yang S, Yang Y, Jin Z, Chen W, Liu X, Huang W, Li B. Investigation on the interaction mechanisms for stability of preheated whey protein isolate with anthocyanins from blueberry. Int J Biol Macromol 2024; 255:127880. [PMID: 37944731 DOI: 10.1016/j.ijbiomac.2023.127880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Proteins and anthocyanins coexist in complex food systems. This research mainly studied the steady-state protective design and mechanism of the preheated protein against anthocyanins. Multispectral and molecular dynamics are utilized to illustrate the interaction mechanism between preheated whey protein isolate (pre-WPI) and anthocyanins. The pre-WPI could effectively protect the stability of anthocyanins, and the effect was better than that of the natural whey protein isolate (NW). Among them, NW after preheating treatment at 55 °C showed better protection against anthocyanin stability. Fluorescence studies indicated that pre-WPI there existed a solid binding affinity and static quenching for malvidin-3-galactoside (M3G). Multispectral data showed a significant variation in the secondary structure of pre-WPI. Furthermore, molecular dynamics simulation selects AMBER18 as the protein force field, and the results showed that hydrogen bonding participated as an applied force. Compared with NW, pre-WPI could better wrap anthocyanins and avoid damage to the external environment due to tightening of the pockets. Protein protects anthocyanins from degradation, and this protective effect is influenced by the preheating temperature of protein and the structure of protein. On the basis of the above results, it is possible to pinpoint the interaction mechanism between preheated proteins and anthocyanins.
Collapse
Affiliation(s)
- Zhihuan Zang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Shurui Chou
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yuxi Lang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Siyi Tang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Shufang Yang
- Zhejiang Lanmei Technology Co., Ltd. Zhuji, Zhejiang 311800, China
| | - Yiyun Yang
- Zhejiang Lanmei Technology Co., Ltd. Zhuji, Zhejiang 311800, China
| | - Zhufeng Jin
- Zhejiang Lanmei Technology Co., Ltd. Zhuji, Zhejiang 311800, China
| | - Wei Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaoli Liu
- Jiangsu Academy of Agricultural Sciences, Institution of Argo-product Processing, Nanjing 210014, China
| | - Wuyang Huang
- Jiangsu Academy of Agricultural Sciences, Institution of Argo-product Processing, Nanjing 210014, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
6
|
Zhao D, Li Z, Xia J, Kang Y, Sun P, Xiao Z, Niu Y. Research progress of starch as microencapsulated wall material. Carbohydr Polym 2023; 318:121118. [PMID: 37479436 DOI: 10.1016/j.carbpol.2023.121118] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 07/23/2023]
Abstract
Starch is non-toxic, low cost, and possesses good biocompatibility and biodegradability. As a natural polymer material, starch is an ideal choice for microcapsule wall materials. Starch-based microcapsules have a wide range of applications and application prospects in fields such as food, pharmaceuticals, cosmetics, and others. This paper firstly reviews the commonly used wall materials and preparation methods of starch-based microcapsules. Then the effect of starch wall materials on microcapsule properties is introduced in detail. It is expected to provide researchers with design inspiration and ideas for the development of starch-based microcapsules. Next the applications of starch-based microcapsules in various fields are presented. Finally, the future trends of starch-based microcapsules are discussed. Molecular simulation, green chemistry, and solutions to the main problems faced by resistant starch microcapsules may be the future research trends of starch-based microcapsules.
Collapse
Affiliation(s)
- Di Zhao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China.
| | - Zhibin Li
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Jiayi Xia
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yanxiang Kang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Pingli Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Zuobing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China; School of Agriculture and Biology, Shanghai Jiaotong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Yunwei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China.
| |
Collapse
|
7
|
Zhang L, Yao L, Zhao F, Yu A, Zhou Y, Wen Q, Wang J, Zheng T, Chen P. Protein and Peptide-Based Nanotechnology for Enhancing Stability, Bioactivity, and Delivery of Anthocyanins. Adv Healthc Mater 2023; 12:e2300473. [PMID: 37537383 PMCID: PMC11468125 DOI: 10.1002/adhm.202300473] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/18/2023] [Indexed: 08/05/2023]
Abstract
Anthocyanin, a unique natural polyphenol, is abundant in plants and widely utilized in biomedicine, cosmetics, and the food industry due to its excellent antioxidant, anticancer, antiaging, antimicrobial, and anti-inflammatory properties. However, the degradation of anthocyanin in an extreme environment, such as alkali pH, high temperatures, and metal ions, limits its physiochemical stabilities and bioavailabilities. Encapsulation and combining anthocyanin with biomaterials could efficiently stabilize anthocyanin for protection. Promisingly, natural or artificially designed proteins and peptides with favorable stabilities, excellent biocapacity, and wide sources are potential candidates to stabilize anthocyanin. This review focuses on recent progress, strategies, and perspectives on protein and peptide for anthocyanin functionalization and delivery, i.e., formulation technologies, physicochemical stability enhancement, cellular uptake, bioavailabilities, and biological activities development. Interestingly, due to the simplicity and diversity of peptide structure, the interaction mechanisms between peptide and anthocyanin could be illustrated. This work sheds light on the mechanism of protein/peptide-anthocyanin nanoparticle construction and expands on potential applications of anthocyanin in nutrition and biomedicine.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Liang Yao
- College of Biotechnology, Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Feng Zhao
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Alice Yu
- Schulich School of Medicine and Dentistry, Western University, Ontario, N6A 3K7, Canada
| | - Yueru Zhou
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Qingmei Wen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Jun Wang
- College of Biotechnology, Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Tao Zheng
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Pu Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| |
Collapse
|
8
|
Cheng Y, Chen X, Yang T, Wang Z, Chen Q, Zeng M, Qin F, Chen J, He Z. Effects of whey protein isolate and ferulic acid/phloridzin/naringin/cysteine on the thermal stability of mulberry anthocyanin extract at neutral pH. Food Chem 2023; 425:136494. [PMID: 37270886 DOI: 10.1016/j.foodchem.2023.136494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/19/2023] [Accepted: 05/28/2023] [Indexed: 06/06/2023]
Abstract
In this study, the effects of whey protein isolate (WPI) and four copigments, including ferulic acid (FA), phloridzin, naringin, and cysteine (Cys), on the thermal stability (80 °C/2h) of mulberry anthocyanin extract (MAE) pigment solution at pH 6.3 were studied. WPI addition or copigment (except for Cys) addition alone could protect anthocyanin from degradation to a certain degree, and FA exhibited the best effect among copigments. Compared with the MAE-WPI and MAE-FA binary systems, ΔE of the MAE-WPI-FA ternary system decreased by 20.9% and 21.1%, respectively, and the total anthocyanin degradation rate decreased by 38.0% and 39.3%, respectively, indicating the best stabilizing effect. Remarkably, interactions between anthocyanins and Cys, which generate four anthocyanin derivatives with 513-nm UV absorption during heat treatment, did not alter the color stability of MAE solution; however, they accelerated anthocyanin degradation. These results favor the combined use of multiple methods to stabilize anthocyanins at neutral conditions.
