1
|
Li R, Wang F, Wang J. Spatial Metabolomics and Its Application in Plant Research. Int J Mol Sci 2025; 26:3043. [PMID: 40243661 PMCID: PMC11988893 DOI: 10.3390/ijms26073043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/07/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
Spatial metabolomics, as a frontier technology, is capable of conducting the comprehensive characterization of metabolites within organisms in terms of qualitative, quantitative and positional dimensions, so as to facilitate the visual analysis of biological processes. This paper summarizes the birth and development of spatial metabolomics, explains its differences and advantages from traditional metabolomics and summarizes its application in plant research. In addition, the limitations of spatial metabolomics are summarized and discussed, along with the technological improvement and application innovation of spatial metabolomics, in order to provide reference for the development strategy of spatial metabolomics and its application in plant research.
Collapse
Affiliation(s)
- Rong Li
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, China; (R.L.); (F.W.)
| | - Fang Wang
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, China; (R.L.); (F.W.)
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China
- Key Laboratory of Qinghai-Tibet Plateau Biotechnology, Ministry of Education, Qinghai University, Xining 810016, China
| | - Jian Wang
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, China; (R.L.); (F.W.)
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China
- Key Laboratory of Qinghai-Tibet Plateau Biotechnology, Ministry of Education, Qinghai University, Xining 810016, China
| |
Collapse
|
2
|
Rodrigues M, Ordoñez-Trejo EJ, Rasori A, Varotto S, Ruperti B, Bonghi C. Dissecting postharvest chilling injuries in pome and stone fruit through integrated omics. FRONTIERS IN PLANT SCIENCE 2024; 14:1272986. [PMID: 38235207 PMCID: PMC10791837 DOI: 10.3389/fpls.2023.1272986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
Lowering the storage temperature is an effective method to extend the postharvest and shelf life of fruits. Nevertheless, this technique often leads to physiological disorders, commonly known as chilling injuries. Apples and pears are susceptible to chilling injuries, among which superficial scald is the most economically relevant. Superficial scald is due to necrotic lesions of the first layers of hypodermis manifested through skin browning. In peaches and nectarines, chilling injuries are characterized by internal symptoms, such as mealiness. Fruits with these aesthetic or compositional/structural defects are not suitable for fresh consumption. Genetic variation is a key factor in determining fruit susceptibility to chilling injuries; however, physiological, or technical aspects such as harvest maturity and storage conditions also play a role. Multi-omics approaches have been used to provide an integrated explanation of chilling injury development. Metabolomics in pome fruits specifically targets the identification of ethylene, phenols, lipids, and oxidation products. Genomics and transcriptomics have revealed interesting connections with metabolomic datasets, pinpointing specific genes linked to cold stress, wax synthesis, farnesene metabolism, and the metabolic pathways of ascorbate and glutathione. When applied to Prunus species, these cutting-edge approaches have uncovered that the development of mealiness symptoms is linked to ethylene signaling, cell wall synthesis, lipid metabolism, cold stress genes, and increased DNA methylation levels. Emphasizing the findings from multi-omics studies, this review reports how the integration of omics datasets can provide new insights into understanding of chilling injury development. This new information is essential for successfully creating more resilient fruit varieties and developing novel postharvest strategies.
