1
|
Zou Y, Ye F, Zhang Z, Liu X, Zhao G. Heat-moisture treatment can modulate all-purpose wheat flour for short dough biscuit making: Evidences and mechanism. Food Chem 2024; 451:139512. [PMID: 38718641 DOI: 10.1016/j.foodchem.2024.139512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/26/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024]
Abstract
In view of the merits of all-purpose wheat flour (APWF) to soft wheat flour (SWF) in cost and protein supply, the feasibility of heat-moisture treatment (HMT, 19% moisture for 1 h at 60, 80 and 100 °C, respectively) to modify APWF as a substitute SWF in making short dough biscuits was explored. For underlying mechanisms, on the one hand, HMT reduced the hydration capacity of damaged starch particles by coating them with denatured proteins. On the other hand, HMT at 80 °C and 100 °C significantly denatured gluten proteins to form protein aggregates, highly weakening the gluten network in dough. These two aspects jointly conferred APWF dough with higher deformability and therefore significantly improved the qualities of biscuits. Moreover, the qualities of biscuits from APWF upon HMT-100 °C were largely comparable to that from SWF, even higher values were concluded in spread ratio, volume, specific volume and consumer acceptance.
Collapse
Affiliation(s)
- Yiyuan Zou
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Fayin Ye
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Zehua Zhang
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Xiaoqing Liu
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China.
| |
Collapse
|
2
|
Wu C, Gao F, Jia J, Guo L, Zhang C, Qian JY. Effect of superheated steam treatment on enzyme inactivation, morphostructural, physicochemical and digestion properties of sand rice (Agriophyllum squarrosum) flour. Food Chem 2024; 450:139336. [PMID: 38640540 DOI: 10.1016/j.foodchem.2024.139336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/30/2024] [Accepted: 04/09/2024] [Indexed: 04/21/2024]
Abstract
The lipase (LA) and peroxidase (POD) activities, as well as morphological structure, physicochemical and digestion properties of sand rice flour (SRF) treated with superheated steam (SS), were investigated. SS treatment at 165 °C completely deactivated LA and resulted in a 98% deactivation of POD activities in SRF. This treatment also intensified gelatinization, induced noticeable color alterations, and decreased pasting viscosities. Furthermore, there was a moderate reduction in crystal structure, lamellar structure, and short-range ordered structure, with a pronounced reduction at temperatures exceeding 170 °C. These alterations significantly impacted SRF digestibility, leading to increased levels of rapidly digestible starch (RDS) and resistant starch (RS), with the highest RS content achieved at 165 °C. The effectiveness of SS treatment depends on temperature, with 165 °C being able to stabilize SRF with moderate changes in color and structure. These findings will provide a scientific foundation for SS applicated in SRF stabilization and modification.
Collapse
Affiliation(s)
- Chunsen Wu
- School of Food Science and Engineering, Yangzhou University, 196 Huayangxi Road, Yangzhou 225127, PR China
| | - Fan Gao
- School of Food Science and Engineering, Yangzhou University, 196 Huayangxi Road, Yangzhou 225127, PR China
| | - Juan Jia
- School of Food Science and Engineering, Yangzhou University, 196 Huayangxi Road, Yangzhou 225127, PR China
| | - Lunan Guo
- School of Food Science and Engineering, Yangzhou University, 196 Huayangxi Road, Yangzhou 225127, PR China
| | - Chen Zhang
- School of Food Science and Engineering, Yangzhou University, 196 Huayangxi Road, Yangzhou 225127, PR China
| | - Jian-Ya Qian
- School of Food Science and Engineering, Yangzhou University, 196 Huayangxi Road, Yangzhou 225127, PR China.
| |
Collapse
|
3
|
Itusaca-Maldonado YM, Apaza-Humerez CR, Pumacahua-Ramos A, Mayta Pinto E. Technological and textural properties of gluten-free quinoa-based pasta (Chenopodium quinoa Wild). Heliyon 2024; 10:e28363. [PMID: 38560137 PMCID: PMC10979092 DOI: 10.1016/j.heliyon.2024.e28363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Quinoa (Chenopodium quinoa Willd.) is an Andean grain with a perfect nutritional composition that, by diversifying its transformation, becomes an attractive alternative for consumers looking for a high-quality, healthy diet with a source of vegetable proteins. The objective of this work was to elaborate and evaluate the technological and textural properties of quinoa paste in its entirety through the Star-Shaped Composite Central Design (CCD) of 5 process variables: Water Temperature (°C), Water Quality (ml), Mixing Time (min), Drying Temperature (°C), and Drying Time (min), with 5 levels each. At the same time, the yield and good cooking quality were studied to optimize the process. In the model of the equation for the cooking time response, a negative and significant influence of drying temperature was shown. On the other hand, for cooking loss, dough gain, a* and b* values, and texture had high values if the drying time was increased. On the contrary, the L-value decreases, which is positively significant. Meanwhile, the swelling index was only significantly positive within the technological properties. In addition, it was found that the optimal conditions for producing quality pasta were 25 °C: 1150 ml: 30 min: 70 °C and 80 min, respectively, with a desirability of 0.883. When the pasta was prepared with quinoa, the cooking time was 7 min, the cooking loss was 2.46 g/g, the mass gain was 23.6 g/g, the cooking yield was 7.99%, the swelling index was 2.9%, water absorption was 135%, and protein was 12.71 g and 0. 21 Pa in texture, these results being consistent with cited research. Likewise, the whiteness was 51.97 for the values a* 2.41 and b* 12.45; all this analysis is reflected in the final yield of the process at 78%. In conclusion, the results indicated that, by optimizing the conditions in the production of gluten-free quinoa pasta, it is possible to obtain a gluten-free product with high added value, excellent cooking quality, adequate technological properties, texture, and color acceptable to the consumer.
Collapse
Affiliation(s)
- Yisenia Mirian Itusaca-Maldonado
- Escuela Profesional de Ingeniería de Industrias Alimentarias, Universidad Peruana Unión, Carretera Arequipa Km 6, Juliaca, 21100, Peru
| | - Carmen Rosa Apaza-Humerez
- Escuela Profesional de Ingeniería de Industrias Alimentarias, Universidad Peruana Unión, Carretera Arequipa Km 6, Juliaca, 21100, Peru
| | - Augusto Pumacahua-Ramos
- Facultad de Ingeniería de Alimentos, Universidad Nacional Intercultural de Quillabamba, Santa Ana, Cusco, 08741, Peru
| | - Edgar Mayta Pinto
- Escuela Profesional de Ingeniería de Industrias Alimentarias, Universidad Peruana Unión, Carretera Arequipa Km 6, Juliaca, 21100, Peru
| |
Collapse
|
4
|
Gao Y, Zhang X, Wang R, Sun Y, Li X, Liang J. Physicochemical, Quality and Flavor Characteristics of Starch Noodles with Auricularia cornea var. Li. Powder. Foods 2024; 13:1185. [PMID: 38672857 PMCID: PMC11048883 DOI: 10.3390/foods13081185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Auricularia cornea var. Li., as an edible mushroom rich in various nutrients, could be widely used in noodle food. This study aimed to investigate the effect of Auricularia cornea var. Li. (AU) powder on the gel properties, structure and quality of starch noodles. Taking the sample without adding AU powder as a control, the addition of AU powder enhanced the peak viscosity, trough viscosity, final viscosity, breakdown, setback, peak time, gelatinization temperature, G' (storage modulus) and G'' (loss modulus). Meanwhile, the incorporation of AU powder significantly enhanced the stability of the starch gel structure and contributed to a more ordered microstructure also promoting the short-term aging of starch paste. In vitro digestion results displayed lower rapid digestibility (21.68%) but higher resistant starch content (26.58%) with the addition of AU powder and increased breaking rate, cooking loss, swelling index and a* and b* values. However, it decreased dry matter content and L*, particularly the reducing sugar content significantly increased to 4.01% (p < 0.05), and the total amino acid content rose to 349.91 mg/g. The GC-IMS library identified 51 VOCs, and the OPLS-DA model classified 18 VOCs (VIP > 1). Overall, the findings indicate that starch noodles with the addition of AU powder may provide greater nutritional quality, gel stability and starch antidigestibility.