Collapse
Affiliation(s)
- Yong Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xi Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tian Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
9
|
Liu R, Wang X, Yang L, Wang Y, Gao X. Coordinated encapsulation by β-cyclodextrin and chitosan derivatives improves the stability of anthocyanins. Int J Biol Macromol 2023:125060. [PMID: 37245775 DOI: 10.1016/j.ijbiomac.2023.125060] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/22/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
To improve the stability of anthocyanins (ACNs), ACNs were loaded into dual-encapsulated nanocomposite particles by self-assembly using β-cyclodextrin (β-CD) and two different water-soluble chitosan derivatives, namely, chitosan hydrochloride (CHC) and carboxymethyl chitosan (CMC). The ACN-loaded β-CD-CHC/CMC nanocomplexes with small diameters (333.86 nm) and had a desirable zeta potential (+45.97 mV). Transmission electron microscopy (TEM) showed that the ACN-loaded β-CD-CHC/CMC nanocomplexes had a spherical structure. Fourier-transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (1H NMR) and X-ray diffraction (XRD) confirmed that the ACNs in the dual nanocomplexes were encapsulated in the cavity of the β-CD and that the CHC/CMC covered the outer layer of β-CD through noncovalent hydrogen bonding. The ACNs from the dual-encapsulated nanocomplexes improved stability of ACNs under adverse environmental conditions or in a simulated gastrointestinal environment. Further, the nanocomplexes exhibited good storage stability and thermal stability over a wide pH range when added into simulated electrolyte drinks (pH = 3.5) and milk tea (pH = 6.8). This study provides a new option for the preparation of stable ACNs nanocomplexes and expands the applications for ACNs in functional foods.
Collapse
Affiliation(s)
- Ranran Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiaohan Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Lixia Yang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yu Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xueling Gao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products processing, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
10
|
Effect of High-pressure Homogenization on Structure and Properties of Soy Protein Isolate/polyphenol Complexes. FOOD BIOPHYS 2023. [DOI: 10.1007/s11483-023-09781-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
11
|
de Vera PJD, Tayone JC, De Las Llagas MCS. Cyperus iria linn. Roots ethanol extract: its phytochemicals, cytotoxicity, and anti-inflammatory activity. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2022. [DOI: 10.1080/16583655.2022.2123088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Peter Jan D. de Vera
- Natural Sciences Department, College of Arts and Sciences, Mindanao State University-Maguindanao, Dalican, Datu Odin Sinsuat, Maguindanao, PHILIPPINES
- Institute of Agriculture and Life Sciences, Davao Oriental State University, City of Mati, Davao Oriental, PHILIPPINES
| | - Janeth C. Tayone
- Institute of Agriculture and Life Sciences, Davao Oriental State University, City of Mati, Davao Oriental, PHILIPPINES
| | | |
Collapse
|
12
|
A new method to prepare color-changeable smart packaging films based on the cooked purple sweet potato. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Liu R, Yang Y, Zhao M, Wang Y, Meng X, Yan T, Ho C. Effect of heat‐treating methods on components, instrumental evaluation of color and taste, and antioxidant properties of sea buckthorn pulp flavonoids. J Food Sci 2022; 87:5442-5454. [DOI: 10.1111/1750-3841.16386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/08/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Ran Liu
- National R&D Professional Center for Berry Processing of Ministry of Agriculture and Rural Affairs College of Food Science Shenyang Agricultural University Shenyang China
| | - Yunning Yang
- National R&D Professional Center for Berry Processing of Ministry of Agriculture and Rural Affairs College of Food Science Shenyang Agricultural University Shenyang China
| | - Menghan Zhao
- National R&D Professional Center for Berry Processing of Ministry of Agriculture and Rural Affairs College of Food Science Shenyang Agricultural University Shenyang China
| | - Yanqun Wang
- National R&D Professional Center for Berry Processing of Ministry of Agriculture and Rural Affairs College of Food Science Shenyang Agricultural University Shenyang China
| | - Xianjun Meng
- National R&D Professional Center for Berry Processing of Ministry of Agriculture and Rural Affairs College of Food Science Shenyang Agricultural University Shenyang China
| | - Tingcai Yan
- National R&D Professional Center for Berry Processing of Ministry of Agriculture and Rural Affairs College of Food Science Shenyang Agricultural University Shenyang China
| | - Chi‐Tang Ho
- Department of Food Science Rutgers University New Brunswick New Jersey USA
| |
Collapse
|
14
|
Zang Z, Tang S, Li Z, Chou S, Shu C, Chen Y, Chen W, Yang S, Yang Y, Tian J, Li B. An updated review on the stability of anthocyanins regarding the interaction with food proteins and polysaccharides. Compr Rev Food Sci Food Saf 2022; 21:4378-4401. [PMID: 36018502 DOI: 10.1111/1541-4337.13026] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 01/28/2023]
Abstract
The health benefits of anthocyanins are compromised by their chemical instability and susceptibility to external stress. Researchers found that the interaction between anthocyanins and macromolecular components such as proteins and polysaccharides substantially determines the stability of anthocyanins during food processing and storage. The topic thus has attracted much attention in recent years. This review underlines the new insights gained in our current study of physical and chemical properties and functional properties in complex food systems. It examines the interaction between anthocyanins and food proteins or polysaccharides by focusing on the "structure-stability" relationship. Furthermore, multispectral and molecular computing simulations are used as the chief instruments to explore the interaction's mechanism. During processing and storage, the stability of anthocyanins is generally influenced by the adverse characteristics of food and beverage, including temperature, light, oxygen, enzymes, pH. While the action modes and types between protein/polysaccharide and anthocyanins mainly depend on their structures, the noncovalent interaction between them is the key intermolecular force that increases the stability of anthocyanins. Our goal is to provide the latest understanding of the stability of anthocyanins under food processing conditions and further improve their utilization in food industries. Practical Application: This review provides support for the steady-state protection of active substances.
