1
|
Hamdi M, Kilari BP, Mudgil P, Nirmal NP, Ojha S, Ayoub MA, Amin A, Maqsood S. Bioactive peptides with potential anticancer properties from various food protein sources: status of recent research, production technologies, and developments. Crit Rev Biotechnol 2025:1-22. [PMID: 39757011 DOI: 10.1080/07388551.2024.2435965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 10/15/2024] [Accepted: 10/27/2024] [Indexed: 01/07/2025]
Abstract
Recently, bioactive peptides, from natural resources, have attracted remarkable attention as nutraceutical treasures and the health benefits of their consumption have extensively been studied. Therapies based on bioactive peptides have been recognized as an innovative and promising alternative method for dangerous diseases such as cancer. Indeed, there has been enormous interest in nutraceuticals and bioactive-based chemopreventive molecules as a potential opportunity to manage chronic diseases, including cancer at different stages, rather than the traditionally used therapies. The relative safety and efficacy of these peptides in targeting only the tumor cells without affecting the normal cells make them attractive alternatives to existing pharmaceuticals for the treatment, management, and prevention of cancer, being able to act as potential physiological modulators of metabolism during their intestinal digestion. Novel bioactive peptides derived from food sources can be beneficial as anticancer nutraceuticals and provide a basis for the pharmaceutical development of food-derived bioactive peptides. Bioactive peptides can be generated through different protein hydrolysis methods and purified using advanced chromatographic techniques. Moreover, establishing bioactive peptides' efficacy and mechanism of action can provide alternative methods for cancer prevention and management. Most of the research on anticancer peptides is carried out on cell lines with very limited research being investigated in animal models or human clinical models. In this context, this review article comprehensively discusses anticancer peptides': production, isolation, therapeutic strategies, mechanism of action, and application in cancer therapy.
Collapse
Affiliation(s)
- Marwa Hamdi
- Food Science Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Bhanu Priya Kilari
- Food Science Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Priti Mudgil
- Food Science Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| | | | - Shreesh Ojha
- Department of Pharmacology, College of Medicine and Health Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Mohammed Akli Ayoub
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, United Arab Emirates
| | - Amr Amin
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Sajid Maqsood
- Food Science Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
2
|
Yang S, Jeong CM, Park CS, Moon C, Jang L, Jang JY, Lee HS, Kim K, Byeon H, Eom D, Kim HH. Identification and quantification of unreported sialylated N-glycan isomers with α2-3 and α2-6 linkages in the egg yolk protein phosvitin. Food Res Int 2024; 197:115293. [PMID: 39577941 DOI: 10.1016/j.foodres.2024.115293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/02/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024]
Abstract
Phosvitin (PV), a highly phosphorylated protein found in chicken egg yolk, possesses multiple bioactivities (including anti-aging and anticancer) and functional properties (including emulsifier and metal-binding capacities). The carbohydrate moiety attached to PV has been reported, but its N-glycan structure is unknown. In this study, we performed structural and quantitative analyses of N-glycans from PV using liquid chromatography-tandem mass spectrometry (MS/MS). N-glycan structures were identified using observed precursor ion m/z and MS/MS fragment ions. Each quantity was obtained relative to the total N-glycans (100%). Thirty-seven N-glycans were identified, including 22 sialylations with a negative charge (a sum of the relative quantity of each, 96.4%) comprising 13 mono- (31.6%), 7 di- (57.5%), 2 tri- (7.3%) sialylations. The sialylated N-glycan isomers with α2-3 (flexible conformation) and α2-6 (rigid conformation) linkages were distinguished using α2-3- and α2-3,6 sialidase treatments and intensity ratios of the N-acetylglucosamine and sialic acid ions (Ln/Nn) with different fragmentation stabilities. The α2-6/α2-6 (53.8%), α2-6 (31.6%), α2-3/α2-6/α2-6 (6.5%), and α2-3/α2-6 (3.7%) linkages in mono-, di, or tri-antennary structures were identified. These negatively charged structures may affect the emulsification and metal-binding capacity of PV. This is the first study to identify and quantify N-glycans in PV, including predominantly 22 sialylated N-glycan isomers with more rigid α2-6 linkages than α2-3 linkages.
