1
|
Wen JH, Guo AQ, Li MN, Yang H. A structural similarity networking assisted collision cross-section prediction interval filtering strategy for multi-compound identification of complex matrix by ion-mobility mass spectrometry. Anal Chim Acta 2023; 1278:341720. [PMID: 37709461 DOI: 10.1016/j.aca.2023.341720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/28/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Ion mobility coupled with mass spectrometry (IM-MS), an emerging technology for analysis of complex matrix, has been facing challenges due to the complexities of chemical structures and original data, as well as low-efficiency and error-proneness of manual operations. In this study, we developed a structural similarity networking assisted collision cross-section prediction interval filtering (SSN-CCSPIF) strategy. We first carried out a structural similarity networking (SSN) based on Tanimoto similarities among Morgan fingerprints to classify the authentic compounds potentially existing in complex matrix. By performing automatic regressive prediction statistics on mass-to-charge ratios (m/z) and collision cross-sections (CCS) with a self-built Python software, we explored the IM-MS feature trendlines, established filtering intervals and filtered potential compounds for each SSN classification. Chemical structures of all filtered compounds were further characterized by interpreting their multidimensional IM-MS data. To evaluate the applicability of SSN-CCSPIF, we selected Ginkgo biloba extract and dripping pills. The SSN-CCSPIF subtracted more background interferences (43.24%∼43.92%) than other similar strategies with conventional ClassyFire criteria (10.71%∼12.13%) or without compound classification (35.73%∼36.63%). Totally, 229 compounds, including eight potential new compounds, were characterized. Among them, seven isomeric pairs were discriminated with the integration of IM-separation. Using SSN-CCSPIF, we can achieve high-efficient analysis of complex IM-MS data and comprehensive chemical profiling of complex matrix to reveal their material basis.
Collapse
Affiliation(s)
- Jia-Hui Wen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Xiang, Nanjing, 210009, China
| | - An-Qi Guo
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Xiang, Nanjing, 210009, China
| | - Meng-Ning Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Xiang, Nanjing, 210009, China.
| | - Hua Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Xiang, Nanjing, 210009, China.
| |
Collapse
|
2
|
Li Z, Liu J, You J, Li X, Liang Z, Du J. Proanthocyanidin Structure-Activity Relationship Analysis by Path Analysis Model. Int J Mol Sci 2023; 24:ijms24076379. [PMID: 37047349 PMCID: PMC10094556 DOI: 10.3390/ijms24076379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
To fully explore the influence mechanism of interactions between different monomer units of proanthocyanidins (PAs) on biological activity, a path analysis model of the PA structure-activity relationship was proposed. This model subdivides the total correlation between each monomer unit and activity into direct and indirect effects by taking into account not only each monomer unit but also the correlation with its related monomer units. In addition, this method can determine the action mode of each monomer unit affecting the activity by comparing the direct and total indirect effects. Finally, the advantage of this model is demonstrated through an influence mechanism analysis of Rhodiola crenulata PA monomer units on antioxidant and anti-diabetes activities.
Collapse
|
3
|
Hu Q, Yu W, Fan Y, Kuang J, Cheng Z. Silicon Doped Carbon Dots as an New Ratiometric Fluorescence Probe for Proanthocyanidins Assay Based on the Redox Reaction Between Cr(VI) and Proanthocyanidins. J Fluoresc 2023; 33:849-858. [PMID: 36595093 DOI: 10.1007/s10895-022-03131-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/15/2022] [Indexed: 01/04/2023]
Abstract
In the study, silicon doped carbon quantum dots (Si-CQDs) was prepared by one-pot hydrothermal method with (3-aminopropyl) triethoxysilane (APTES) and o-phenylenediamine (OPD) as raw materials. Then a new ratiometric fluorescent probe (RF-probe) was successfully established for sensitively and selectively monitoring proanthocyanidins (PAs) with a linear range of 10-500 nM and limit of detection (LOD) of 5.6 nM. that is, the fluorescence (FL) intensity of Si-CQDs at 570 nm was used as the built-in reference, while dopamine (DA) reacting with 4-hexylresorcinol (4-HR) could produce a new fluorescent substance (named as azamonardine, AZMON), and its FL intensity at 480 nm was reduced because Cr(VI) could oxidize DA to generate quinone without fluorescence. In the presence of PAs, Cr(VI) was reduced to Cr(III), which caused that the amount of DA reacting with 4-HR was increased, thus the FL intensity of AZMON was recovered. Furthermore, the RF-probe was successfully used for the determination of PAs in black goji berry from two different areas and PAs capsule with satisfactory results compared to the standard HPLC method.