Collapse
Affiliation(s)
- Zhihuan Zang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Siyi Tang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Zhiying Li
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Shurui Chou
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Chi Shu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Wei Chen
- Faculty of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Shufang Yang
- Zhejiang Lanmei Technology Co., Ltd., Zhuji, China
| | - Yiyun Yang
- Zhejiang Lanmei Technology Co., Ltd., Zhuji, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
15
|
Anthocyanin-rich extracts from Cornelian cherry pomace as a natural food colorant: a spectroscopic and LC-QTOF-MS study. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04099-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Wu J, Ma K, Li H, Zhang Y, Wang X, Abbas N, Yin C, Zhang Y. Stability assessment of lutein under the existence of different phenolic acids. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Pan LH, Chen LP, Wu CL, Wang JF, Luo SZ, Luo JP, Zheng Z. Microencapsulation of blueberry anthocyanins by spray drying with soy protein isolates/high methyl pectin combination: Physicochemical properties, release behavior in vitro and storage stability. Food Chem 2022; 395:133626. [DOI: 10.1016/j.foodchem.2022.133626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/24/2022] [Accepted: 07/01/2022] [Indexed: 11/04/2022]
|
18
|
Ma Z, Guo A, Jing P. Advances in dietary proteins binding with co-existed anthocyanins in foods: Driving forces, structure-affinity relationship, and functional and nutritional properties. Crit Rev Food Sci Nutr 2022; 63:10792-10813. [PMID: 35748363 DOI: 10.1080/10408398.2022.2086211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Anthocyanins, which are the labile flavonoid pigments widely distributed in many fruits, vegetables, cereal grains, and flowers, are receiving intensive interest for their potential health benefits. Proteins are important food components from abundant sources and present high binding affinity for small dietary compounds, e.g., anthocyanins. Protein-anthocyanin interactions might occur during food processing, ingestion, digestion, and bioutilization, leading to significant changes in the structure and properties of proteins and anthocyanins. Current knowledge of protein-anthocyanin interactions and their contributions to functions and bioactivities of anthocyanin-containing foods were reviewed. Binding characterization of dietary protein-anthocyanins complexes is outlined. Advances in understanding the structure-affinity relationship of dietary protein-anthocyanin interaction are critically discussed. The associated properties of protein-anthocyanin complexes are considered in an evaluation of functional and nutritional values.
Collapse
Affiliation(s)
- Zhen Ma
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Anqi Guo
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Pu Jing
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
A combination of alkaline pH-shifting/acidic pH and thermal treatments improves the solubility and emulsification properties of wheat glutenin. Food Chem 2022; 393:133358. [PMID: 35661594 DOI: 10.1016/j.foodchem.2022.133358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 05/24/2022] [Accepted: 05/29/2022] [Indexed: 11/21/2022]
Abstract
Glutenin has limited applicability in food industry due to poor water solubility and emulsifying properties. In this study, the physicochemical properties of glutenin were improved by combined treatments of alkaline pH-shifting or acidic pH with heating. The surface morphology, structure and physicochemical properties were measured during the modification process of glutenin. Results showed that the smaller square clusters and regular tubular fibrils were observed in modified glutenin and the α-helix proportion of the treated glutenin was finally increased to 59.90 ± 0.01%. Compared with untreated glutenin, the combined treatments of pH-shifting with heating as well as fibrillation process increased the solubility of glutenin by 21.3 and 3.5 times, respectively. Moreover, the treated glutenin showed excellent emulsifying stability (EAI: 50.84 ± 0.51 m2g-1) and thermal stability (peak temperature increased from 109.58 to 149.05 °C). This study provides an informative basis for improving the physicochemical and functional properties of glutenin.
Collapse
|
20
|
He Y, Chen D, Liu Y, Sun X, Guo W, An L, Shi Z, Wen L, Wang Z, Yu H. Protective Effect and Mechanism of Soybean Insoluble Dietary Fiber on the Color Stability of Malvidin-3-O-glucoside. Foods 2022; 11:foods11101474. [PMID: 35627044 PMCID: PMC9140807 DOI: 10.3390/foods11101474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 01/27/2023] Open
Abstract
Anthocyanins have great health benefits, especially malvidin. Vitis amurensis Rupr are rich in malvidin, and malvidin-3-O-glucoside (Mv3G) monomer is the most abundant. However, natural anthocyanins are unstable, which limits their wide application in the food field. Soybean insoluble dietary fiber (SIDF) has high stability, and it can be used as an inert substrate to construct a stable system, which may improve the stability of anthocyanins. The optimal condition to construct a stable system of SIDF and Mv3G at pH 3.0 was determined by an orthogonal experiment. The results indicated that SIDF effectively improved the stability of Mv3G under different pH values (1.0~7.0), high temperature (100 °C for 100 min), and sunlight (20 ± 2 °C for 30 d) conditions. The absorption peak intensity of the UV–VIS spectrum of SIDF-Mv3G was enhanced, which indicated that there was interaction between SIDF and Mv3G. Fourier transform infrared spectroscopy analyses revealed that the -OH stretching vibration peak of SIDF-Mv3G was changed, which indicated that the interaction between SIDF and Mv3G was due to hydrogen bonding. X-ray diffraction analysis showed that the crystalline morphology of SIDF was opened, which was combined with Mv3G, and SIDF made Mv3G change to a more stable state. Scanning electron microscope analysis showed that SIDF and Mv3G were closely combined to form an inclusion complex. Overall, this study provides valuable information for enhancing the color stability of anthocyanins, which will further expand the application of anthocyanins in the food field.
Collapse
Affiliation(s)
- Yang He
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.H.); (D.C.); (Y.L.); (X.S.); (W.G.); (L.A.); (Z.S.); (L.W.)
| | - Dongxia Chen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.H.); (D.C.); (Y.L.); (X.S.); (W.G.); (L.A.); (Z.S.); (L.W.)
| | - Yuheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.H.); (D.C.); (Y.L.); (X.S.); (W.G.); (L.A.); (Z.S.); (L.W.)
| | - Xiaozhen Sun
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.H.); (D.C.); (Y.L.); (X.S.); (W.G.); (L.A.); (Z.S.); (L.W.)
| | - Wenrui Guo
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.H.); (D.C.); (Y.L.); (X.S.); (W.G.); (L.A.); (Z.S.); (L.W.)
| | - Lingyu An
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.H.); (D.C.); (Y.L.); (X.S.); (W.G.); (L.A.); (Z.S.); (L.W.)
| | - Zhenming Shi
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.H.); (D.C.); (Y.L.); (X.S.); (W.G.); (L.A.); (Z.S.); (L.W.)
| | - Liankui Wen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.H.); (D.C.); (Y.L.); (X.S.); (W.G.); (L.A.); (Z.S.); (L.W.)
| | - Zhitong Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.H.); (D.C.); (Y.L.); (X.S.); (W.G.); (L.A.); (Z.S.); (L.W.)