Collapse
Affiliation(s)
| | | | | | | | | | - Jin Liang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.G.); (X.Z.); (R.W.); (Y.S.); (X.L.)
| |
Collapse
|
5
|
Zhou C, Li B, Yang W, Liu T, Yu H, Liu S, Yang Z. A Comprehensive Study on the Influence of Superheated Steam Treatment on Lipolytic Enzymes, Physicochemical Characteristics, and Volatile Composition of Lightly Milled Rice. Foods 2024; 13:240. [PMID: 38254541 PMCID: PMC10815025 DOI: 10.3390/foods13020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Enzyme inactivation is crucial for enhancing the shelf life of lightly milled rice (LMR), yet the impact of diverse superheated steam (SS) treatment conditions on lipolytic enzyme efficiency, physicochemical properties, and volatile profiles of LMR remains unclear. This study investigated varying SS conditions, employing temperatures of 120 °C, 140 °C, and 160 °C and exposure times of 2, 4, 6, and 8 min. The research aimed to discern the influence of these conditions on enzyme activities, physicochemical characteristics, and quality attributes of LMR. Results indicated a significant rise in the inactivation rate with increased treatment temperature or duration, achieving a notable 70% reduction in enzyme activities at 120 °C for 6 min. Prolonged exposure to higher temperatures also induced pronounced fissures on LMR surfaces. Furthermore, intensive SS treatment led to a noteworthy 5.52% reduction in the relative crystallinity of LMR starch. GC/MS analysis revealed a consequential decrease, ranging from 44.7% to 65.7%, in undesirable odor ketones post-SS treatment. These findings underscore the potential of SS treatment in enhancing the commercial attributes of LMR.
Collapse
Affiliation(s)
- Chenguang Zhou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Bin Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wenli Yang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tianrui Liu
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haoran Yu
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Siyao Liu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Zhen Yang
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Wang J, Bai H, Zhang R, Ding G, Cai X, Wang W, Zhu G, Zhou P, Zhang Y. Effect of a Bacterial Laccase on the Quality and Micro-Structure of Whole Wheat Bread. J Microbiol Biotechnol 2023; 33:1671-1680. [PMID: 37915231 PMCID: PMC10772560 DOI: 10.4014/jmb.2305.05008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/18/2023] [Accepted: 07/18/2023] [Indexed: 11/03/2023]
Abstract
The gluten protein content in whole-wheat flour is low, which affects the elasticity and viscosity of the dough. Enzymatic modification of the protein may result in a network that mimics gluten, which plays an important role in the processing of whole-wheat foods. In this study, the effects of Halomonas alkaliantartica laccase (LacHa) on the quality parameters of whole-wheat bread were investigated. The optimum dosage of LacHa was 4 U/100 g of whole-wheat flour. At this dosage, whole-wheat bread exhibited the best specific volume and optimum texture parameters. Laccase also extended the storage duration of whole-wheat bread. We analyzed the micro-structure of the dough to determine its gluten-free protein extractable rate and free sulfhydryl group content, and verify that LacHa mediates cross-linking of gluten-free proteins. The results demonstrated that the cross-linking of gluten-free protein by LacHa improves the texture of whole-wheat bread. As a flour improver, LacHa has great developmental and application potential in baked-food production.
Collapse
Affiliation(s)
- Jingjing Wang
- School of Life Sciences, Hefei Normal University, Lianhua Road 1688, Hefei 230601, Anhui, P.R. China
- Department of Life Science, Anhui University, Hefei 230061, P.R. China
| | - Han Bai
- School of Life Sciences, Hefei Normal University, Lianhua Road 1688, Hefei 230601, Anhui, P.R. China
| | - Ran Zhang
- School of Life Sciences, Hefei Normal University, Lianhua Road 1688, Hefei 230601, Anhui, P.R. China
- Department of Life Science, Anhui University, Hefei 230061, P.R. China
| | - Guoao Ding
- School of Life Sciences, Hefei Normal University, Lianhua Road 1688, Hefei 230601, Anhui, P.R. China
- Department of Life Science, Anhui University, Hefei 230061, P.R. China
| | - Xuran Cai
- School of Life Sciences, Hefei Normal University, Lianhua Road 1688, Hefei 230601, Anhui, P.R. China
| | - Wei Wang
- School of Life Sciences, Hefei Normal University, Lianhua Road 1688, Hefei 230601, Anhui, P.R. China
| | - Guilan Zhu
- School of Life Sciences, Hefei Normal University, Lianhua Road 1688, Hefei 230601, Anhui, P.R. China
| | - Peng Zhou
- School of Life Sciences, Hefei Normal University, Lianhua Road 1688, Hefei 230601, Anhui, P.R. China
| | - Yan Zhang
- School of Life Sciences, Hefei Normal University, Lianhua Road 1688, Hefei 230601, Anhui, P.R. China
- Department of Life Science, Anhui University, Hefei 230061, P.R. China
| |
Collapse
|
7
|
Du Y, Dai Z, Hong T, Bi Q, Fan H, Xu X, Xu D. Effect of sourdough on the quality of whole wheat fresh noodles fermented with exopolysaccharide lactic acid bacteria. Food Res Int 2023; 172:113108. [PMID: 37689876 DOI: 10.1016/j.foodres.2023.113108] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 06/03/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
In this study, the impact of exopolysaccharides (EPS)-positive strain Weissella cibaria (W. cibaria) fermented sourdough on the quality of whole wheat fresh noodles (WWNs) and its improvement mechanisms were studied. The optimal fermentation conditions were found to be 30% sucrose content, fermented at 25 °C for 12 h, which yielded the highest EPS, 28.06 g/kg, in the W. cibaria fermented sourdough with sucrose (DW+). During storage, the sourdough reduced polyphenol oxidase activities and delayed the browning rate of noodles. The DW+ increased the hardness by 11.98% from 2184.99 to 2446.83 g, and the adhesiveness increased by 19.60%, i.e., from 72.01 to 86.13 g∙s of the noodles. The EPS mitigated acidification of sourdough, prevented the disaggregation of glutenin macropolymers (GMP), and increased sourdough elastic modulus. In addition, scanning electron microscope and confocal laser scanning microscopy of noodles containing EPS sourdough also demonstrated the uniform distribution of gluten proteins. The starch granules were also closely embedded in the gluten network. Thus, the present work indicated that the EPS produced sourdough delayed browning and improved the WWNs texture, indicating its potential to enhance the quality of whole grain noodles.