Collapse
Affiliation(s)
| | | | | | | | - Benedetto Ruperti
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Italy
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Legnaro, Italy
| |
Collapse
|
3
|
Peña-Ortiz M, Serrano L, Romero AA, García A. Bay Leaves Extracts as Active Additive for Food Protective Coatings. Foods 2023; 12:3741. [PMID: 37893634 PMCID: PMC10606290 DOI: 10.3390/foods12203741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Ethanolic extracts of bay leaves were obtained using the Soxhlet method (extraction yield of 22.3 ± 1.2%) and further analyzed through different methods, thus determining the chemical composition with gas chromatography, phenolic content with the Folin-Ciocalteu technique (11.8 ± 0.4% wt.) and antioxidant power with the radical 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) method (75.06%). Furthermore, its effect on the growth of two bacteria, Escherichia coli and Bacillus cereus, and on two yeasts, Candida glabrata and Saccharomyces cerevisiae, was determined, showing a minimum inhibitory concentration of 0.65 mg/mL on the growth of B. cereus. Finally, edible films were prepared using different polymers (carboxymethyl cellulose, gum Arabic, polyvinyl pyrrolidone, and polyvinyl alcohol) containing 0, 5, 10, or 15% wt. of bay leaf extract as troubleshooting for perishable fruits, specifically for cultivated strawberry. The prepared composites presented reduced water vapor permeabilities (up to 4.3 × 10-7 g·Pa-1·m-1·h-1), high specific transparencies (≈30%/mm), as well as the effective blocking of ultraviolet radiation (>99.9%). In vivo tests showed that the most suitable treatment for strawberry protection was the impregnation with a composite comprising polyvinyl alcohol and a 15% wt. bay leaf extract, resulting in a noteworthy reduction in mass loss (22% after 6 days). It can be asserted that food packaging with the designed composites would be an effective alternative for the reduction in postharvest losses.
Collapse
Affiliation(s)
- Manuel Peña-Ortiz
- FQM-383 NANOVAL Group, Organic Chemistry Department, University of Córdoba, Campus de Rabanales, Marie Curie Building, Ctra. Nnal. IV-A, Km 396, 14014 Córdoba, Spain; (M.P.-O.); (A.A.R.)
- BioPrEn Group (RNM 940), Chemical Engineering Department, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Faculty of Science, University of Córdoba, 14014 Córdoba, Spain
| | - Luis Serrano
- BioPrEn Group (RNM 940), Chemical Engineering Department, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Faculty of Science, University of Córdoba, 14014 Córdoba, Spain
| | - Antonio A. Romero
- FQM-383 NANOVAL Group, Organic Chemistry Department, University of Córdoba, Campus de Rabanales, Marie Curie Building, Ctra. Nnal. IV-A, Km 396, 14014 Córdoba, Spain; (M.P.-O.); (A.A.R.)
| | - Araceli García
- FQM-383 NANOVAL Group, Organic Chemistry Department, University of Córdoba, Campus de Rabanales, Marie Curie Building, Ctra. Nnal. IV-A, Km 396, 14014 Córdoba, Spain; (M.P.-O.); (A.A.R.)
| |
Collapse
|
4
|
Vallarino JG, Jun H, Wang S, Wang X, Sade N, Orf I, Zhang D, Shi J, Shen S, Cuadros-Inostroza Á, Xu Q, Luo J, Fernie AR, Brotman Y. Limitations and advantages of using metabolite-based genome-wide association studies: focus on fruit quality traits. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 333:111748. [PMID: 37230189 DOI: 10.1016/j.plantsci.2023.111748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 05/27/2023]
Abstract
In the last decades, linkage mapping has help in the location of metabolite quantitative trait loci (QTL) in many species; however, this approach shows some limitations. Recently, thanks to the most recent advanced in high-throughput genotyping technologies like next-generation sequencing, metabolite genome-wide association study (mGWAS) has been proposed a powerful tool to identify the genetic variants in polygenic agrinomic traits. Fruit flavor is a complex interaction of aroma volatiles and taste being sugar and acid ratio key parameter for flavor acceptance. Here, we review recent progress of mGWAS in pinpoint gene polymorphisms related to flavor-related metabolites in fruits. Despite clear successes in discovering novel genes or regions associated with metabolite accumulation affecting sensory attributes in fruits, GWAS incurs in several limitations summarized in this review. In addition, in our own work, we performed mGWAS on 194 Citrus grandis accessions to investigate the genetic control of individual primary and lipid metabolites in ripe fruit. We have identified a total of 667 associations for 14 primary metabolites including amino acids, sugars, and organic acids, and 768 associations corresponding to 47 lipids. Furthermore, candidate genes related to important metabolites related to fruit quality such as sugars, organic acids and lipids were discovered.