- Correspondence: (Z.W.); (H.Y.)
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.H.); (D.C.); (Y.L.); (X.S.); (W.G.); (L.A.); (Z.S.); (L.W.)
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agriculture Research System, Changchun 130118, China
- Correspondence: (Z.W.); (H.Y.)
| |
Collapse
|
21
|
Effect of Soybean Protein Isolate-7s on Delphinidin-3- O-Glucoside from Purple Corn Stability and Their Interactional Characterization. Foods 2022; 11:foods11070895. [PMID: 35406982 PMCID: PMC9254744 DOI: 10.3390/foods11070895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 11/29/2022] Open
Abstract
Anthocyanins are abundant in purple corn and beneficial to human health. Soybean protein isolate-7s (SPI-7s) could enhance the stability of anthocyanins. The stable system of soybean protein isolate-7s and delphinidin-3-O-glucoside complex (SPI-7s-D3G) was optimized using the Box–Behnken design at pH 2.8 and pH 6.8. Under the condition of pH 2.8, SPI-7s effectively improved the sunlight-thermal stabilities of delphinidin-3-O-glucoside (D3G). The thermal degradation of D3G conformed to the first order kinetics within 100 min, the negative enthalpy value and positive entropy value indicated that interaction was caused by electrostatic interaction, and the negative Gibbs free energy value reflected a spontaneous interaction between SPI-7s and D3G. The interaction of SPI-7s-D3G was evaluated by ultraviolet visible spectroscopy, circular dichroism spectroscopy and fluorescence spectroscopy. The results showed that the maximum absorption peak was redshifted with increasing the α-helix content and decreasing the β-sheet contents, and D3G quenched the intrinsic fluorescence of SPI-7s by static quenching. There was one binding site in the SPI-7s and D3G stable system. The secondary structure of SPI-7s had changed and the complex was more stable. The stabilized SPI-7s-D3G will have broad application prospects in functional foods.
Collapse
|
22
|
Cheng M, Yan X, Cui Y, Han M, Wang Y, Wang J, Zhang R, Wang X. Characterization and Release Kinetics Study of Active Packaging Films Based on Modified Starch and Red Cabbage Anthocyanin Extract. Polymers (Basel) 2022; 14:polym14061214. [PMID: 35335543 PMCID: PMC8950823 DOI: 10.3390/polym14061214] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/01/2023] Open
Abstract
Active packaging films were prepared by adding red cabbage anthocyanin extract (RCAE) into acetylated distarch phosphate (ADSP). This paper investigated the influence of the interaction relationship between RCAE and the film matrix on the structure, barrier, antioxidant and release properties of active films. Sixteen principal compounds in RCAE were identified as anthocyanins based on mass spectroscopic analysis. Micromorphological observations indicated that the RCAE distribution uniformity in the films decreased as the RCAE content increased. When the concentration of RCAE was not higher than 20%, the moisture absorption and oxygen permeability of films decreased. The stability of RCAE in the films was enhanced by the electrostatic interaction between RCAE and ADSP with the formation of hydrogen bonds, which facilitated the sustainability of the antioxidant properties of films. The release kinetics of RCAE proved that the release rate of RCAE in active films was the fastest in distilled water, and Fickian’s law was appropriate for portraying the release behavior. Moreover, the cytocompatibilty assay showed that the test films were biocompatible with a viability of >95% on HepG2 cells. Thus, this study has established the suitability of the films for applications in active and food packaging.
Collapse
|
23
|
Delineating the behavior of Berberis anthocyanin/β-cyclodextrin inclusion complex in vitro: A molecular dynamics approach. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Vidana Gamage GC, Lim YY, Choo WS. Sources and relative stabilities of acylated and nonacylated anthocyanins in beverage systems. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:831-845. [PMID: 35185195 PMCID: PMC8814286 DOI: 10.1007/s13197-021-05054-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/18/2021] [Accepted: 02/26/2021] [Indexed: 12/18/2022]
Abstract
Anthocyanins are considered as the largest group of water-soluble pigments found in the vacuole of plant cells, displaying range of colors from pink, orange, red, purple and blue. They belong to flavonoids, a polyphenolic subgroup. Application of anthocyanins in food systems as natural food colourants is limited due to the lack of stability under different environmental conditions such as light, pH, heat etc. Anthocyanins esterified with one or more acid groups are referred as acylated anthocyanins. Based on the presence or absence of acyl group, anthocyanins are categorized as acylated and nonacylated anthocyanins. Acylated anthocyanins are further classified as mono, di, tri, tetra acylated anthocyanins according to the number of acyl groups present in the anthocyanin. This review classifies common anthocyanin sources into non-acylated, mono-, di-, tri- and tetra-acylated anthocyanins based on the major anthocyanins present in these sources. The relative stabilities of these anthocyanins with respect to thermal, pH and photo stress in beverage systems are specifically discussed. Common anthocyanin sources such as elderberry, blackberry, and blackcurrant mainly contain nonacylated anthocyanins. Red radish, purple corn, black carrot also mainly contain mono acylated anthocyanins. Red cabbage and purple sweet potato have both mono and diacylated anthocyanins. Poly acylated anthocyanins show relatively higher stability compared with nonacylated and monoacylated anthocyanins. Several techniques such as addition of sweeteners, co-pigmentation and acylation techniques could enhance the stability of nonacylated anthocyanins. Flowers are main sources of polyacylated anthocyanins having higher stability, yet they have not been commercially exploited for their anthocyanins.