Collapse
Affiliation(s)
- Qingqing Hu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637002, China
| | - Weihua Yu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637002, China
| | - Yucong Fan
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637002, China
| | - Jianhua Kuang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637002, China
| | - Zhengjun Cheng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637002, China.
- Institute of Applied Chemistry, China West Normal University, Nanchong, 637002, China.
| |
Collapse
|
4
|
Jariyasopit N, Limjiasahapong S, Kurilung A, Sartyoungkul S, Wisanpitayakorn P, Nuntasaen N, Kuhakarn C, Reutrakul V, Kittakoop P, Sirivatanauksorn Y, Khoomrung S. Traveling Wave Ion Mobility-Derived Collision Cross Section Database for Plant Specialized Metabolites: An Application to Ventilago harmandiana Pierre. J Proteome Res 2022; 21:2481-2492. [PMID: 36154058 PMCID: PMC9552781 DOI: 10.1021/acs.jproteome.2c00413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Indexed: 11/29/2022]
Abstract
The combination of ion mobility mass spectrometry (IM-MS) and chromatography is a valuable tool for identifying compounds in natural products. In this study, using an ultra-performance liquid chromatography system coupled to a high-resolution quadrupole/traveling wave ion mobility spectrometry/time-of-flight MS (UPLC-TWIMS-QTOF), we have established and validated a comprehensive TWCCSN2 and MS database for 112 plant specialized metabolites. The database included 15 compounds that were isolated and purified in-house and are not commercially available. We obtained accurate m/z, retention times, fragment ions, and TWIMS-derived CCS (TWCCSN2) values for 207 adducts (ESI+ and ESI-). The database included novel 158 TWCCSN2 values from 79 specialized metabolites. In the presence of plant matrix, the CCS measurement was reproducible and robust. Finally, we demonstrated the application of the database to extend the metabolite coverage of Ventilago harmandiana Pierre. In addition to pyranonaphthoquinones, a group of known specialized metabolites in V. harmandiana, we identified flavonoids, xanthone, naphthofuran, and protocatechuic acid for the first time through targeted analysis. Interestingly, further investigation using IM-MS of unknown features suggested the presence of organonitrogen compounds and lipid and lipid-like molecules, which is also reported for the first time. Data are available on the MassIVE (https://massive.ucsd.edu, data set identifier MSV000090213).