Collapse
Affiliation(s)
- José G Vallarino
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Campus de Teatinos, 29071 Málaga, Spain
| | - Hong Jun
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; Waite Research Institute, School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | | | - Xia Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Nir Sade
- School of Plant Sciences and Food Security, Tel Aviv University, P.O.B. 39040, 55 Haim Levanon St., Tel Aviv 6139001, Israel
| | - Isabel Orf
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, Israel
| | - Dabing Zhang
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; Waite Research Institute, School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - Jianxin Shi
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuangqian Shen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | | | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Jie Luo
- College of Tropical Crops, Hainan University, Haikou, China; National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Alisdair R Fernie
- Department of Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, 1 Am Mühlenberg, Golm, Potsdam 14476, Germany; Department of Plant Metabolomics, Center for Plant Systems Biology and Biotechnology, 139 Ruski Blvd., Plovdiv 4000, Bulgaria.
| | - Yariv Brotman
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, Israel.
| |
Collapse
|
5
|
Zhou X, Luo G, Wang H, Xu D, Zeng K, Wu X, Ren D. Development of a novel bamboo cellulose nanofibrils hybrid aerogel with high thermal-insulating performance for fresh strawberry cold-chain logistics. Int J Biol Macromol 2023; 229:452-462. [PMID: 36596373 DOI: 10.1016/j.ijbiomac.2022.12.316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/02/2023]
Affiliation(s)
- Xiaowan Zhou
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Guorong Luo
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Hankun Wang
- Institute of New Bamboo and Rattan Based Materials, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Dan Xu
- College of Food Science, Southwest University, Chongqing 400715, China; Food Storage and Logistics Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Kaifang Zeng
- College of Food Science, Southwest University, Chongqing 400715, China; Food Storage and Logistics Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Xiyu Wu
- College of Food Science, Southwest University, Chongqing 400715, China; Food Storage and Logistics Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Dan Ren
- College of Food Science, Southwest University, Chongqing 400715, China; Food Storage and Logistics Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| |
Collapse
|
6
|
Belay ZA, James Caleb O. Role of integrated omics in unravelling fruit stress and defence responses during postharvest: A review. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 5:100118. [PMID: 35845150 PMCID: PMC9278069 DOI: 10.1016/j.fochms.2022.100118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 11/23/2022]
Abstract
Fruit are susceptible to quality loss and deterioration after harvest due to high metabolic and physiological activities. Over the last four decades various postharvest treatments have ensured maintenance of quality, control of diseases or decay by slowing down the postharvest ripening and senesce. The fruit quality change during postharvest however, has been mostly explored using physicochemical characteristics. Considering the complexity of fruit physiology and metabolism, the application of omics techniques could aid the in-depth analysis and understanding of fruit quality change during postharvest treatment. Therefore, this review presents recent information on the application of integrated omics (transcriptomics, proteomics, and metabolomics) in postharvest research, with an overview on fruit quality and safety. Trends in omics data analysis for fruit during postharvest handling was highlighted. The role of integrated omics in improving our understanding of fruit response during natural postharvest progression (towards decay) during storage, as well as in case of induced responses due to the application of biocontrols was discussed. The article concluded with the outlooks of future studies on the application of integrated omics as the catalyst for innovative postharvest solutions.
Collapse
Affiliation(s)
- Zinash A Belay
- Agri-Food Systems and Omics Laboratory, Post-Harvest and Agro-Processing Technologies (PHATs), Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Stellenbosch 7599, South Africa
| | - Oluwafemi James Caleb
- Africa Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
- Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
7
|
Zheng T, Lv J, Sadeghnezhad E, Cheng J, Jia H. Transcriptomic and metabolomic profiling of strawberry during postharvest cooling and heat storage. FRONTIERS IN PLANT SCIENCE 2022; 13:1009747. [PMID: 36311118 PMCID: PMC9597325 DOI: 10.3389/fpls.2022.1009747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Temperature is one of the most important factors regarding fruit postharvest, however its effects in the strawberry fruits quality in postharvest remains to be evaluated. In this study, the effects of cold and heat storage temperature on fruit quality of 'Benihoppe' strawberry were performed. The results showed that different temperatures could affect the metabolism of hormone, anthocyanin, reactive oxygen species (ROS), and transcription level of responsive factors. The synthesis of terpenoids, amino acids, and phenylpropanoids in strawberries were also changed under different temperatures, which finally changed the quality characteristics of the fruit. We found HSF20 (YZ1)-overexpressed fruits were sensitive to cold and heat conditions but CBF/NF-Y (YZ9)-overexpressed fruits promoted coloring under cold treatment. This study clarified the effect of postharvest cooling and heat treatments on quality and transcriptional mechanism of strawberries fruits. Moreover, these results provided an experimental basis for further research on improving the quality of strawberry berries during postharvest periods.