Collapse
Affiliation(s)
- Subin Yang
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Chang Myeong Jeong
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Chi Soo Park
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Chulmin Moon
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Leeseul Jang
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Ji Yeon Jang
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Han Seul Lee
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Kyuran Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Haeun Byeon
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Daeun Eom
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Ha Hyung Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| |
Collapse
|
3
|
Ben-Fadhel Y, Perreault V, Marciniak A, Gaillard R, Pouliot Y, Brisson G, Doyen A. Effect of high-hydrostatic pressure on the digestibility of egg yolk and granule. J Food Sci 2024; 89:2803-2813. [PMID: 38551196 DOI: 10.1111/1750-3841.17051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 05/19/2024]
Abstract
The impact of high hydrostatic pressure (HHP) on protein digestibility of egg yolk and egg yolk granule was evaluated by static in vitro digestion using the standardized INFOGEST 2.0 method. The degree of hydrolysis (DH) and the phospholipid content were determined during digestion, and the protein and peptide profiles were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and reverse phase-high pressure liquid chromatography (RP-HPLC). The results showed that HHP induced protein aggregation in egg yolk and granule, mainly by disulfide bridges, which were not disrupted in the oral phase. Proteolysis during the gastric phase improved egg yolk and granule protein solubility, regardless of whether HHP was applied. However, the extent of the samples' digestibility was not affected, with DH values ranging from 15% to 20%. During the intestinal phase, the DH of egg yolk protein (∼40%) was higher than that of the granule (∼25%), probably due to the denser structure of the granule reducing the accessibility of intestinal enzymes. The DH, peptide, and protein profiles of control and HHP-treated egg yolk showed similar protein digestion behaviors for both gastric and intestinal phases. Among the different proteins, only the digestibility of β-phosvitin in HHP-treated granule was enhanced. Consequently, applying HHP to granules represents an interesting process that improves the digestibility of phosvitin with the potential to generate bioactive phosvitin-derived phosphopeptides. PRACTICAL APPLICATION: High hydrostatic pressure, mainly used as a preservation process, did not impair the nutritional quality of the egg yolk and granule proteins but improved the susceptibility of phosvitin (protein contained in egg yolk) proteolysis to produce bioactive phosphopeptides. Consequently, applying HHP to granules represents an interesting process that improves the digestibility of phosvitin.
Collapse
Affiliation(s)
- Yosra Ben-Fadhel
- Department of Food Sciences, Université Laval, Quebec City, Quebec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, Quebec, Canada
| | - Véronique Perreault
- Department of Food Sciences, Université Laval, Quebec City, Quebec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, Quebec, Canada
| | - Alice Marciniak
- Department of Food Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Romuald Gaillard
- Department of Food Sciences, Université Laval, Quebec City, Quebec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, Quebec, Canada
| | - Yves Pouliot
- Department of Food Sciences, Université Laval, Quebec City, Quebec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, Quebec, Canada
| | - Guillaume Brisson
- Department of Food Sciences, Université Laval, Quebec City, Quebec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, Quebec, Canada
| | - Alain Doyen
- Department of Food Sciences, Université Laval, Quebec City, Quebec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
4
|
Ye H, Sui J, Wang J, Wang Y, Wu D, Wang B, Geng F. Research Note: Aggregation-depolymerization of chicken egg yolk granule under different food processing conditions. Poult Sci 2023; 102:102696. [PMID: 37120873 PMCID: PMC10172733 DOI: 10.1016/j.psj.2023.102696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/27/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023] Open
Abstract
Chicken egg yolk granule is a natural micro-nano aggregate in egg yolk, and its assembly structure varies under different processing conditions. In this study, the effects of NaCl concentration, pH, temperature, and ultrasonic treatment on the properties and microstructure of yolk granule were determined. The results showed that ionic strength (above 0.15 mol/L), alkaline environment (pH 9.5 and 12.0), and ultrasonic treatment induced the depolymerization of egg yolk granule; while freezing-thawing, heat treatment (65°C, 80°C, and 100°C), and mild acidic pH (pH 4.5) induced the aggregation of yolk granule. Scanning electron microscopy observation showed the assembly structure of yolk granule varied with different treatment conditions and confirmed the aggregation-depolymerization of yolk granule under different conditions. Correlation analysis showed that turbidity and average particle size are the 2 most critical indicators that can reflect the aggregation structure of yolk granule in solution. The results are important for understanding the changing mechanism of yolk granule during processing, and provide important information for the applications of yolk granule.