Collapse
Affiliation(s)
- Yake Du
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Zhen Dai
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Tingting Hong
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Qing Bi
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Haoran Fan
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, PR China.
| | - Xueming Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Dan Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China.
| |
Collapse
|
8
|
Liu Y, Meng N, Sun Y, Wang L, Liu M, Qiao C, Tan B. Three thermal treated methods improve physicochemical and functional properties of wheat bran-germ and the bran-germ containing products. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4317-4328. [PMID: 36762767 DOI: 10.1002/jsfa.12492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/29/2022] [Accepted: 02/10/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND To fully investigate the effect of different stabilization methods on WBG in the same environment, we studied the effect of microwaving, baking, and extrusion on the nutritional, physicochemical, and processability properties of WBG and whole wheat bran-germ noodle (WBGN). Principal component analysis was used to comprehensively evaluate the qualities of WBG and WBGN. Machine learning-based research was conducted to predict the quality of WBGN based on the features of WBG. RESULTS The results showed that three methods improved antioxidant ability, bound flavonoids, bound and total phenolics, and the processing properties in WBG (P < 0.05). Extruded-WBG showed a lower polyphenol oxidase activity, lipase activity (35.02 ± 2.02 U and 20.29 ± 0.47 mg g-1 ) and particle size (54.08 ± 0.38 μm), and higher water hold capacity (2.60 ± 0.68%) and bound phenolic levels. The enhanced quantity of bound polyphenols had a major role in the increased antioxidant potential of WBGN. Extruded-WBGN showed higher antioxidant ability for 2,2-diphenyl-1-picrylhydrazyl (171.28 ± 3.16 μmol Trolox eq kg-1 ). The extruded-WBGN had high concentrations of WBG aroma compounds, and low contents of bitterness and raw bran-germ flavor compounds. Next, the enzymatic activity, powder properties, color, and antioxidant capacity of WBG were further utilized to predict the polyphenolic, flavonoids, flavor compounds, and antioxidant capacities of WBGN, where the R2 value of the model exceeded 0.90. The best comprehensive quality modification method of the WBG and WBGN was extrusion, followed by baking and microwaving. CONCLUSION The present study shows that extrusion is a promising way to improve WBG into a nutritious and flavorful cereal food ingredient. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yanxiang Liu
- College of Engineering, Northeast Agricultural University, Harbin, China
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing, China
| | - Ning Meng
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing, China
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Yong Sun
- College of Engineering, Northeast Agricultural University, Harbin, China
| | - Liping Wang
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing, China
| | - Ming Liu
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing, China
| | - Congcong Qiao
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing, China
| | - Bin Tan
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing, China
| |
Collapse
|
9
|
Bak SL, Cha SH, Park SB, Jiang S, Hyun TK, Jang KI. Quality Characteristics of Noodles Produced Using Steam-Treated Dough Prepared with Psyllium Husk and Soaked-and-Dried Soybean. J FOOD PROCESS PRES 2023. [DOI: 10.1155/2023/5351057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
We analyzed the quality characteristics of wheat-free, gluten-free dough, steam-treated dough, and cooked noodles. Dough was prepared from soaked-and-dried soybean (SDS) powder amended with 10%, 25%, or 40% psyllium husk; the SDS was prepared by soaking soybeans for 12 h at room temperature and hot air drying at 60°C for 24 h. Dough was then steam-treated at 120°C for 5, 10, or 15 min and subsequently formed into noodles. Dough and noodle can be made using SDS powder and psyllium husk powder, but it is difficult to maintain noodle shape after cooking without steam treatment. Steam treatment improved the texture of the dough, enabling noodle production. The hardness, gumminess, springiness, cohesiveness, and chewiness of the steam-treated dough were improved compared to nonsteamed dough, yielding a texture similar to wheat flour dough. Moreover, the dough cross-section became denser after steam treatment. As the cooking time increased, the hardness, gumminess, cohesiveness, and chewiness of cooked noodles decreased, and the springiness of cooked noodles increased by increasing of water absorption rate; overall, their form was maintained. Therefore, steam-treated psyllium husk-containing dough enables noodle production without the addition of gluten.
Collapse
Affiliation(s)
- Se-Lim Bak
- Department of Food Science and Biotechnology, Chungbuk National University, 28644 Cheongju, Republic of Korea
| | - Seung-Hyeon Cha
- Department of Food Science and Biotechnology, Chungbuk National University, 28644 Cheongju, Republic of Korea
| | - Sang-Beom Park
- Department of Food Science and Biotechnology, Chungbuk National University, 28644 Cheongju, Republic of Korea
| | - Shangle Jiang
- Department of Food Science and Biotechnology, Chungbuk National University, 28644 Cheongju, Republic of Korea
| | - Tae Kyung Hyun
- Department of Industrial Plant Science and Technology, Chungbuk National University, 28644 Cheongju, Republic of Korea
| | - Keum-Il Jang
- Department of Food Science and Biotechnology, Chungbuk National University, 28644 Cheongju, Republic of Korea
| |
Collapse
|
10
|
Suo B, Dong Z, Huang Y, Guan P, Wang X, Fan H, Huang Z, Ai Z. Changes in microbial community during the factory production of sweet dumplings from glutinous rice determined by high-throughput sequencing analysis. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
11
|
Yeoh SY, Tan HL, Muhammad L, Tan TC, Murad M, Mat Easa A. Sensory, structural breakdown, microstructure, salt release properties, and shelf life of salt-coated air-dried yellow alkaline noodles. NPJ Sci Food 2023; 7:8. [PMID: 36932100 PMCID: PMC10023698 DOI: 10.1038/s41538-023-00183-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
Salt reduction in food has been employed to improve public health. The effects of salt coatings on sodium content, sensory properties, structural breakdown, microstructure, salt release properties, and shelf life of yellow alkaline noodles (YAN) were evaluated. 15 g/dL resistant starch HYLON™ VII (HC) or 5% (v/v) Semperfresh™ (SC) with 10, 20, and 30 g/dL sodium chloride (NaCl) were used. HC-Na30 and SC-Na30 had the highest sodium content and came closest to commercial YAN in taste and saltiness perception. Structural improvement was demonstrated with HC-Na10 and SC-Na10 as both noodles required maximum work to be broken down. Moreover, SEM micrographs of these noodles showed a more compact and dense appearance with increased continuity of the matrix and fewer voids and hollows. However, ruptured surfaces were observed in noodles coated with 20 and 30% salt. The enhanced salt release from the coatings was demonstrated in an in vivo analysis, with the released salt occurring rapidly from HC and SC coatings. HC-Na10 and SC-Na10 noodles had a shelf life of more than 8 days when stored at 4 °C, which is longer than HC-Na0 and SC-Na0 noodles. Storage at 4 °C decelerated the microbiological growth, changes in pH and CIE L* values in salt-coated noodles than storage at 25 °. Thus, HC-Na10 and SC-Na10 could be suitable formulations to replace commercial YAN.