Collapse
Affiliation(s)
- Ting Zheng
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jinhua Lv
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ehsan Sadeghnezhad
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jianhui Cheng
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Haifeng Jia
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
8
|
Senger E, Osorio S, Olbricht K, Shaw P, Denoyes B, Davik J, Predieri S, Karhu S, Raubach S, Lippi N, Höfer M, Cockerton H, Pradal C, Kafkas E, Litthauer S, Amaya I, Usadel B, Mezzetti B. Towards smart and sustainable development of modern berry cultivars in Europe. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1238-1251. [PMID: 35751152 DOI: 10.1111/tpj.15876] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Fresh berries are a popular and important component of the human diet. The demand for high-quality berries and sustainable production methods is increasing globally, challenging breeders to develop modern berry cultivars that fulfill all desired characteristics. Since 1994, research projects have characterized genetic resources, developed modern tools for high-throughput screening, and published data in publicly available repositories. However, the key findings of different disciplines are rarely linked together, and only a limited range of traits and genotypes has been investigated. The Horizon2020 project BreedingValue will address these challenges by studying a broader panel of strawberry, raspberry and blueberry genotypes in detail, in order to recover the lost genetic diversity that has limited the aroma and flavor intensity of recent cultivars. We will combine metabolic analysis with sensory panel tests and surveys to identify the key components of taste, flavor and aroma in berries across Europe, leading to a high-resolution map of quality requirements for future berry cultivars. Traits linked to berry yields and the effect of environmental stress will be investigated using modern image analysis methods and modeling. We will also use genetic analysis to determine the genetic basis of complex traits for the development and optimization of modern breeding technologies, such as molecular marker arrays, genomic selection and genome-wide association studies. Finally, the results, raw data and metadata will be made publicly available on the open platform Germinate in order to meet FAIR data principles and provide the basis for sustainable research in the future.
Collapse
Affiliation(s)
- Elisa Senger
- Institute of Bio- and Geosciences, IBG-4 Bioinformatics, BioSC, CEPLAS, Forschungszentrum Jülich, Jülich, Germany
| | - Sonia Osorio
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Campus de Teatinos, Málaga, Spain
| | | | - Paul Shaw
- Department of Information and Computational Sciences, The James Hutton Institute, Invergowrie, Scotland, UK
| | - Béatrice Denoyes
- Université de Bordeaux, UMR BFP, INRAE, Villenave d'Ornon, France
| | - Jahn Davik
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Stefano Predieri
- Bio-Agrofood Department, Institute for Bioeconomy, IBE-CNR, Italian National Research Council, Bologna, Italy
| | - Saila Karhu
- Natural Resources Institute Finland (Luke), Turku, Finland
| | - Sebastian Raubach
- Department of Information and Computational Sciences, The James Hutton Institute, Invergowrie, Scotland, UK
| | - Nico Lippi
- Bio-Agrofood Department, Institute for Bioeconomy, IBE-CNR, Italian National Research Council, Bologna, Italy
| | - Monika Höfer
- Institute of Breeding Research on Fruit Crops, Federal Research Centre for Cultivated Plants (JKI), Dresden, Germany
| | - Helen Cockerton
- Genetics, Genomics and Breeding Department, NIAB, East Malling, UK
| | - Christophe Pradal
- CIRAD and UMR AGAP Institute, Montpellier, France
- INRIA and LIRMM, University Montpellier, CNRS, Montpellier, France
| | - Ebru Kafkas
- Department of Horticulture, Faculty of Agriculture, Çukurova University, Balcalı, Adana, Turkey
| | | | - Iraida Amaya
- Unidad Asociada deI + D + i IFAPA-CSIC Biotecnología y Mejora en Fresa, Málaga, Spain
- Laboratorio de Genómica y Biotecnología, Centro IFAPA de Málaga, Instituto Andaluz de Investigación y Formación Agraria y Pesquera, Málaga, Spain
| | - Björn Usadel
- Institute of Bio- and Geosciences, IBG-4 Bioinformatics, BioSC, CEPLAS, Forschungszentrum Jülich, Jülich, Germany
- Institute for Biological Data Science, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Bruno Mezzetti
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
9
|