Collapse
Affiliation(s)
- Narumol Jariyasopit
- Metabolomics
and Systems Biology, Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj
Metabolomics and Phenomics Center, Faculty
of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Suphitcha Limjiasahapong
- Siriraj
Metabolomics and Phenomics Center, Faculty
of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Alongkorn Kurilung
- Metabolomics
and Systems Biology, Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sitanan Sartyoungkul
- Metabolomics
and Systems Biology, Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pattipong Wisanpitayakorn
- Metabolomics
and Systems Biology, Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj
Metabolomics and Phenomics Center, Faculty
of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Narong Nuntasaen
- Center
of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok 10400 Thailand
| | - Chutima Kuhakarn
- Center
of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok 10400 Thailand
| | - Vichai Reutrakul
- Center
of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok 10400 Thailand
| | - Prasat Kittakoop
- Chulabhorn
Graduate Institute, Program in Chemical Sciences, Chulabhorn Royal Academy, Laksi,
Bangkok 10210, Thailand
- Chulabhorn
Research Institute, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
| | - Yongyut Sirivatanauksorn
- Siriraj
Metabolomics and Phenomics Center, Faculty
of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sakda Khoomrung
- Metabolomics
and Systems Biology, Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj
Metabolomics and Phenomics Center, Faculty
of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Center
of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok 10400 Thailand
| |
Collapse
|
5
|
Improved Analysis of Isomeric Polyphenol Dimers Using the 4th Dimension of Trapped Ion Mobility Spectrometry—Mass Spectrometry. Molecules 2022; 27:molecules27134176. [PMID: 35807423 PMCID: PMC9268536 DOI: 10.3390/molecules27134176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
Dehydrodicatechins resulting from (epi)catechin oxidation have been investigated in different foods and natural products, but they still offer some analytical challenges. The purpose of this research is to develop a method using ultra-high performance liquid chromatography coupled with trapped ion mobility spectrometry and tandem mass spectrometry (UHPLC−ESI−TIMS−QTOF−MS/MS) to improve the characterization of dehydrodicatechins from model solutions (oxidation dimers of (+)-catechin and/or (−)-epicatechin). Approximately 30 dehydrodicatechins were detected in the model solutions, including dehydrodicatechins B with β and ε-interflavanic configurations and dehydrodicatechins A with γ-configuration. A total of 11 dehydrodicatechins B, based on (−)-epicatechin, (+)-catechin, or both, were tentatively identified in a grape seed extract. All of them were of β-configuration, except for one compound that was of ε-configuration. TIMS allowed the mobility separation of chromatographically coeluted isomers including dehydrodicatechins and procyanidins with similar MS/MS fragmentation patterns that would hardly be distinguished by LC-MS/MS alone, which demonstrates the superiority of TIMS added to LC-MS/MS for these kinds of compounds. To the best of our knowledge, this is the first time that ion mobility spectrometry (IMS) was applied to the analysis of dehydrodicatechins. This method can be adapted for other natural products.
Collapse
|
6
|
Ossipov V, Zubova M, Nechaeva T, Zagoskina N, Salminen JP. The regulating effect of light on the content of flavan-3-ols and derivatives of hydroxybenzoic acids in the callus culture of the tea plant, Camellia sinensis L. BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2022.104383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Li MN, Shen BQ, Lu X, Gao W, Wen SS, Zhang X, Yang H, Li P. An integrated two-step filtering strategy of collision cross-section interval predicting and mass defect filtering for targeted identification of analogues in herbal medicines using liquid chromatography-ion mobility-mass spectrometry. J Chromatogr A 2021; 1657:462572. [PMID: 34601257 DOI: 10.1016/j.chroma.2021.462572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022]
Abstract
Rapid identification of chemical analogues in herbal medicines using liquid chromatography-mass spectrometry was an efficient tool for discoveries of potentially active ingredients. Multi-dimensional combination of various separation technologies could significantly enhance the capacities for detection of trace components and discrimination of multiple isomers. In this study, an integrated two-step filtering strategy on liquid chromatography-ion mobility tandem with quadrupole-time-of-flight mass spectrometry (LC-IM-QTOF MS) was developed for identification of analogues in complex matrixes. The extracted raw data were preliminarily filtered by a collision-cross section (CCS) interval generated from power regression with confidence level at 99% for prediction of analogues. Then, the remained ions were further screened using a mass defect filtering (MDF) window based on m/z and decimal m/z of potential skeletons and substituents. By applying this strategy, 86, 102, 73, and 57 isoquinoline alkaloids were identified in herbal materials of Coptis chinensis Franch (CC), C. deltoidea C.Y.Cheng et Hsiao (CD), C. teeta Wall (CT), and Corydalis yanhusuo W.T.Wang (CY). The integrated two-step filtering presented higher efficiencies on exclusion of the background interference and reducing the false-positive rates than previously reported approaches. This study facilitated the application of LC-IM-MS on small molecular analysis and promoted the discoveries of bioactive components of herbal medicines for further pharmacological researches and quality control.