Collapse
Affiliation(s)
| | - Yau Yan Lim
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Malaysia
| | - Wee Sim Choo
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Malaysia
| |
Collapse
|
25
|
Ma Z, Cheng J, Jiao S, Jing P. Interaction of mulberry anthocyanins with soybean protein isolate: Effect on the stability of anthocyanins and protein
in vitro
digestion characteristics. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhen Ma
- Shanghai Food Safety and Engineering Technology Research Center Key Laboratory of Urban Agriculture Ministry of Agriculture School of Agriculture and Biology Shanghai Jiao Tong University 800 Dongchuan Rd Shanghai 200240 China
| | - Jing Cheng
- Shanghai Food Safety and Engineering Technology Research Center Key Laboratory of Urban Agriculture Ministry of Agriculture School of Agriculture and Biology Shanghai Jiao Tong University 800 Dongchuan Rd Shanghai 200240 China
| | - Shunshan Jiao
- Shanghai Food Safety and Engineering Technology Research Center Key Laboratory of Urban Agriculture Ministry of Agriculture School of Agriculture and Biology Shanghai Jiao Tong University 800 Dongchuan Rd Shanghai 200240 China
| | - Pu Jing
- Shanghai Food Safety and Engineering Technology Research Center Key Laboratory of Urban Agriculture Ministry of Agriculture School of Agriculture and Biology Shanghai Jiao Tong University 800 Dongchuan Rd Shanghai 200240 China
| |
Collapse
|
26
|
Liu J, Cheng J, Ma Z, Liang T, Jing P. Interaction characterization of zein with cyanidin-3-O-glucoside and its effect on the stability of mulberry anthocyanins and protein digestion. J Food Sci 2021; 87:141-152. [PMID: 34954830 DOI: 10.1111/1750-3841.16024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 10/19/2022]
Abstract
Ingredient interactions usually occur in food matrix, which may affect their functions and properties. This study aimed to investigate the interactive effects of mulberry and corn protein on pigment stability and zein digestibility. The interaction of main compounds in both ingredients, that is, cyanidin-3-O-glucoside (C3G) and zein, was characterized via their structural, morphological, thermal stability, and digestible properties using multi-spectroscopic techniques, scanning electron microscopy, high performance liquid chromatography, and in vitro digestion models. Results showed that zein exhibited a strong binding affinity for C3G via van der Waals forces and hydrogen bonds determined in fluorescence assays. The secondary structure of zein changed due to C3G binding, with a decrease in α-helix and an increase in β-sheet. The particle size of zein decreased after interacting with C3G. The zein complexation with mulberry anthocyanin-rich extracts in a simulative food system did not affect the digestibility of zein significantly but enhanced the thermal stability of pigments slightly. Specifically, anthocyanins did not change the susceptibility of zein to pepsin proteolysis, suggesting that binding sites of C3G might not be the cleavage sites of pepsins. These results provide important insight into the binding mechanism of zein and anthocyanins and might help guide the design of anthocyanin-based functional food. PRACTICAL APPLICATION: Zein, as a storage protein widely distributed in corn flour, was commonly co-existing with anthocyanins in starchy food. This study provides insights into the molecular interactions between zein and cyanidin-3-O-glucoside. However, the interaction might not impact the zein digestion but enhance anthocyanin thermal stability. The findings of this work could throw light on the selection of ingredients rich in zein and anthocyanins in the food industry.
Collapse
Affiliation(s)
- Jianhua Liu
- International Faculty of Applied Technology, Yibin University, Yibin, China
| | - Jing Cheng
- Research Center for Food Safety and Nutrition, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Ma
- Research Center for Food Safety and Nutrition, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Tisong Liang
- Research Center for Food Safety and Nutrition, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Pu Jing
- International Faculty of Applied Technology, Yibin University, Yibin, China.,Research Center for Food Safety and Nutrition, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
27
|
Wang Y, Zhang J, Zhang L. Anthocyanin-Dietary Proteins Interaction and Its Current Applications in Food Industry. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2012189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jian Zhang
- School of Food Science and Technology, The Food College of Shihezi University, Shihezi, Xinjiang, China
| | - Lianfu Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
28
|
Role of Ovalbumin/β-Cyclodextrin in Improving Structural and Gelling Properties of Culter alburnus Myofibrillar Proteins during Frozen Storage. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112411815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This study aimed to analyze the cryoprotective effect of a ovalbumin (OVA) and β-cyclodextrin (βCD) mixture (3:1, OVA/βCD) on the structure, rheology and gelling properties of myofibrillar proteins (MPs) during 90 days of frozen storage. A mixture of OVA/βCD at different concentrations (0, 2, 4, and 6%) was added to MPs and stored at −18 °C for 90 days. The addition of OVA/βCD significantly decreased the sulfhydryl contents while it increased the surface hydrophobicity, which was closely connected with tertiary structural changes. Circular dichroism analysis showed that the addition of OVA/βCD enhanced the stability of the secondary structure by inhibiting the decline in the α-helix. Rheological properties analysis indicated that 6% OVA/βCD treatment showed better storage modulus (G’) and loss modulus (G”). In addition, treatment of OVA/βCD showed better gel forming properties than the control group (0%), helping to form a homogeneous and denser gel network. The results proved that 6% OVA/βCD could be act as a promising cryoprotectant, which can improve the structure and gel behavior of Culter alburnus MPs during frozen storage. Moreover, OVA/βCD could be a potential alternative to conventional cryoprotectants at the industrial level to increase the economic and commercial values of seafood products.
Collapse
|
29
|
Kalantari S, Roufegarinejad L, Pirsa S, Gharekhani M, Tabibiazar M. β-Cyclodextrin-assisted extraction of phenolic compounds from pomegranate (Punica granatum L.) peel: A new strategy for anthocyanin copigmentation. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
30
|
Wu J, Wang X, He Y, Li J, Ma K, Zhang Y, Li H, Yin C, Zhang Y. Stability evaluation of gardenia yellow pigment in presence of different phenolic compounds. Food Chem 2021; 373:131441. [PMID: 34715628 DOI: 10.1016/j.foodchem.2021.131441] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 01/01/2023]
Abstract
Gardenia yellow pigment (GYP) may undergo chemical degradation under different conditions resulting in color fading. This study investigated the effects of different phenolic compounds (caffeic acid, rosmarinic acid, tannic acid, epicatechin, chlorogenic acid, epigallocatechin, and epigallocatechin gallate) on the physical and chemical stability of GYP under light and different temperatures. Furthermore, food models with GYP/phenolic compounds were simulated to evaluate the GYP stability under different cooking methods. The addition of phenolic compounds, especially tannic acid, epigallocatechin gallate, epigallocatechin, and rosmarinic acid, significantly improved the GYP stability during light and thermal treatments. Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopy confirmed that the formation of hydrogen bonds between GYP and selected phenolic compounds (tannic acid, epigallocatechin gallate, epigallocatechin, and rosmarinic acid), which may lead to the enhancement of GYP stability. Moreover, these selected phenolic compounds provided potent protective effects on GYP under different cooking methods.