Pott DM, Durán-Soria S, William Allwood J, Pont S, Gordon SL, Jennings N, Austin C, Stewart D, Brennan RM, Masny A, Sønsteby A, Krüger E, Jarret D, Vallarino JG, Usadel B, Osorio S. Dissecting the impact of environment, season and genotype on blackcurrant fruit quality traits. Food Chem 2022; 402:134360. [DOI: 10.1016/j.foodchem.2022.134360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 09/11/2022] [Accepted: 09/18/2022] [Indexed: 10/14/2022]
|
10
|
Koyama R, Ishibashi M, Fukuda I, Okino A, Osawa R, Uno Y. Pre- and Post-Harvest Conditions Affect Polyphenol Content in Strawberry (Fragaria × ananassa). PLANTS 2022; 11:plants11172220. [PMID: 36079602 PMCID: PMC9460031 DOI: 10.3390/plants11172220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/15/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022]
Abstract
The strawberry fruit contains abundant polyphenols, such as anthocyanins, flavan-3-ol, and ellagitannin. Polyphenol enrichment improves the quality of strawberries and leads to a better understanding of the polyphenol induction process. We measured the total polyphenol content of strawberry fruits under different growth conditions, developmental stages, and treatment conditions during pre-harvest and post-harvest periods. High fruit polyphenol content was observed in cold treatment, which was selected for further analysis and optimization. A transcriptome analysis of cold-treated fruits suggested that the candidate components of polyphenols may exist in the phenylpropanoid pathway. Coverage with a porous film bag excluded the effects of drought stress and produced polyphenol-rich strawberry fruits without affecting quality or quantity. The degree of stress was assessed using known stress indicators. A rapid accumulation of abscisic acid was followed by an increase in superoxide dismutase and DPPH (2,2-Diphenyl-1-picrylhydrazyl) activity, suggesting that the strawberry fruits responded to cold stress immediately, reaching the climax at around 6 days, a trend consistent with that of polyphenol content. These findings enhance our understanding of the mechanism of post-harvest polyphenol accumulation and the value of strawberries as a functional food.
Collapse
Affiliation(s)
- Ryohei Koyama
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Misaki Ishibashi
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Itsuko Fukuda
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
- Research Center for Food Safety and Security, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Akitoshi Okino
- FIRST, Tokyo Institute of Technology, J2-32, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
| | - Ro Osawa
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
- Research Center for Food Safety and Security, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Yuichi Uno
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
- Research Center for Food Safety and Security, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
- Correspondence:
| |
Collapse
|
11
|
Advances in Plant Metabolomics and Its Applications in Stress and Single-Cell Biology. Int J Mol Sci 2022; 23:ijms23136985. [PMID: 35805979 PMCID: PMC9266571 DOI: 10.3390/ijms23136985] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/19/2022] [Accepted: 06/19/2022] [Indexed: 02/04/2023] Open
Abstract
In the past two decades, the post-genomic era envisaged high-throughput technologies, resulting in more species with available genome sequences. In-depth multi-omics approaches have evolved to integrate cellular processes at various levels into a systems biology knowledge base. Metabolomics plays a crucial role in molecular networking to bridge the gaps between genotypes and phenotypes. However, the greater complexity of metabolites with diverse chemical and physical properties has limited the advances in plant metabolomics. For several years, applications of liquid/gas chromatography (LC/GC)-mass spectrometry (MS) and nuclear magnetic resonance (NMR) have been constantly developed. Recently, ion mobility spectrometry (IMS)-MS has shown utility in resolving isomeric and isobaric metabolites. Both MS and NMR combined metabolomics significantly increased the identification and quantification of metabolites in an untargeted and targeted manner. Thus, hyphenated metabolomics tools will narrow the gap between the number of metabolite features and the identified metabolites. Metabolites change in response to environmental conditions, including biotic and abiotic stress factors. The spatial distribution of metabolites across different organs, tissues, cells and cellular compartments is a trending research area in metabolomics. Herein, we review recent technological advancements in metabolomics and their applications in understanding plant stress biology and different levels of spatial organization. In addition, we discuss the opportunities and challenges in multiple stress interactions, multi-omics, and single-cell metabolomics.