Collapse
Affiliation(s)
- Shin-Yong Yeoh
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, USM, Penang, Malaysia.
| | - Hui-Ling Tan
- School of Hospitality and Service Management, Sunway Universiti, 47500, Petaling Jaya, Selangor, Malaysia
| | - Lubowa Muhammad
- Department of Food Innovation and Nutrition, Mountains of the Moon University, Fort Portal, Uganda
| | - Thuan-Chew Tan
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, USM, Penang, Malaysia
- Renewable Biomass Transformation Cluster, School of Industrial Technology, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Maizura Murad
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, USM, Penang, Malaysia
| | - Azhar Mat Easa
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, USM, Penang, Malaysia.
| |
Collapse
|
12
|
Lian F, Cheng JH, Wang H, Sun DW. Effects of combined roasting and steam cooking on NaCl reduction and quality changes in marinated salmon flesh as compared with roasting and water bath cooking. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
13
|
Liu Y, Li M, Jiang D, Guan E, Bian K, Zhang Y. Superheated steam processing of cereals and cereal products: A review. Compr Rev Food Sci Food Saf 2023; 22:1360-1386. [PMID: 36789799 DOI: 10.1111/1541-4337.13114] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/27/2022] [Accepted: 01/14/2023] [Indexed: 02/16/2023]
Abstract
The concept of superheated steam (SS) was proposed over a century ago and has been widely studied as a drying method. SS processing of cereals and cereal products has been extensively studied in recent years for its advantages of higher drying rates above the inversion temperature, oxygen-free environment, energy conservation, and environmental protection. This review provides a brief introduction to the history, principles, and classification of SS. The applications of SS processing in the drying, enzymatic inactivation, sterilization, mycotoxin degradation, roasting, and cooking of cereals and cereal products are summarized and discussed. Moreover, the effects of SS processing on the physicochemical properties of cereals and the qualities of cereal foods are reviewed and discussed. The applications of SS for cereal processing and its effects on cereal properties have been extensively studied; however, issues such as the browning of cereal foods, thermal damage of starch, protein denaturation, and nutrition loss have not been comprehensively studied. Therefore, further studies are required to better understand the mechanism of the quality changes caused by SS processing and to expand the fields of application of SS in the cereal processing industry. This review enhances the understanding of SS processing and presents theoretical suggestions for promoting SS processing to improve the safety and quality of cereals and cereal products.
Collapse
Affiliation(s)
- Yuanxiao Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Mengmeng Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Di Jiang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Erqi Guan
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Ke Bian
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Yingquan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
14
|
Ali A, Singh T, Kumar RR, T V, Kundu A, Singh SP, Meena MC, Satyavathi CT, Praveen S, Goswami S. Effect of thermal treatments on the matrix components, inherent glycemic potential, and bioaccessibility of phenolics and micronutrients in pearl millet rotis. Food Funct 2023; 14:1595-1607. [PMID: 36683429 DOI: 10.1039/d2fo03143d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Pearl millet (PM) is a nutri-cereal rich in various macro and micronutrients required for a balanced diet. Its grains have a unique phenolic and micronutrient composition; however, the lower bioaccessibility of nutrients and rancidity of flour during storage are the major constraints in its consumption and wide popularity. Here, to explore the effect of different thermal processing methods, i.e., hydrothermal (HT), microwave (MW), and infrared (IR) treatments, on the digestion of starch, phenolics, and microelements (Fe and Zn), an in vitro digestion model consisting of oral, gastric and intestinal digestion was applied to PM rotis. The hydrothermally treated PM roti was promising as it showed lower inherent glycemic potential (60.4%) than the untreated sample (72.4%) and less enzymatic activities associated with rancidity in PM flour. FTIR revealed an increased ratio of 1047/1022 cm-1 in the hydrothermally treated sample, reflecting the enhancement of the structurally ordered degree and compactness of starch compared to other thermal treatments. A tighter and more compact microstructure with an agglomeration of starch in the hydrothermally treated PM flour was observed by SEM. These structural changes could provide a better understanding of the lower starch digestion rate in the hydrothermally treated flour. However, HT treatment significantly (P < 0.05) reduced the bioaccessibility of phenolics (10.6%) compared to native PM rotis and slightly reduced the Fe (2%) and Zn (3.2%) bioaccessibility present in PM rotis.
Collapse
Affiliation(s)
- Ansheef Ali
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, 110012, New Delhi, India.
| | - Tejveer Singh
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, 110012, New Delhi, India.
| | - Ranjeet Ranjan Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, 110012, New Delhi, India.
| | - Vinutha T
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, 110012, New Delhi, India.
| | - Aditi Kundu
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, 110012, New Delhi, India
| | - Sumer Pal Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, 110012, New Delhi, India
| | - Mahesh Chand Meena
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - C Tara Satyavathi
- All India Coordinated Research Project on Pearl Millet, Jodhpur, Pin 342304, India
| | - Shelly Praveen
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, 110012, New Delhi, India.
| | - Suneha Goswami
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, 110012, New Delhi, India.
| |
Collapse
|
15
|
Hu H, Zhou X, Zhang Y, Zhou W, Zhang L. Influences of Particle Size and Addition Level on the Rheological Properties and Water Mobility of Purple Sweet Potato Dough. Foods 2023; 12:foods12020398. [PMID: 36673489 PMCID: PMC9858315 DOI: 10.3390/foods12020398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/01/2023] [Accepted: 01/05/2023] [Indexed: 01/18/2023] Open
Abstract
This paper investigated the effects of different particle sizes and addition levels of purple sweet potato flour (PSPF) on the rheological properties and moisture states of wheat dough. There was deterioration in the pasting and mixing properties of the dough, due to the addition of PSPF (0~20% substitution), which was reduced by decreasing the particle size of the PSPF (260~59 μm). Dynamic rheology results showed that PSPF enhanced the elasticity of the dough, providing it solid-like processability. PSPF promoted the binding of gluten proteins and starch in the dough, resulting in a denser microstructure. Differential scanning calorimetry and low-field nuclear magnetic resonance showed that PSPF converted immobilized water and freezable water to bound water and non-freezable water in the dough, making the dough more stable, and that the reduction in PSPF particle size facilitated these processes. Our results provide evidence for the great application potential of purple sweet potatoes for use in flour-based products.