Collapse
Affiliation(s)
- Jun Wu
- School of Life Science, Anhui Agricultural University, 130 West Changjiang Rd., Hefei 230036, Anhui, China
| | - Xiaona Wang
- School of Life Science, Anhui Agricultural University, 130 West Changjiang Rd., Hefei 230036, Anhui, China
| | - Yu He
- School of Life Science, Anhui Agricultural University, 130 West Changjiang Rd., Hefei 230036, Anhui, China
| | - Jieying Li
- School of Life Science, Anhui Agricultural University, 130 West Changjiang Rd., Hefei 230036, Anhui, China
| | - Keke Ma
- School of Life Science, Anhui Agricultural University, 130 West Changjiang Rd., Hefei 230036, Anhui, China
| | - Yifan Zhang
- School of Life Science, Anhui Agricultural University, 130 West Changjiang Rd., Hefei 230036, Anhui, China
| | - Haoran Li
- School of Life Science, Anhui Agricultural University, 130 West Changjiang Rd., Hefei 230036, Anhui, China
| | - Caiping Yin
- School of Life Science, Anhui Agricultural University, 130 West Changjiang Rd., Hefei 230036, Anhui, China
| | - Yinglao Zhang
- School of Life Science, Anhui Agricultural University, 130 West Changjiang Rd., Hefei 230036, Anhui, China.
| |
Collapse
|
31
|
Ren S, Jiménez-Flores R, Giusti MM. The interactions between anthocyanin and whey protein: A review. Compr Rev Food Sci Food Saf 2021; 20:5992-6011. [PMID: 34622535 DOI: 10.1111/1541-4337.12854] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 12/27/2022]
Abstract
Anthocyanins (ACN) are natural pigments that produce bright red, blue, and purple colors in plants and can be used to color food products. However, ACN sensitivity to different factors limits their applications in the food industry. Whey protein (WP), a functional nutritional additive, has been shown to interact with ACN and improve the color, stability, antioxidant capacity, bioavailability, and other functional properties of the ACN-WP complex. The WP's secondary structure is expected to unfold due to heat treatment, which may increase its binding affinity with ACN. Different ACN structures will also have different binding affinity with WP and their interaction mechanism may also be different. Circular dichroism (CD) spectroscopy and Fourier transform infrared (FTIR) spectroscopy show that the WP secondary structure changes after binding with ACN. Fluorescence spectroscopy shows that the WP maximum fluorescence emission wavelength shifts, and the fluorescence intensity decreases after interaction with ACN. Moreover, thermodynamic analysis suggests that the ACN-WP binding forces are mainly hydrophobic interactions, although there is also evidence of electrostatic interactions and hydrogen bonding between ACN and WP. In this review, we summarize the information available on ACN-WP interactions under different conditions and discuss the impact of different ACN chemical structures and of WP conformation changes on the affinity between ACN and WP. This summary helps improve our understanding of WP protection of ACN against color degradation, thus providing new tools to improve ACN color stability and expanding the applications of ACN and WP in the food and pharmacy industries.
Collapse
Affiliation(s)
- Shuai Ren
- The Ohio State University, Department of Food Science and Technology, Columbus, Ohio, USA
| | - Rafael Jiménez-Flores
- The Ohio State University, Department of Food Science and Technology, Columbus, Ohio, USA
| | - Maria Monica Giusti
- The Ohio State University, Department of Food Science and Technology, Columbus, Ohio, USA
| |
Collapse
|
32
|
Destabilisation and stabilisation of anthocyanins in purple-fleshed sweet potatoes: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
Li T, Wang L, Zhang X, Yu P, Chen Z. Complexation of rice glutelin fibrils with cyanidin-3-O-glucoside at acidic condition: Thermal stability, binding mechanism and structural characterization. Food Chem 2021; 363:130367. [PMID: 34198143 DOI: 10.1016/j.foodchem.2021.130367] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/03/2021] [Accepted: 06/12/2021] [Indexed: 12/14/2022]
Abstract
The complexation of rice glutelin fibrils (RGFs) with cyanidin-3-O-glucoside (C3G) at acidic condition was investigated. The RGFs at pH 3.5 had a greatest protective effect on the thermal stability of C3G. The binding of C3G for RGFs was exothermic and driven by hydrophobic and electrostatic interactions. The RGFs exhibited a stronger binding interaction with C3G than rice glutelin (RG), resulting from the exposure of hydrophobic groups and positive charges on the fibrils surface, and thus RGFs exhibited better protective effect on C3G. The interaction with C3G resulted in the rearrangement of polypeptide chain, thereby reducing the β-sheet content. The larger aggregates were observed in RG/RGFs-C3G complexes due to protein-polyphenols aggregation. It was noteworthy that the pre-formed RGFs were restructured into entangled aggregates due to the interaction. This study proposed a novel protein fibril to protect anthocyanins, expanding the application of anthocyanins as stable and functional ingredients in acidic food systems.
Collapse
Affiliation(s)
- Ting Li
- School of Food Science and Technology, Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Li Wang
- School of Food Science and Technology, Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.
| | - Xinxia Zhang
- School of Food Science and Technology, Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Peibin Yu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Zhengxing Chen
- School of Food Science and Technology, Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.
| |
Collapse
|
34
|
Tereucan G, Ercoli S, Cornejo P, Winterhalter P, Contreras B, Ruiz A. Stability of antioxidant compounds and activities of a natural dye from coloured-flesh potatoes in dairy foods. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Cao H, Saroglu O, Karadag A, Diaconeasa Z, Zoccatelli G, Conte‐Junior CA, Gonzalez‐Aguilar GA, Ou J, Bai W, Zamarioli CM, de Freitas LAP, Shpigelman A, Campelo PH, Capanoglu E, Hii CL, Jafari SM, Qi Y, Liao P, Wang M, Zou L, Bourke P, Simal‐Gandara J, Xiao J. Available technologies on improving the stability of polyphenols in food processing. FOOD FRONTIERS 2021; 2:109-139. [DOI: 10.1002/fft2.65] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
AbstractPolyphenols are the most important phytochemicals in our diets and have received great attention due to their broad benefits for human health by suppressing oxidative stress and playing a protective role in preventing different pathologies such as cardiovascular disease, cancer, diabetes, and obesity. The stability of polyphenols depends on their environments of processing and storage, such as pH and temperature. A wide range of technologies has been developed to stabilize polyphenols during processing. This review will provide an overview of the stability of polyphenols in relation to their structure, the factors impacting the stability of polyphenols, the new products deriving from unstable polyphenols, and the effect of a series of technologies for the stabilization of polyphenols, such as chemical modification, nanotechnology, lyophilization, encapsulation, cold plasma treatment, polyphenol–protein interaction, and emulsion as a means of improving stability. Finally, the effects of cooking and storage on the stability of polyphenols were discussed.