Collapse
|
12
|
Aghdam MS, Flaherty EJ, Shelp BJ. γ-Aminobutyrate Improves the Postharvest Marketability of Horticultural Commodities: Advances and Prospects. FRONTIERS IN PLANT SCIENCE 2022; 13:884572. [PMID: 35693167 PMCID: PMC9174936 DOI: 10.3389/fpls.2022.884572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
Postharvest deterioration can result in qualitative and quantitative changes in the marketability of horticultural commodities, as well as considerable economic loss to the industry. Low temperature and controlled atmosphere conditions (low O2 and elevated CO2) are extensively employed to prolong the postharvest life of these commodities. Nevertheless, they may suffer from chilling injury and other physiological disorders, as well as excessive water loss and bacterial/fungal decay. Research on the postharvest physiological, biochemical, and molecular responses of horticultural commodities indicates that low temperature/controlled atmosphere storage is associated with the promotion of γ-aminobutyrate (GABA) pathway activity, with or without the accumulation of GABA, delaying senescence, preserving quality and ameliorating chilling injury. Regardless of whether apple fruits are stored under low temperature/controlled atmosphere conditions or room temperature, elevated endogenous GABA or exogenous GABA maintains their quality by stimulating the activity of the GABA shunt (glutamate GABA succinic semialdehyde succinate) and the synthesis of malate, and delaying fruit ripening. This outcome is associated with changes in the genetic and biochemical regulation of key GABA pathway reactions. Flux estimates suggest that the GABA pool is derived primarily from glutamate, rather than polyamines, and that succinic semialdehyde is converted mainly to succinate, rather than γ-hydroxybutyrate. Exogenous GABA is a promising strategy for promoting the level of endogenous GABA and the activity of the GABA shunt in both intact and fresh-cut commodities, which increases carbon flux through respiratory pathways, restores or partially restores redox and energy levels, and improves postharvest marketability. The precise mechanisms whereby GABA interacts with other signaling molecules such as Ca2+, H2O2, polyamines, salicylic acid, nitric oxide and melatonin, or with phytohormones such as ethylene, abscisic acid and auxin remain unknown. The occurrence of the aluminum-activated malate transporter and the glutamate/aspartate/GABA exchanger in the tonoplast, respectively, offers prospects for reducing transpirational water in cut flowers and immature green fruit, and for altering the development, flavor and biotic resistance of apple fruits.
Collapse
Affiliation(s)
| | - Edward J. Flaherty
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Barry J. Shelp
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
13
|
Analysis of the Fruit Quality of Pear ( Pyrus spp.) Using Widely Targeted Metabolomics. Foods 2022; 11:foods11101440. [PMID: 35627008 PMCID: PMC9140454 DOI: 10.3390/foods11101440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/29/2022] [Accepted: 05/11/2022] [Indexed: 02/02/2023] Open
Abstract
Pear is a kind of common temperate fruit, whose metabolite composition that contributes to the difference in fruit quality is unclear. This study identified and quantified the metabolites using a widely targeted LC-MS/MS approach in three pear species, including Pyrus bretschneideri (PB), Pyrus usssuriensis (PU) and Pyrus pyrifolia (PP). A total of 493 metabolites were identified, consisting of 68 carbohydrates, 47 organic acids, 50 polyphenols, 21 amino acids, 20 vitamins, etc. The results of PCA and OPLS-DA demonstrated that the metabolite compositions differed distinctly with cultivar variability. Our results also involved some metabolic pathways that may link to the fruit quality based on KEGG pathway analysis, the pathway of phenylalanine metabolism revealed significant differences between PB and PP (p < 0.05). Furthermore, the study selected D-xylose, formononetin, procyanidin A1 and β-nicotinamide mononucleotide as the major differentially expressed metabolites in the three species. The present study can open new avenues for explaining the differences in fruit quality of the major commercial pear cultivars in China.