Collapse
Affiliation(s)
- Han Hu
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, National Engineering Research Center of Rice and Byproduct Deep Processing, School of Food Science and Technology, Central South University of Forestry & Technology, Changsha 410004, China
| | - Xiangyu Zhou
- Division of Medicine, Faculty of Medical Science, University College London, London WC1E 6BT, UK
| | - Yuxin Zhang
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, National Engineering Research Center of Rice and Byproduct Deep Processing, School of Food Science and Technology, Central South University of Forestry & Technology, Changsha 410004, China
| | - Wenhua Zhou
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, National Engineering Research Center of Rice and Byproduct Deep Processing, School of Food Science and Technology, Central South University of Forestry & Technology, Changsha 410004, China
| | - Lin Zhang
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, National Engineering Research Center of Rice and Byproduct Deep Processing, School of Food Science and Technology, Central South University of Forestry & Technology, Changsha 410004, China
- Correspondence: ; Tel.: +86-138-7586-0686
| |
Collapse
|
16
|
Yu C, Guo XN, Zhu KX. Effects of thermal treatment on the microbial shelf-life and quality stability of wet instant cooked noodles during storage. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
17
|
The Quality Characteristics Comparison of Stone-Milled Dried Whole Wheat Noodles, Dried Wheat Noodles, and Commercially Dried Whole Wheat Noodles. Foods 2022; 12:foods12010055. [PMID: 36613271 PMCID: PMC9818217 DOI: 10.3390/foods12010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
To explore the quality differences between dried wheat noodles (DWNs), stone-milled dried whole wheat noodles (SDWWNs), and commercially dried whole wheat noodles (CDWWNs), the cooking quality, texture properties, microstructure, protein secondary structure, short-range order of starch, antioxidant activity, in vitro digestive properties, and estimated glycemic index (eGI) of the noodles were investigated. The results showed that the cooking loss of SDWWNs was significantly lower than that of CDWWNs. The springiness, cohesiveness, gumminess, chewiness, and resilience of SDWWNs reached the maximum, and the tensile strength was significantly increased. The continuity of the gluten network of SDWWNs was reduced, and more holes appeared. The protein secondary structure of the SDWWNs and CDWWNs was mainly dominated by the β-sheet and β-turn, and the differences in the starch short-range order were not significant. Prior to and after the in vitro simulated digestion, the DPPH radical scavenging activity, the hydroxyl radical scavenging activity, and the total reducing power of the SDWWNs were the highest. Although the digested starch content of SDWWNs did not differ significantly from that of CDWWNs, the eGI was significantly lower than that of the CDWWNs and DWNs. Overall, the SDWWNs had certain advantages, in terms of quality characteristics.
Collapse
|
18
|
Wu Q, Tian Q, Zhang D, Zhang Y. Effect of Sitophilus zeamais (Coleoptera: Curculionidae) Infestation on the Protein Physicochemical and Structural Properties of Wheat Grain. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:2092-2104. [PMID: 36287645 DOI: 10.1093/jee/toac168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Indexed: 06/16/2023]
Abstract
Boring pests such as Sitophilus zeamais (S. zeamais) are major threats in grain storage. However, how these pests affect the proteins of stored grains remains largely unknown. Here we aimed to investigate the effect of S. zeamais infestation on wheat protein during postharvest storage. In this study, wheat grain infested by S. zeamais was sampled at egg (4 d), larval (20 d), pupal (35 d), and adult stages (45 d), respectively. The protein's physicochemical and structural properties and the edible quality of whole wheat noodle were analyzed. The results showed that S. zeamais infestation significantly decreased the quality of wheat protein by altering its constitution and structure properties. Especially, compared with the control, the content of wet and dry gluten, gluten index, sodium dodecyl sulfate sedimentation volume, sulfhydryl groups, and disulfide bonds in insect-infested wheat decreased by 19.40, 5.42, 18.40, 8.12, 29.13, and 14.30%, respectively, during the storage period of one life cycle of S. zeamais. Additionally, the proportions of wheat protein fractions (albumin [1.16-fold], globulin [0.96-fold], gliadin [1.16-fold], and glutenin [0.95-fold]) and secondary structures (α-helix [0.91-fold], β-fold [0.96-fold], β-turn [1.06-fold], and random coil [1.05-fold]) of protein changed significantly, and the gluten network structure was broken in S. zeamais-infested wheat. Furthermore, the color of whole wheat noodle became darker, cooking loss rate increased, and textural properties (hardness, adhesiveness, springiness, cohesiveness, chewiness, and resilience) decreased as well. The results in the present study provided new insights for analyzing the quality deterioration mechanism and further quality improvement of boring pests-infested wheat grain.
Collapse
Affiliation(s)
- Qiong Wu
- Engineering Research Center of Grain Storage and Security of Ministry of Education, Henan Provincial Engineering Technology Research Center on Grain Post Harvest, School of Food and Strategic Reserves, Henan University of Technology, Lianhua Road 100, Zhengzhou High-Tech Development Zone, Zhengzhou, 450001, Henan, China
| | - Qisheng Tian
- Engineering Research Center of Grain Storage and Security of Ministry of Education, Henan Provincial Engineering Technology Research Center on Grain Post Harvest, School of Food and Strategic Reserves, Henan University of Technology, Lianhua Road 100, Zhengzhou High-Tech Development Zone, Zhengzhou, 450001, Henan, China
| | - Dongdong Zhang
- Engineering Research Center of Grain Storage and Security of Ministry of Education, Henan Provincial Engineering Technology Research Center on Grain Post Harvest, School of Food and Strategic Reserves, Henan University of Technology, Lianhua Road 100, Zhengzhou High-Tech Development Zone, Zhengzhou, 450001, Henan, China
| | - Yurong Zhang
- Engineering Research Center of Grain Storage and Security of Ministry of Education, Henan Provincial Engineering Technology Research Center on Grain Post Harvest, School of Food and Strategic Reserves, Henan University of Technology, Lianhua Road 100, Zhengzhou High-Tech Development Zone, Zhengzhou, 450001, Henan, China
| |
Collapse
|
19
|
Guo Q, Li YT, Cai JH, Ren CW, Farooq MA, Xu B. The optimum cooking time: A possible key index for predicting the deterioration of fresh white-salted noodle. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Effects of green vegetable on nitrate and nitrite content and qualities of noodles. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01679-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Jia R, McClements DJ, Dai L, He X, Li Y, Ji N, Qin Y, Xiong L, Sun Q. Improvement of pasting and gelling properties of potato starch using a direct vapor-heat moisture treatment. Int J Biol Macromol 2022; 219:1197-1207. [DOI: 10.1016/j.ijbiomac.2022.08.178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/06/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022]
|
22
|
Du Y, Li W, Mariga AM, Fang Y, Sun X, Hu Q, Pei F. Effect of
Auricularia auricula
polysaccharide on characteristic structure, rheological properties, and tensile texture in whole wheat dough. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yifei Du
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance 210023 Nanjing China
| | - Wen Li
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance 210023 Nanjing China
| | - Alfred Mugambi Mariga
- Faculty of Agriculture and Food Science Meru University of Science and Technology Meru County, P.O Box 972‐602400 Kenya
| | - Yong Fang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance 210023 Nanjing China
| | - Xinyang Sun
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance 210023 Nanjing China
| | - Qiuhui Hu
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance 210023 Nanjing China
| | - Fei Pei
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance 210023 Nanjing China
| |
Collapse
|
23
|
The conformational rearrangement and microscopic properties of wheat gluten following superheated steam treatment. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Zhuang K, Sun Z, Huang Y, Lyu Q, Zhang W, Chen X, Wang G, Ding W, Wang Y. Influence of different pretreatments on the quality of wheat bran-germ powder, reconstituted whole wheat flour and Chinese steamed bread. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Grain phenolics: critical role in quality, storage stability and effects of processing in major grain crops—a concise review. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Wang J, Li A, Hu J, Zhang B, Liu J, Zhang Y, Wang S. Effect of Frying Process on Nutritional Property, Physicochemical Quality, and in vitro Digestibility of Commercial Instant Noodles. Front Nutr 2022; 9:823432. [PMID: 35252303 PMCID: PMC8891372 DOI: 10.3389/fnut.2022.823432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/05/2022] [Indexed: 01/05/2023] Open
Abstract
The effects of frying process on the nutritional property, physicochemical quality, and in vitro digestibility of instant noodle products are investigated in this study. Scanning electron microscope (SEM) and Fourier transform infrared spectrometer (FT-IR) were also used to explore the changes in the microstructure and protein transformation. Noodles, after the frying process, showed a lower proportion of carbohydrate, protein, fiber, and also total starch and digestible starch, but higher content of fat and resistant starch in the proximate analysis. The frying process was also considered to improve the texture, surface color, and sensory properties of instant noodle products, accompanied by better cooking quality, including shorter cooking time and lower cooking loss during the rehydration. The honeycomb-like, porous, and less uniformed structure, and also the higher levels of β-sheets and β-turns, and the lower proportion of α-helixes of protein structure from fried instant noodle was also observed. The in vitro digestibility of starch and protein were downregulated in the fried group (81.96% and 81.31, respectively, on average) compared with the non-fried group (97.58% and 88.78, respectively, on average). Thus, the frying process lowered the glycemic index and regulated protein secondary structure by inhibiting continuous digesting enzyme activity, generating starch-lipid complexes, and changing the levels of protein transformation. In conclusion, our findings will provide an innovative evaluation of the frying process on instant noodles and even other various starch-based prepared food products.