Collapse
Affiliation(s)
- Hui Cao
- College of Food Science and Technology Guangdong Ocean University Zhanjiang Guangdong China
| | - Oznur Saroglu
- Food Engineering Department Yıldız Technical University Istanbul Turkey
| | - Ayse Karadag
- Food Engineering Department Yıldız Technical University Istanbul Turkey
| | - Zoriţa Diaconeasa
- Faculty of Food Science and Technology University of Agricultural Science and Veterinary Medicine Cluj‐Napoca Cluj‐Napoca Romania
| | | | - Carlos Adam Conte‐Junior
- Laboratory of Advanced Analyses in Biochemistry and Molecular Biology (LAABBM) Department of Biochemistry Institute of Chemistry Federal University of Rio de Janeiro Rio de Janeiro Brazil
| | - Gustavo A. Gonzalez‐Aguilar
- Coordinación de Tecnología de Alimentos de Origen Vegetal Centro de Investigación en Alimentación y Desarrollo A. C. Hermosillo Mexico
| | - Juanying Ou
- Institute of Food Safety and Nutrition Jinan University Guangzhou China
| | - Weibin Bai
- Institute of Food Safety and Nutrition Jinan University Guangzhou China
| | - Cristina Mara Zamarioli
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto Núcleo de Pesquisa em Produtos Naturais e Sintéticos – Universidade de São Paulo Ribeirão Preto Brazil
| | - Luis Alexandre Pedro de Freitas
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto Núcleo de Pesquisa em Produtos Naturais e Sintéticos – Universidade de São Paulo Ribeirão Preto Brazil
| | - Avi Shpigelman
- Faculty of Biotechnology and Food Engineering and Russell Berrie Nanotechnology Institute Technion – Israel Institute of Technology Haifa Israel
| | - Pedro H. Campelo
- School of Agrarian Science Federal University of Amazonas Manaus Brazil
| | - Esra Capanoglu
- Department of Food Engineering Faculty of Chemical and Metallurgical Engineering İstanbul Technical University Istanbul Turkey
| | - Ching Lik Hii
- Faculty of Science and Engineering University of Nottingham Malaysia Semenyih Malaysia
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology Gorgan University of Agricultural Science and Natural Resources Gorgan Iran
| | - Yaping Qi
- Purdue Quantum Science and Engineering Institute Purdue University West Lafayette Indiana USA
| | - Pan Liao
- Department of Biochemistry Purdue University West Lafayette Indiana USA
| | - Mingfu Wang
- School of Biological Sciences The University of Hong Kong Pokfulam Road Hong Kong
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs Chengdu University Chengdu China
| | - Paula Bourke
- Plasma Research Group, School of Biosystems and Food Engineering University College Dublin Dublin Ireland
- School of Biological Sciences Institute for Global Food Security Queens University Belfast Belfast UK
| | - Jesus Simal‐Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science Faculty of Food Science and Technology University of Vigo – Ourense Campus Ourense Spain
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science Faculty of Food Science and Technology University of Vigo – Ourense Campus Ourense Spain
| |
Collapse
|
36
|
Yao L, Xu J, Zhang L, Zheng T, Liu L, Zhang L. Physicochemical stability-increasing effects of anthocyanin via a co-assembly approach with an amphiphilic peptide. Food Chem 2021; 362:130101. [PMID: 34091173 DOI: 10.1016/j.foodchem.2021.130101] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 04/20/2021] [Accepted: 05/11/2021] [Indexed: 01/25/2023]
Abstract
To enhance the stability of anthocyanin, an amphiphilic peptide C6 with tryptophan amino acid was used to co-assemble with anthocyanin C3G. The characterization, stabilities, and antioxidant activity of peptide-anthocyanin (C6-C3G) nanocomposites (70.82 ± 12.41 nm) were investigated. To illustrate the interaction between peptide and anthocyanin, circular dichroism spectroscopy and fluorescence quenching method were used. Here, the peptide C6 switches from random coil structure to β-sheet structure and the fluorescence of tryptophan amino acid in peptide quenched during the intermolecular interaction between them, which was further confirmed a static quenching. The nanocomposites significantly enhance the stabilities of anthocyanin to different alkaline conditions, high temperature of 80 °C, long time storage, and various concentration of Cu2+ ion. In addition, it maintained the excellent intrinsic capacity of anthocyanin to scavenge free radicals. The approach of using an amphiphilic peptide to enhance the stabilities of anthocyanin presents a high potential to expand its application.
Collapse
Affiliation(s)
- Liang Yao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Jiang Xu
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Liwei Zhang
- School of Materials Science and Engineering, Institute for Advanced Materials, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Tao Zheng
- Innovation Academy for Green Manufacture, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, China
| | - Lei Liu
- School of Materials Science and Engineering, Institute for Advanced Materials, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lei Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China.