Collapse
|
14
|
|
15
|
Developing an LED preservation technology to minimize strawberry quality deterioration during distribution. Food Chem 2021; 366:130566. [PMID: 34303208 DOI: 10.1016/j.foodchem.2021.130566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/09/2021] [Accepted: 07/07/2021] [Indexed: 12/28/2022]
Abstract
This study investigated the effect of LED illumination on the inactivation of Rhizopus stolonifer and Botrytis cinerea on strawberries and physicochemical properties of the strawberries. Twelve days of illumination resulted in an antifungal effect of 3.4 and 1.9 log CFU/g on R. stolonifer and B. cinerea respectively. The illumination caused no significant effect (P ≥ 0.05) on the mass, color and texture of strawberries. Furthermore, total phenolic content, trolox equivalent antioxidant capacity and anthocyanin content of the illuminated strawberries significantly increased (P < 0.05). Vitamin C content of illuminated strawberries was only significantly different (P < 0.05) from the control starting from Day 9. These results show that 405 nm LED illumination can potentially complement temperature and humidity control in preventing mold spoilage and preserving physicochemical quality of strawberries during refrigerated storage.
Collapse
|
16
|
Detection of Alternaria alternata in tomato juice and fresh fruit by the production of its biomass, respiration, and volatile compounds. Int J Food Microbiol 2021; 342:109092. [PMID: 33607541 DOI: 10.1016/j.ijfoodmicro.2021.109092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/16/2021] [Accepted: 01/29/2021] [Indexed: 01/30/2023]
Abstract
Tomato is widely consumed and marketed as juice, puree, or fresh product. Nevertheless, 30% of its harvest volume is lost because of the fungus Alternaria alternata. This research aimed to provide early detection methods for this fungal decay on tomato juice and fresh fruit. Biomass content, CO2, O2 and volatile compounds (VOCs) during A. alternata growth in tomato juice and fruit at two ripening stages (breaker and red colour) were evaluated. Additionally, CO2 and VOCs data set were analysed with a hierarchical cluster technique (HCA) to explore the differences between inoculated and non-inoculated samples. Biomass was determined by gravimetry, CO2 and O2 by gas chromatography (GC), and VOCs by GC-mass spectrometry. Biomass content was not drastically modified by tomato's ripening stage (3-6 mg of dry weight). CO2 in tomato juice was considerably higher in the inoculated samples with A. alternata (27-63%) than in the non-inoculated ones (2.8-6.6%), regardless of the ripeness stage; while in tomato fruit CO2 was higher at breaker stage and inoculated with A. alternata (33-41%) than the remaining treatments (9-23%). It was also observed that, except for limonene, trans-sabinene hydrate, and rhodovibrin, VOCs' release during the interaction between tomato juice and A. alternata was different from the fresh tomato and A. alternata interaction. Only the HCA based on CO2 data showed clear differences between the inoculated and non-inoculated tomato juice and fruit at both ripening stages.
Collapse
|
17
|
Preparation of cinnamaldehyde-loaded polyhydroxyalkanoate/chitosan porous microspheres with adjustable controlled-release property and its application in fruit preservation. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Jacobs DM, van den Berg MA, Hall RD. Towards superior plant-based foods using metabolomics. Curr Opin Biotechnol 2020; 70:23-28. [PMID: 33086174 DOI: 10.1016/j.copbio.2020.08.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 08/29/2020] [Indexed: 12/16/2022]
Abstract
Metabolomics is proving a useful approach for many of the main future goals in agronomy and food production such as sustainability/crop resilience, food quality, safety, storage, and nutrition. Targeted and/or untargeted small-molecule analysis, coupled to chemometric analysis, has already unveiled a great deal of the complexity of plant-based foods, but there is still 'dark matter' to be discovered. Moreover, state-of-the-art food metabolomics offers insights into the molecular mechanisms underlying sensorial and nutritional characteristics of foods and thus enables higher precision and speed. This review describes recent applications of food metabolomics from fork to farm and focuses on the opportunities these bring to continue food innovation and support the shift to plant-based foods.