Collapse
Affiliation(s)
- Jin Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Ang Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Jiaqiang Hu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Bowei Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Jingmin Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
27
|
Huang J, Qi Y, Faisal Manzoor M, Guo Q, Xu B. Effect of superheated steam treated wheat flour on quality characteristics and storage stability of fresh noodles. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
28
|
Yang Z, Zhou Y, Xing JJ, Guo XN, Zhu KX. Effect of superheated steam treatment and extrusion on lipid stability of black soybean noodles during storage. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
29
|
van Rooyen J, Simsek S, Oyeyinka SA, Manley M. Holistic View of Starch Chemistry, Structure and Functionality in Dry Heat-Treated Whole Wheat Kernels and Flour. Foods 2022; 11:foods11020207. [PMID: 35053938 PMCID: PMC8774515 DOI: 10.3390/foods11020207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/04/2022] [Accepted: 01/08/2022] [Indexed: 02/05/2023] Open
Abstract
Heat treatment is used as a pre-processing step to beneficially change the starch properties of wheat flour to enhance its utilisation in the food industry. Heat-treated wheat flour may provide improved eating qualities in final wheat-based products since flour properties predominantly determine the texture and mouthfeel. Dry heat treatment of wheat kernels or milled wheat products involves heat transfer through means of air, a fluidising medium, or radiation—often resulting in moisture loss. Heat treatment leads to changes in the chemical, structural and functional properties of starch in wheat flour by inducing starch damage, altering its molecular order (which influences its crystallinity), pasting properties as well as its retrogradation and staling behaviour. Heat treatment also induces changes in gluten proteins, which may alter the rheological properties of wheat flour. Understanding the relationship between heat transfer, the thermal properties of wheat and the functionality of the resultant flour is of critical importance to obtain the desired extent of alteration of wheat starch properties and enhanced utilisation of the flour. This review paper introduces dry heat treatment methods followed by a critical review of the latest published research on heat-induced changes observed in wheat flour starch chemistry, structure and functionality.
Collapse
Affiliation(s)
- Jana van Rooyen
- Department of Food Science, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa;
| | - Senay Simsek
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA;
| | - Samson Adeoye Oyeyinka
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK; or
- Department of Biotechnology and Food Technology, University of Johannesburg, Johannesburg 2001, South Africa
| | - Marena Manley
- Department of Food Science, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa;
- Correspondence: ; Tel.: +27-21-808-3511
| |
Collapse
|
30
|
Ma Y, Zhang H, Jin Y, Xu D, Xu X. Impact of superheated steam on the moisture transfer, structural characteristics and rheological properties of wheat starch. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
31
|
Li X, Wen Y, Zhang J, Ma D, Zhang J, An Y, Song X, Ren X, Zhang W. Effects of non‐thermal plasma treating wheat kernel on the physicochemical properties of wheat flour and the quality of fresh wet noodles. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Xuejie Li
- College of Food Science and Technology Henan Agricultural University 95 Wenhua Road Zhengzhou Henan Province 450000 China
| | - Yaqing Wen
- College of Food Science and Technology Henan Agricultural University 95 Wenhua Road Zhengzhou Henan Province 450000 China
| | - Jian Zhang
- College of Food Science and Technology Henan Agricultural University 95 Wenhua Road Zhengzhou Henan Province 450000 China
| | - Dongyun Ma
- Agronomy College Henan Agricultural University 95 Wenhua Road Zhengzhou Henan Province 450000 China
| | - Jie Zhang
- School of Food Science and Technology Henan University of Technology 100 Lianhua Street Zhengzhou Henan Province 450000 China
| | - Yanxia An
- College of Food Science and Technology Henan Agricultural University 95 Wenhua Road Zhengzhou Henan Province 450000 China
| | - Xiaoyan Song
- College of Food Science and Technology Henan Agricultural University 95 Wenhua Road Zhengzhou Henan Province 450000 China
| | - Xiujuan Ren
- College of Food Science and Technology Henan Agricultural University 95 Wenhua Road Zhengzhou Henan Province 450000 China
| | - Weifeng Zhang
- College of Food Science and Technology Henan Agricultural University 95 Wenhua Road Zhengzhou Henan Province 450000 China
| |
Collapse
|
32
|
Lee T, Yang CL, Lee HL. Saving energy upon water removal in drying by making the α-polymorph of L-glutamic acid. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.2009514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Tu Lee
- Department of Chemical and Materials Engineering, National Central University, 300 Zhongda Road, Zhongli District, 32001 Taoyuan City, Taiwan R.O.C
| | - Chia Ling Yang
- Department of Chemical and Materials Engineering, National Central University, 300 Zhongda Road, Zhongli District, 32001 Taoyuan City, Taiwan R.O.C
| | - Hung Lin Lee
- Department of Chemical and Materials Engineering, National Central University, 300 Zhongda Road, Zhongli District, 32001 Taoyuan City, Taiwan R.O.C
| |
Collapse
|
33
|
Jiang H, Wang J, Chen Q. Comparison of wavelength selected methods for improving of prediction performance of PLS model to determine aflatoxin B1 (AFB1) in wheat samples during storage. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
34
|
Xing J, Qiao J, Yang Z, Guo X, Zhu K. Effects of ultrasound‐assisted resting on the qualities of whole wheat dough sheets and noodles. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jun‐Jie Xing
- State Key Laboratory of Food Science and Technology Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu Province 214122 China
- School of Food Science and Technology Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu Province 214122 China
| | - Ju‐Yuan Qiao
- State Key Laboratory of Food Science and Technology Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu Province 214122 China
- School of Food Science and Technology Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu Province 214122 China
| | - Zhen Yang
- State Key Laboratory of Food Science and Technology Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu Province 214122 China
- School of Food Science and Technology Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu Province 214122 China
| | - Xiao‐Na Guo
- State Key Laboratory of Food Science and Technology Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu Province 214122 China
- School of Food Science and Technology Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu Province 214122 China
| | - Ke‐Xue Zhu
- State Key Laboratory of Food Science and Technology Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu Province 214122 China
- School of Food Science and Technology Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu Province 214122 China
| |
Collapse
|
35
|
Fu L, Zhu J, Karimi-Maleh H. An Analytical Method Based on Electrochemical Sensor for the Assessment of Insect Infestation in Flour. BIOSENSORS 2021; 11:325. [PMID: 34562915 PMCID: PMC8466299 DOI: 10.3390/bios11090325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/27/2021] [Accepted: 09/08/2021] [Indexed: 11/20/2022]
Abstract
Uric acid is an important indicator of the insect infestation assessment in flour. In this work, we propose a method for uric acid detection based on voltammetry. This technique is particularly considered for the physicochemical properties of flour and contains a simple pretreatment process to rapidly achieve extraction and adsorption of uric acid in flour. To achieve specific recognition of uric acid, graphene and poly(3,4-ethylenedioxythiophene) (PEDOT) were used for the adsorption and concentration of uric acid in flour. The adsorbed mixture was immobilized on the surface of a screen-printed electrode for highly sensitive detection of the uric acid. The results showed that electrocatalytic oxidation of uric acid could be achieved after adsorption by graphene and PEDOT. This electrocatalytic reaction allows its oxidation peak to be distinguished from those of other substances that commonly possess electrochemical activity. This voltammetry-based detection method is a portable and disposable analytical method. Because it is simple to operate, requires no professional training, and is inexpensive, it is a field analysis method that can be promoted.