Collapse
Affiliation(s)
- Meng-Ning Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Bing-Qing Shen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xu Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Wen Gao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Shan-Shan Wen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xuan Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
8
|
Huang W, Zhou H, Yuan M, Lan L, Hou A, Ji S. Comprehensive characterization of the chemical constituents in Platycodon grandiflorum by an integrated liquid chromatography-mass spectrometry strategy. J Chromatogr A 2021; 1654:462477. [PMID: 34433124 DOI: 10.1016/j.chroma.2021.462477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 02/08/2023]
Abstract
Platycodon grandiflorum (PG), as a well-known medicine food homology species, possess various pharmacological effects and health benefits. Aiming to facilitate in-depth and global characterization of the chemical compositions of PG, a profiling method based on ultra-high performance liquid chromatography coupled with ion mobility quadrupole time-of-flight mass spectrometry (UPLC/IM-QTOF-MS) was conducted. Consequently, as many as 187 compounds were plausibly or unambiguously identified. Most importantly, phospholipids (PLs) were first observed and identified in PG. Due to their widely confirmed bioactivities, an analysis scheme was developed by hydrophilic interaction liquid chromatography and electrospray ionization tandem mass spectrometry combined with the online Paternò-Büchi reaction (HILIC-PB-MS/MS). The fatty acyl chains and C=C locations of 180 PLs molecular species, which fell into four classes, were unprecedently characterized. This exposure strategy of multi-type constituents greatly enriches the chemical profiling of PG, and helps promoting the further development of therapeutic agents and nutraceutical products from PG.
Collapse
Affiliation(s)
- Weizhen Huang
- School of Pharmacy, Fudan University, Shanghai 201203, PR China; NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, PR China
| | - Heng Zhou
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, PR China
| | - Ming Yuan
- Waters Corporation (China), Shanghai 201206, PR China
| | - Lan Lan
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, PR China.
| | - Aijun Hou
- School of Pharmacy, Fudan University, Shanghai 201203, PR China.
| | - Shen Ji
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, PR China.
| |
Collapse
|
9
|
Wang H, Wang S, Zhao D, Xie H, Wang H, Sun M, Yang X, Qian Y, Wang X, Li X, Gao X, Yang W. A novel ion mobility separation-enabled and precursor ions list-included high-definition data-dependent acquisition (HDDDA) approach: Method development and its application to the comprehensive multicomponent characterization of Fangji Huangqi Decoction. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103087] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
10
|
Detection of acacia honey adulteration with high fructose corn syrup through determination of targeted α‑Dicarbonyl compound using ion mobility-mass spectrometry coupled with UHPLC-MS/MS. Food Chem 2021; 352:129312. [PMID: 33652193 DOI: 10.1016/j.foodchem.2021.129312] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/16/2020] [Accepted: 01/02/2021] [Indexed: 12/27/2022]
Abstract
High-value acacia honey is often adulterated with inexpensive high fructose corn syrup (HFCS), due to their similar color and sugar composition. α‑Dicarbonyl compounds formed by Maillard reaction or caramelization during heat treatment or storage, differ between HFCS and honey due to differences in starting materials and processing methods. In this study, we compared α-dicarbonyl compounds in acacia honey and HFCS by Ion Mobility-Mass Spectrometry and multivariate statistical analysis. Through α-dicarbonyl compound derivatization with o-phenylenediamine, we screened a marker with 189.1023 m/z and 139.3 Å2 Collision Cross-Section that can distinguish HFCS from acacia honey. Nuclear magnetic resonance spectra identified this marker compound as 3,4-dideoxypentosulose. We then used chromatography-coupled tandem mass spectrometry to quantitate 3,4-dideoxypentosulose in market samples of honey and HFCS and found that 3,4-dideoxypentosulose was negligible (<0.098 mg/kg) in honey, but prevalent in HFCS (≧1.174 mg/kg), indicating 3,4-dideoxypentosulose can serve as an alternative indicator of HFCS adulteration of acacia honey.