Collapse
Affiliation(s)
- Doris M Jacobs
- Unilever Foods Innovation Center, Bronland 14, 6708 WH Wageningen, Netherlands.
| | - Marco A van den Berg
- DSM Biotechnology Center, Biotech Campus Delft, Alexander Fleminglaan 1, Delft, 2613 AX, Netherlands
| | - Robert D Hall
- Business Unit Bioscience, Wageningen University & Research and Laboratory of Plant Physiology, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, Netherlands
| |
Collapse
|
19
|
Ikegaya A, Ohba S, Nakajima T, Toyoizumi T, Ito S, Arai E. Practical long-term storage of strawberries in refrigerated containers at ice temperature. Food Sci Nutr 2020; 8:5138-5148. [PMID: 32994974 PMCID: PMC7500797 DOI: 10.1002/fsn3.1817] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 01/30/2023] Open
Abstract
This study investigated the effect of storage temperature in the presence or absence of film packaging on the Benihoppe and Kirapika varieties of Japanese strawberries stored for 28 days at 0°C and 3°C. The study was conducted in a 20-foot reefer container for practicality. Storage at 0°C suppressed decay and reduction in sugars and organic acids more efficiently than that at 3°C. Softening of fruit hardness was also suppressed depending on the variety. The reduction in sugars and organic acids did not affect strawberry palatability. Along with low temperature, long-term storage of strawberries also requires the use of film packaging, which prevents drying. Without film packaging, storage at both 0°C and 3°C decreased fresh weight significantly, resulting in loss of commercial value. In contrast, storage in film packaging decreased weight reduction to <5%, even after 28 days cold storage.
Collapse
Affiliation(s)
- Atsushi Ikegaya
- Shizuoka Professional University Junior College of Agriculture Iwata Japan
- Shizuoka Prefectural Research Institute of Agriculture and Forestry Iwata Japan
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences University of Shizuoka Shizuoka Japan
| | - Seiji Ohba
- Shizuoka Prefectural Research Institute of Agriculture and Forestry Iwata Japan
| | - Teruko Nakajima
- Shizuoka Prefectural Research Institute of Agriculture and Forestry Iwata Japan
| | - Tomoyasu Toyoizumi
- Shizuoka Prefectural Research Institute of Agriculture and Forestry Iwata Japan
| | - Seiko Ito
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences University of Shizuoka Shizuoka Japan
- School of Food and Nutritional Sciences University of Shizuoka Shizuoka Japan
| | - Eiko Arai
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences University of Shizuoka Shizuoka Japan
- School of Food and Nutritional Sciences University of Shizuoka Shizuoka Japan
| |
Collapse
|
20
|
Pott DM, Vallarino JG, Osorio S. Metabolite Changes during Postharvest Storage: Effects on Fruit Quality Traits. Metabolites 2020; 10:metabo10050187. [PMID: 32397309 PMCID: PMC7281412 DOI: 10.3390/metabo10050187] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
Metabolic changes occurring in ripe or senescent fruits during postharvest storage lead to a general deterioration in quality attributes, including decreased flavor and ‘off-aroma’ compound generation. As a consequence, measures to reduce economic losses have to be taken by the fruit industry and have mostly consisted of storage at cold temperatures and the use of controlled atmospheres or ripening inhibitors. However, the biochemical pathways and molecular mechanisms underlying fruit senescence in commercial storage conditions are still poorly understood. In this sense, metabolomic platforms, enabling the profiling of key metabolites responsible for organoleptic and health-promoting traits, such as volatiles, sugars, acids, polyphenols and carotenoids, can be a powerful tool for further understanding the biochemical basis of postharvest physiology and have the potential to play a critical role in the identification of the pathways affected by fruit senescence. Here, we provide an overview of the metabolic changes during postharvest storage, with special attention to key metabolites related to fruit quality. The potential use of metabolomic approaches to yield metabolic markers useful for chemical phenotyping or even storage and marketing decisions is highlighted.
Collapse
Affiliation(s)
| | - José G. Vallarino
- Correspondence: (J.G.V.); (S.O.); Tel.: +34-952134271 (J.G.V. & S.O.)
| | - Sonia Osorio
- Correspondence: (J.G.V.); (S.O.); Tel.: +34-952134271 (J.G.V. & S.O.)
| |
Collapse
|