Collapse
Affiliation(s)
- Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Jiangwei Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China;
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Xiyuan Ave, Chengdu 611731, China;
- Department of Chemical Engineering, Quchan University of Technology, Quchan 9477177870, Iran
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Johannesburg 2028, South Africa
| |
Collapse
|
36
|
Wheat flour superheated steam treatment induced changes in molecular rearrangement and polymerization behavior of gluten. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106769] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
37
|
Ma Y, Zhang W, Pan Y, Ali B, Xu D, Xu X. Physicochemical, crystalline characterization and digestibility of wheat starch under superheated steam treatment. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106720] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Effect of Gaseous Chlorine Dioxide Treatment on the Quality Characteristics of Buckwheat-Based Composite Flour and Storage Stability of Fresh Noodles. Processes (Basel) 2021. [DOI: 10.3390/pr9091522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, the effects of gaseous chlorine dioxide treatment on the physicochemical properties of buckwheat-based composited flour (buckwheat-wheat-gluten) and shelf-life of fresh buckwheat noodles (FBNs), as well as the textural qualities and sensory properties of noodles were investigated. Chlorine dioxide treatment significantly reduced the total plate count (TPC) and the total flavonoids content in the mixed flour (p < 0.05), but the whiteness, development time and stability time were all increased. During storage, the microbial growth and darkening rate of FBNs made from chlorine dioxide treated buckwheat-based composite flour (CDBF) were delayed significantly, slowing the deterioration and improving storage stability of buckwheat noodles. In addition, chlorine dioxide treatment had no apparent adverse effect on the cooking loss and sensory characteristics during noodle storage. This finding would provide a new concept for the production of “low bacterial buckwheat-based flour” and have important consequences for the application of gaseous chlorine dioxide in food industry.
Collapse
|
39
|
Yang Z, Huang Q, Xing JJ, Guo XN, Zhu KX. Changes of lipids in noodle dough and dried noodles during industrial processing. J Food Sci 2021; 86:3517-3528. [PMID: 34272740 DOI: 10.1111/1750-3841.15844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/11/2021] [Accepted: 06/11/2021] [Indexed: 11/30/2022]
Abstract
This study investigated the changes of lipids during the industrial preparation of noodle dough and dried noodles, including the hydration, sheeting, and drying processes. The results showed that industrial processing markedly influenced the stability of lipids during the preparation of dried noodles. The contents of total free fatty acids, polyunsaturated fatty acids, and free lipids were reduced, while peroxide values increased during the hydration and sheeting processes, showing the instability of lipids. The increase in lipid oxidation may have been due to the activation of lipoxygenase. Although its activity declined by 45.7% in the hydration process compared to that of the native wheat flour (198.5 ± 20.4 U/g/min), the residue activity should have been high enough to oxidize lipids. Interestingly, lipase activity remained relatively stable. In addition, an obvious increase of carbon-centered free radicals was observed during the entire processing. In conclusion, the industrial processing, especially the hydration process, markedly changed the lipid profile and promoted lipid oxidation during the preparation of dried noodles. PRACTICAL APPLICATION: The present study showed the positive relationship between endogenous lipid degrading enzymes and the degradation of lipids and elucidated the role of industrial processing on lipid stability in noodle dough and dried noodles. The results of the present study will also help us to understand more about the sensory quality of dried noodles during preparation, as well as to develop high quality of wheat-based food products.
Collapse
Affiliation(s)
- Zhen Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qian Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jun-Jie Xing
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiao-Na Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ke-Xue Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
40
|
Hong T, Zhao Q, Xu D, Yuan Y, Ma Y, Wu F, Xu X. Effect of heat-treated flour on the quality and storage stability of fresh noodles. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111463] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
41
|
Li G, Li T, He F, Chen C, Xu X, Tian W, Yang Y, He X, Li H, Chen K, Hao N, Ouyang P. Microencapsulation of nattokinase from fermentation by spray drying: Optimization, comprehensive score, and stability. Food Sci Nutr 2021; 9:3906-3916. [PMID: 34262747 PMCID: PMC8269611 DOI: 10.1002/fsn3.2378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/15/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
Nattokinase from fermentation has recently gained more attention due to its beneficial effects on cardiovascular system. However, the instability of free nattokinase limits its application. The aim of the study was to develop a spray-drying microencapsulation process to obtain the nattokinase powder with high activity, high quality, and strong storage stability. Hence, the microencapsulation process of nattokinase from fermentation by spray drying was optimized. Experiments of single-factor and response surface methodology were used to assess the comprehensive scores and nattokinase activities. According to single-factor and response surface methodology results, optimum parameters of microencapsulation process of the nattokinase power by spray drying were 30% of mass ratio of wall materials, 139°C of air inlet temperature, 8 L/h of feed rate, and 80°C of outlet temperature. The final optimized result encompassed a comprehensive score of 96, nattokinase activity of 1,340 IU/ml, and moisture content of 4.1 ± 0.1%. In addition, the microencapsulated nattokinase power showed strong storage stability in the conditions of different temperatures and pH. After 30 days of storage, the nattokinase powder was still white or light yellow, with a special smell, no peculiar smell and paste taste, and no impurity. These results build the basis of further industrialization of the nattokinase powder from fermentation broth by spray drying.