Collapse
|
5
|
Gu L, Liu Y, Zhang W, Li J, Chang C, Su Y, Yang Y. Novel extraction technologies and potential applications of egg yolk proteins. Food Sci Biotechnol 2022; 32:121-133. [PMID: 36590017 PMCID: PMC9795146 DOI: 10.1007/s10068-022-01209-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 12/29/2022] Open
Abstract
The high nutritional value and diverse functional properties of egg yolk proteins have led to its widespread use in the fields of food, medicine, and cosmetics. Various extraction methods have been reported to obtain the proteins from egg yolk, however, their utilization is limited due to the relatively low extraction efficiency and/or toxic solvents involved. Several simpler and greener technologies, especially physical fields (ultrasound), have been successfully developed to improve the extraction efficiency. The egg yolk proteins may exert multiple biological activities, enabling them to be a promising tool in improve human health and wellbeing, such as anti-obesity, anti-atherosclerosis, anti-osteoporosis, diagnosis and therapy for SARS-CoV-2 infections. This article summarizes the novel extraction technologies and latest applications of the egg yolk proteins in the recent 5 years, which should stimulate their utilization as health-promoting functional ingredients in foods and other commercial products.
Collapse
Affiliation(s)
- Luping Gu
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyCollaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122 China ,Hunan Engineering & Technology Research Center for Food Flavors and Flavorings, Jinshi, 415400 Hunan China
| | - Yufang Liu
- College of Food Engineering and Nutritional Science, Shanxi Normal University, Xi’an, China
| | - Wanqiu Zhang
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyCollaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122 China
| | - Junhua Li
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyCollaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122 China
| | - Cuihua Chang
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyCollaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122 China
| | - Yujie Su
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyCollaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122 China ,Hunan Engineering & Technology Research Center for Food Flavors and Flavorings, Jinshi, 415400 Hunan China
| | - Yanjun Yang
- State Key Laboratory of Food Science and TechnologySchool of Food Science and TechnologyCollaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122 China ,Hunan Engineering & Technology Research Center for Food Flavors and Flavorings, Jinshi, 415400 Hunan China
| |
Collapse
|
6
|
Li T, Su H, Zhu J, Fu Y. Janus effects of NaCl on structure of egg yolk granules. Food Chem 2022; 371:131077. [PMID: 34536655 DOI: 10.1016/j.foodchem.2021.131077] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/19/2021] [Accepted: 09/05/2021] [Indexed: 11/16/2022]
Abstract
Egg yolk granules are supramolecular assembly of high-density lipoproteins and phosvitin driven by calcium bridges. However, applications of granules are severely restricted by the large particle size and poor water dispersibility. This study revealed the Janus effects of NaCl on structure of granules at varied pH values. Addition of 0.3-0.5 M NaCl led to the dissociation of at pH 5.0-7.0. At pH 5.0-10.0, dissociated granules demonstrated good colloidal stability with NaCl because of the adsorption of highly hydrated Na+ and Ca2+, which provided strong hydration repulsion when electrostatic repulsion was screened. In contrast, at pH 2.0 and 3.0, dissociated granules were positively charged with adsorption of poorly hydrated Cl- as counterions. Cl- failed to give sufficient hydration repulsion, leading to the phase separation with 0.3-0.5 M NaCl. Similar effects have been also found in LiCl, KCl, and CsCl, but Li+ might be less effective to disrupt calcium bridges.