| |
Collapse
|
37
|
Cyclodextrin–phytochemical inclusion complexes: Promising food materials with targeted nutrition and functionality. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.12.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Maltose binding site 2 mutations affect product inhibition of Bacillus circulans STB01 cyclodextrin glycosyltransferase. Int J Biol Macromol 2021; 175:254-261. [PMID: 33561459 DOI: 10.1016/j.ijbiomac.2021.02.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 02/04/2021] [Accepted: 02/04/2021] [Indexed: 11/23/2022]
Abstract
The efficiency of enzymatic cyclodextrin production using cyclodextrin glycosyltransferases (CGTases) is limited by product inhibition. In this study, maltose binding site 2 (MBS2) of the β-CGTase from Bacillus circulans STB01 was modified to decrease product inhibition. First, two point mutants were prepared at position 599 (A599V and A599N). Then, two double mutants incorporating alanine at position 633 (A599N/Y633A and A599V/Y633A) were prepared. Finally, the entire MBS2 region was replaced by that of the α-CGTase from Paenibacillus macerans JFB05-01 to form multipoint mutant MBS2 β → α. All five mutants exhibited mixed-type product inhibition, although both the competitive and uncompetitive components of this inhibition were decreased. The total cyclization activities of A599N, A599V and A599V/Y633A were 15.6%, 76.8% and 70.9% lower than that of the wild-type, respectively, while that of A599N/Y633A was 22.4% higher. Among the mutants, only MBS2 β → α showed catalytic efficiency (kcat/Km) comparable with that of the wild-type. Moreover, A599N, A599N/Y633A and MBS2 β → α produced cyclodextrin yields 13.1%, 15.8% and 19.7% greater than that of the wild-type, respectively. These results suggest that A599N, A599N/Y633A and MBS2 β → α may be more suitable than the wild-type for cyclodextrin production.
Collapse
|
39
|
Moccia F, Martín MÁ, Ramos S, Goya L, Marzorati S, DellaGreca M, Panzella L, Napolitano A. A new cyanine from oxidative coupling of chlorogenic acid with tryptophan: Assessment of the potential as red dye for food coloring. Food Chem 2021; 348:129152. [PMID: 33515953 DOI: 10.1016/j.foodchem.2021.129152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 12/11/2020] [Accepted: 01/15/2021] [Indexed: 01/10/2023]
Abstract
A red pigment was prepared by reaction of chlorogenic acid (CGA) with tryptophan (TRP) in air at pH 9 (37% w/w yield) and evaluated as food dye. The main component of pigment was formulated as an unusual benzochromeno[2,3-b]indole linked to a TRP unit, featuring a cyanine type chromophore (λmax 542, 546 nm, 1% extinction coefficient of the sodium salt = 244 ± 2). The chromophore showed a minimal pH dependence and proved stable for at least 3 h at 90 °C, both at pH 3.6 or 7.0, whereas red wine anthocyanins showed a substantial (30%) and betanin a complete abatement after 1 h at the acidic pHs. An intense coloring of different food matrices was obtained with the pigment at 0.01 % w/w. No toxicity was observed up to 0.2 mg/mL on hepatic and colonic cell lines. These data make this dye a promising alternative for red coloring of food.
Collapse
Affiliation(s)
- Federica Moccia
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126 Naples, Italy.
| | - María Ángeles Martín
- Department of Metabolism and Nutrition, ICTAN, CSIC, José Antonio Novais 10, 28040 Madrid, Spain.
| | - Sonia Ramos
- Department of Metabolism and Nutrition, ICTAN, CSIC, José Antonio Novais 10, 28040 Madrid, Spain.
| | - Luis Goya
- Department of Metabolism and Nutrition, ICTAN, CSIC, José Antonio Novais 10, 28040 Madrid, Spain.
| | - Stefania Marzorati
- Department of Environmental Science and Policy, via Celoria 2, University of Milan, 20133 Milano, Italy.
| | - Marina DellaGreca
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126 Naples, Italy.
| | - Lucia Panzella
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126 Naples, Italy.
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126 Naples, Italy.
| |
Collapse
|
40
|
Effect of preheated milk proteins and bioactive compounds on the stability of cyanidin-3-O-glucoside. Food Chem 2020; 345:128829. [PMID: 33316711 DOI: 10.1016/j.foodchem.2020.128829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/16/2020] [Accepted: 12/03/2020] [Indexed: 12/20/2022]
Abstract
Native and preheated whey protein isolates (WPI) and casein (at 55 °C-90 °C) were used as protective carriers. Three bioactive compounds, including (-)-Epigallocatechin-3-gallte (EGCG), gallic acid, and vitamin C, were added to enhance the stability of cyanidin-3-O-glucoside (C3G). Under acidic (pH 3.6) and neutral (pH 6.3) conditions, both native and preheated milk proteins showed significant protective effect on C3G. WPI preheated at 85 °C presented the best protective effect on C3G under neutral condition by reducing its thermal, oxidation, and photo degradation rates 25.0%, 38.0%, and 41.1%, respectively. The addition of vitamin C into the protein-anthocyanin solutions accelerated the color loss of C3G, whereas EGCG and gallic acid improved its thermal stability. Among the bioactive compounds, gallic acid provided the most significant protective effect on C3G by further decreasing the thermal degradation rate of C3G 44.6% as a result of the formation of 85 °C preheated WPI-gallic acid-C3G complexes.
Collapse
|
41
|
Li J, Wang B, He Y, Wen L, Nan H, Zheng F, Liu H, Lu S, Wu M, Zhang H. A review of the interaction between anthocyanins and proteins. FOOD SCI TECHNOL INT 2020; 27:470-482. [PMID: 33059464 DOI: 10.1177/1082013220962613] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Anthocyanins have good physiological functions, but they are unstable. The interaction between anthocyanins and proteins can improve the stability, nutritional and functional properties of the complex. This paper reviews the structural changes of complex of anthocyanins interacting with proteins from different sources. By circular dichroism (CD) spectroscopy, it was found that the contents of α-helix (from 15.90%-42.40% to 17.60%-52.80%) or β-sheet (from 29.00%-50.00% to 29.40%-57.00%) of the anthocyanins-proteins complex increased. Fourier transform infrared spectroscopy showed that the regions of amide I (from 1627.87-1641.41 cm-1 to 1643.34-1651.02 cm-1) and amide II (from 1537.00-1540.25 cm-1 to 1539.00-1543.75 cm-1) of anthocyanins-proteins complex were shifted. Fluorescence spectroscopy showed that the fluorescence intensity of the complex decreased from 150-5100 to 40-3900 a.u. The thermodynamic analysis showed that there were hydrophobic interactions, electrostatic and hydrogen bonding interactions between anthocyanins and proteins. The kinetic analysis showed that the half-life and activation energy of the complex increased. The stability, antioxidant, digestion, absorption, and emulsification of the complex were improved. This provides a reference for the study and application of anthocyanins and proteins interactions.
Collapse
Affiliation(s)
- Jia Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Bixiang Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Yang He
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Liankui Wen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Hailong Nan
- Vitis amurensis Rupr, Industry Service Center of Liuhe County, Tonghua, China
| | - Fei Zheng
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - He Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Siyan Lu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Manyu Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Haoran Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| |
Collapse
|