Collapse
Affiliation(s)
- Ganlu Li
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
| | - Tao Li
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
| | - Feng He
- Jiangsu Jicui Industrial Biotechnology Research Institute Co.Ltd, NanjingChina
| | - Cheng Chen
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
| | - Xu Xu
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
| | - Weilong Tian
- Jiangsu Jicui Industrial Biotechnology Research Institute Co.Ltd, NanjingChina
| | - Yue Yang
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
| | - Xun He
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
| | - Hui Li
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
| | - Kequan Chen
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
| | - Ning Hao
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
| | - Pingkai Ouyang
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
| |
Collapse
|
42
|
Effect of pre-treated wheat bran on semi-dried whole wheat noodles for extending shelf-life and improving quality characteristics. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Jia WT, Yang Z, Guo XN, Zhu KX. Effect of Superheated Steam Treatment on the Lipid Stability of Dried Whole Wheat Noodles during Storage. Foods 2021; 10:1348. [PMID: 34207984 PMCID: PMC8230670 DOI: 10.3390/foods10061348] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 11/30/2022] Open
Abstract
Dried whole wheat noodles (DWWN) are a kind of nutritious convenience food with broad market prospects. However, due to the presence of high content of unsaturated fatty acids (UFAs) and lipid degrading enzymes, the shelf life and edible quality of DWWN are easily affected. This study explored the effect of superheated steam treatment (SST-155 °C-10 s, SST-170 °C-10 s, SST-190 °C-5 s) on the lipid stability of DWWN. The lipase, lipoxygenase and peroxidase of the DWWN treated with superheated steam were completely passivated during storage. After 12 weeks of storage, the fatty acid value of DWWN increased by 35.1, 17.9, 15.9, 24.6 mg NaOH/100 g in the groups of control, SST-155 °C-10 s, SST-170 °C-10 s, SST-190 °C-5 s, respectively; whereas the content of UFAs decreased by 13.5%, 6.8%, 5.4%, and 2.7%, respectively. The content of 2-pentylfuran in the SST-155 °C-10 s, SST-170 °C-10 s, SST-190 °C-5 s group was 0.7, 0.6, and 0.4-fold than that of the control group, respectively. In addition, the total tocopherol and total volatile compounds of the SST-190 °C-5 s group were 2.4 and 0.7-fold than that of the control group, respectively. Therefore, SST should be a new technology that can improve the lipid stability of DWWN.
Collapse
Affiliation(s)
| | | | | | - Ke-Xue Zhu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (W.-T.J.); (Z.Y.); (X.-N.G.)
| |
Collapse
|
44
|
Jia WT, Yang Z, Guo XN, Zhu KX. Effect of superheated steam treatment on the lipid stability of whole wheat flour. Food Chem 2021; 363:130333. [PMID: 34139517 DOI: 10.1016/j.foodchem.2021.130333] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 10/21/2022]
Abstract
This study aimed to investigate the effect of superheated steam treatment (SST) on lipid stability of whole wheat flour (WWF) during storage. After SST, the lipase and peroxidase of WWF were inactivated, and lipoxygenase activity was lower than 5% of its initial value. The total tocopherols decreased slightly in all SST groups, especially it only decreased by 1.1% at 190 °C for 5 s. Furthermore, the increase of fatty acid value in the control group was over 100-fold than that of the SST groups during storage. The unsaturated fatty acids and total tocopherols in WWF decreased gradually, but the decrease was alleviated by SST at 190 °C for 5 s. After storage, the relative content of hexanal and 2-pentylfuran in the SST groups were 4 and 0.3-fold than those in the control group, respectively. Thus, SST may be a potential approach to stabilise the quality of WWF.
Collapse
Affiliation(s)
- Wan-Ting Jia
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China
| | - Zhen Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China
| | - Xiao-Na Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| | - Ke-Xue Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| |
Collapse
|
45
|
Huang J, Guo Q, Manzoor MF, Chen Z, Xu B. Evaluating the sterilization effect of wheat flour treated with continuous high-speed-stirring superheated steam. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
46
|
Yang S, Zhang MN, Shan CS, Chen ZG. Evaluation of cooking performance, structural properties, storage stability and shelf life prediction of high-moisture wet starch noodles. Food Chem 2021; 357:129744. [PMID: 33878579 DOI: 10.1016/j.foodchem.2021.129744] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 01/16/2023]
Abstract
Cooking performance, micro- and molecular structure, storage stability and shelf-life prediction of high-moisture wet starch noodles (SN) were investigated. SEM images revealed that compared to dried SN, cooked wet SN had more evenly honeycomb-like network with smaller size of pores, indicating stronger interaction among molecules and causing favorable cooking performance. XRD and ATR-FTIR results evidenced that wet SN contained more complete crystallites and higher proportion of crystalline region. During storage, the quality decay of wet SN was mainly associated to the increment of total aerobic viable count (TAVC), titrable acidity and amylase, as well as the decreased textural hardness, overall acceptability and lightness. Based on TAVC, titrable acidity and overall acceptability, predicted shelf-life of vacuum-packed wet SN at 25 °C was 15.31, 21.54 and 16.65 weeks respectively, with relative error all within 20%, proving that the validated model could be an effective tool for monitoring the shelf-life of wet SN.
Collapse
Affiliation(s)
- Sha Yang
- Glycomics and Glycan Bioengineering Research Center, College of Food Science &Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Meng-Na Zhang
- Glycomics and Glycan Bioengineering Research Center, College of Food Science &Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Chang-Song Shan
- Glycomics and Glycan Bioengineering Research Center, College of Food Science &Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Zhi-Gang Chen
- Glycomics and Glycan Bioengineering Research Center, College of Food Science &Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
47
|
Kim SM, Kim TK, Kim HW, Jung S, Yong HI, Choi YS. Quality Characteristics of Semi-Dried Restructured Jerky Processed Using Super-Heated Steam. Foods 2021; 10:foods10040762. [PMID: 33918496 PMCID: PMC8066036 DOI: 10.3390/foods10040762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 11/16/2022] Open
Abstract
Moisture content and water activity play important roles in extending the shelf life of dried meat products, such as jerky. However, the commonly used hot air drying process is time-consuming, costly, and adversely affects the quality of dried meat products, warranting the development of an advanced and economical drying method. This study investigated the effect of super-heated steam (SHS) drying on the quality characteristics of semi-dried restructured jerky as a measure to prevent the excessive quality deterioration of meat products during drying. The control sample was dried using hot air, and the treatment samples were dried using SHS at different temperatures (200, 250, and 300 °C) and for different durations (90, 105, and 120 min). With increasing SHS temperature and duration, the moisture content, water activity, and residual nitrite content of the jerky were reduced. The shear force values for treatments at 200 and 250 °C were lower than those for the control. With a non-significant difference in lipid oxidation compared with the control, the overall acceptability score was the highest for the treatment at 250 °C for 120 min. In conclusion, SHS (250 °C for 120 min) drying has a potential industrial value to replace the hot air drying method.
Collapse
Affiliation(s)
- Se-Myung Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Korea; (S.-M.K.); (T.-K.K.); (H.I.Y.)
| | - Tae-Kyung Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Korea; (S.-M.K.); (T.-K.K.); (H.I.Y.)
| | - Hyun-Wook Kim
- Department of Animal Science & Biotechnology, Gyeongnam National University of Science and Technology, Jinju 52725, Korea;
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea;
| | - Hae In Yong
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Korea; (S.-M.K.); (T.-K.K.); (H.I.Y.)
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Korea; (S.-M.K.); (T.-K.K.); (H.I.Y.)
- Correspondence: ; Tel.: +82-63-219-9387; Fax: +82-63-219-9076
| |
Collapse
|
48
|
Wang L, Wang L, Wang A, Qiu J, Li Z. Superheated steam processing improved the qualities of noodles by retarding the deterioration of buckwheat grains during storage. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
49
|
Effect of superheated steam treatment on the structural and digestible properties of wheat flour. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106362] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
50
|
Effects of superheated steam treatment of wheat on physicochemical properties of wheat flour and cracker quality. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|