Collapse
Affiliation(s)
- Teng Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Huanhuan Su
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jiaqian Zhu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yuying Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
7
|
Fu Y, Yao J, Su H, Li T. Effects of Calcium Chelators on Colloidal Stability and Interfacial Activity of Egg Yolk Granules. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09721-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
8
|
Impact of Ultra-High Pressure Homogenization on the Structural Properties of Egg Yolk Granule. Foods 2022; 11:foods11040512. [PMID: 35205989 PMCID: PMC8871291 DOI: 10.3390/foods11040512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
Ultra-high pressure homogenization (UHPH) is a promising method for destabilizing and potentially improving the techno-functionality of the egg yolk granule. This study’s objectives were to determine the impact of pressure level (50, 175 and 300 MPa) and number of passes (1 and 4) on the physico-chemical and structural properties of egg yolk granule and its subsequent fractions. UHPH induced restructuration of the granule through the formation of a large protein network, without impacting the proximate composition and protein profile in a single pass of up to 300 MPa. In addition, UHPH reduced the particle size distribution up to 175 MPa, to eventually form larger particles through enhanced protein–protein interactions at 300 MPa. Phosvitin, apovitellenin and apolipoprotein-B were specifically involved in these interactions. Overall, egg yolk granule remains highly stable during UHPH treatment. However, more investigations are needed to characterize the resulting protein network and to evaluate the techno-functional properties of UHPH-treated granule.
Collapse
|
9
|
Marcet I, Sáez-Orviz S, Rendueles M, Díaz M. Egg yolk granules and phosvitin. Recent advances in food technology and applications. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112442] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
10
|
Abstract
Sustainable food supply has gained considerable consumer concern due to the high percentage of spoilage microorganisms. Food industries need to expand advanced technologies that can maintain the nutritive content of foods, enhance the bio-availability of bioactive compounds, provide environmental and economic sustainability, and fulfill consumers’ requirements of sensory characteristics. Heat treatment negatively affects food samples’ nutritional and sensory properties as bioactives are sensitive to high-temperature processing. The need arises for non-thermal processes to reduce food losses, and sustainable developments in preservation, nutritional security, and food safety are crucial parameters for the upcoming era. Non-thermal processes have been successfully approved because they increase food quality, reduce water utilization, decrease emissions, improve energy efficiency, assure clean labeling, and utilize by-products from waste food. These processes include pulsed electric field (PEF), sonication, high-pressure processing (HPP), cold plasma, and pulsed light. This review describes the use of HPP in various processes for sustainable food processing. The influence of this technique on microbial, physicochemical, and nutritional properties of foods for sustainable food supply is discussed. This approach also emphasizes the limitations of this emerging technique. HPP has been successfully analyzed to meet the global requirements. A limited global food source must have a balanced approach to the raw content, water, energy, and nutrient content. HPP showed positive results in reducing microbial spoilage and, at the same time, retains the nutritional value. HPP technology meets the essential requirements for sustainable and clean labeled food production. It requires limited resources to produce nutritionally suitable foods for consumers’ health.