Collapse
|
11
|
Qian Y, Li W, Wang H, Hu W, Wang H, Zhao D, Hu Y, Li X, Gao X, Yang W. A four-dimensional separation approach by offline 2D-LC/IM-TOF-MS in combination with database-driven computational peak annotation facilitating the in-depth characterization of the multicomponents from Atractylodis Macrocephalae Rhizoma (Atractylodes macrocephala). ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2020.102957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
12
|
Masike K, Stander MA, de Villiers A. Recent applications of ion mobility spectrometry in natural product research. J Pharm Biomed Anal 2021; 195:113846. [PMID: 33422832 DOI: 10.1016/j.jpba.2020.113846] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022]
Abstract
Ion mobility spectrometry (IMS) is a rapid separation technique capable of extracting complementary structural information to chromatography and mass spectrometry (MS). IMS, especially in combination with MS, has experienced inordinate growth in recent years as an analytical technique, and elicited intense interest in many research fields. In natural product analysis, IMS shows promise as an additional tool to enhance the performance of analytical methods used to identify promising drug candidates. Potential benefits of the incorporation of IMS into analytical workflows currently used in natural product analysis include the discrimination of structurally similar secondary metabolites, improving the quality of mass spectral data, and the use of mobility-derived collision cross-section (CCS) values as an additional identification criterion in targeted and untargeted analyses. This review aims to provide an overview of the application of IMS to natural product analysis over the last six years. Instrumental aspects and the fundamental background of IMS will be briefly covered, and recent applications of the technique for natural product analysis will be discussed to demonstrate the utility of the technique in this field.
Collapse
Affiliation(s)
- Keabetswe Masike
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Maria A Stander
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa; Central Analytical Facility, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - André de Villiers
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
13
|
Yang WZ, Qian YX, Xie HM, Zuo TT, Li X, Hu Y, Wang HD, Gao XM. Ultra-high performance liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry and database-driven automatic peak annotation for the rapid profiling and characterization of the multicomponents from stephaniae tetrandrae radix (Fang-Ji). WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2021. [DOI: 10.4103/wjtcm.wjtcm_56_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
14
|
Procyanidin-Rich Extract from Grape Seeds as a Putative Tool against Helicobacter pylori. Foods 2020; 9:foods9101370. [PMID: 32993186 PMCID: PMC7600706 DOI: 10.3390/foods9101370] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/16/2022] Open
Abstract
Strains of Helicobacter pylori (H. pylori) resistant to various antibiotics have increased in recent years. In this context, the search for new therapeutic approaches is crucial. The aim of the present study was to demonstrate the antibacterial activity of a procyanidin-rich extract obtained from food-grade winery grape seeds against 14 H. pylori strains and elucidate its phenolic composition. Ten strains (71.4%) showed resistance to at least some of the tested antibiotics, while four isolates (28.6%) were susceptible to all antibiotics. Resistance to more than one class of antibiotics was observed in six strains (42.9%). The extract was able to inhibit the growth of all H. pylori strains in a range of a minimum inhibitory concentration (MIC) from 0.015 mg/mL to 0.125 mg/mL, confirming also the existence of a strain-dependent effect. The phenolic composition determined by reverse phase high pressure liquid chromatography, photodiode array, and mass spectrometry detection (RP-HPLC-PAD-MS) analysis revealed the presence of 43 individual compounds and allowed the quantification of 41 of them, including seven procyanidin tetramers, seven procyanidin pentamers, and six galloylated procyanidin dimers, trimers, and tetramers. The extract was composed mainly by catechin and procyanidin oligomers with a total amount of 5801 mg/100 g, which represent 92% of the total individual phenolic content. Among them, the most abundant were catechins (2047 mg/100 g), followed by procyanidin dimers (1550 mg/100 g), trimers (1176 mg/100 g), tetramers (436 mg/100 g), and pentamers (296 mg/100 g) that represent 35, 27, 20, 8, and 5%, respectively of the total flavanol constituents. The composition profile information may help to improve the production process of useful antibacterial extracts against H. pylori.
Collapse
|