Collapse
|
11
|
Li X, Wang YM, Sun CF, Lv JH, Yang YJ. Comparative Study on Foaming Properties of Egg White with Yolk Fractions and Their Hydrolysates. Foods 2021; 10:2238. [PMID: 34574348 PMCID: PMC8468132 DOI: 10.3390/foods10092238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/07/2021] [Accepted: 09/17/2021] [Indexed: 12/03/2022] Open
Abstract
As an excellent foaming agent, egg white protein (EWP) is always contaminated by egg yolk in the industrial processing, therefore, decreasing its foaming properties. The aim of this study was to simulate the industrial EWP (egg white protein with 0.5% w/w of egg yolk) and characterize their foaming and structural properties when hydrolyzed by two types of esterase (lipase and phospholipase A2). Results showed that egg yolk plasma might have been the main fraction, which led to the poor foaming properties of the contaminated egg white protein compared with egg yolk granules. After hydrolyzation, both foamability and foam stability of investigated systems thereof (egg white protein with egg yolk, egg white protein with egg yolk plasma, and egg white protein with egg yolk granules) increased significantly compared with unhydrolyzed ones. However, phospholipids A2 (PLP) seemed to be more effective on increasing their foaming properties as compared to those systems hydrolyzed by lipase (LP). The schematic diagrams of yolk fractions were proposed to explain the aggregation and dispersed behavior exposed in their changes of structures after hydrolysis, suggesting the aggregated effects of LP on yolk plasma and destructive effects of PLP on yolk granules, which may directly influence their foaming properties.
Collapse
Affiliation(s)
- Xin Li
- School of Life Sciences, Yantai University, Yantai 264005, China; (C.-F.S.); (J.-H.L.)
| | - Yue-Meng Wang
- School of Food and Biological Engineering, Yantai Institute of Technology, Yantai 264003, China;
| | - Cheng-Feng Sun
- School of Life Sciences, Yantai University, Yantai 264005, China; (C.-F.S.); (J.-H.L.)
| | - Jian-Hao Lv
- School of Life Sciences, Yantai University, Yantai 264005, China; (C.-F.S.); (J.-H.L.)
| | - Yan-Jun Yang
- School of Food Science, Jiangnan University, Wuxi 214122, China;
| |
Collapse
|
12
|
Bhat ZF, Morton JD, Bekhit AEDA, Kumar S, Bhat HF. Effect of processing technologies on the digestibility of egg proteins. Compr Rev Food Sci Food Saf 2021; 20:4703-4738. [PMID: 34355496 DOI: 10.1111/1541-4337.12805] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/06/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023]
Abstract
Egg and egg products are a rich source of highly bioavailable animal proteins. Several processing technologies can affect the structural and functional properties of these proteins differently and can influence their fate inside the gastrointestinal tract. The present review examines some of the processing technologies for improving egg protein digestibility and discusses how different processing conditions affect the digestibility of egg proteins under gastrointestinal digestion environments. To provide up-to-date information, most of the studies included in this review have been published in the last 5 years on different aspects of egg protein digestibility. Digestibility of egg proteins can be improved by employing some processing technologies that are able to improve the susceptibility of egg proteins to gastrointestinal proteases. Processing technologies, such as pulsed electric field, high-pressure, and ultrasound, can induce conformational and microstructural changes that lead to unfolding of the polypeptides and expose active sites for further interactions. These changes can enhance the accessibility of digestive proteases to cleavage sites. Some of these technologies may inactivate some egg proteins that are enzyme inhibitors, such as trypsin inhibitors. The underlying mechanisms of how different technologies mediate the egg protein digestibility have been discussed in detail. The proteolysis patterns and digestibility of the processed egg proteins are not always predictable and depends on the processing conditions. Empirical input is required to tailor the optimization of processing conditions for favorable effects on protein digestibility.
Collapse
Affiliation(s)
- Zuhaib F Bhat
- Division of Livestock Products Technology, SKUAST of Jammu, Jammu, Jammu and Kashmir, India
| | - James D Morton
- Department of Wine Food and Molecular Biosciences, Lincoln University, Christchurch, New Zealand
| | | | - Sunil Kumar
- Division of Livestock Products Technology, SKUAST of Jammu, Jammu, Jammu and Kashmir, India
| | - Hina F Bhat
- Division of Biotechnology, SKUAST of Kashmir, Srinagar, Jammu and Kashmir, India
| |
Collapse
|