1
|
Gonzalez-Ramirez M, Cerezo AB, Valero E, Troncoso AM, Garcia-Parrilla MC. From tyrosine to hydroxytyrosol: a pathway involving biologically active compounds and their determination in wines by ultra performance liquid chromatography with mass spectrometry. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9399-9409. [PMID: 39041432 DOI: 10.1002/jsfa.13762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/05/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Hydroxytyrosol (HT) is a bioactive compound present in a limited number of foods such as wines, olives, and olive oils. During alcoholic fermentation, yeast converts aromatic amino acids into higher alcohols such as tyrosol, which can undergo hydroxylation into HT. The aim of this study was to validate an analytical method using ultra performance liquid chromatography coupled with mass spectrometry (UPLC/MS-MS) to quantify HT and its precursors (tyrosine, hydroxyphenylpyruvic acid, hydroxyphenylacetaldehyde, 4-hydroxyphenylacetic acid, and tyrosol) in wines. Their occurrence was evaluated in a total of 108 commercial Spanish wine samples. RESULTS The validated method simultaneously determined both HT and its precursors, with adequate limits of detection between 0.065 and 21.86 ng mL-1 and quantification limits between 0.199 and 66.27 ng mL-1 in a 5 min run. The concentration of HT in red wines was significantly higher (0.12-2.24 mg L-1) than in white wines (0.01-1.27 mg L-1). The higher the alcoholic degree, the higher was the content of HT. The bioactive 4-hydroxyphenylacetic acid was identified in Spanish wines for the first time at 3.90-127.47 mg L-1, being present in all the samples. CONCLUSION The highest HT concentrations were found in red wines and in wines with higher ethanol content. These data are useful for a further estimation of the intake of these bioactive compounds and to enlarge knowledge on chemical composition of wines. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Marina Gonzalez-Ramirez
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Ana B Cerezo
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Eva Valero
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - Ana M Troncoso
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - M Carmen Garcia-Parrilla
- Departamento de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
2
|
Huang X, Wang B, Zhai R, Ding CF, Fang X, Dai X, Yan Y. Boric acids decorated polymers with Au nanoparticle anchor assisted laser desorption/ionization for qualitive and quantitative analysis of hydroxytyrosol in red wines. Food Chem 2024; 437:137873. [PMID: 37918150 DOI: 10.1016/j.foodchem.2023.137873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023]
Abstract
Hydroxytyrosol possesses a variety of biological and pharmacological activities that are beneficial to human health. However, the methodologies for its detection always suffered from problems. In this work, the gold nanoparticle modified polymer decorated with boric acids (pMBA/VPBA@Au) was synthesized and used both as the adsorbent and matrix to enrich and ionize small molecule substances through surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS). The pMBA/VPBA@Au displayed a low detection limit (8 × 10-6 M) and high selectivity (1:100) for the enrichment of hydroxytyrosol, and the linear correlation curve between the concentration of hydroxytyrosol and the intensity of MS had a good correlation (10-4-10-2 M, R2 = 0.997). Additionally, the pMBA/VPBA@Au was used to quantify hydroxytyrosol in red wines, and the contents were 0.053-0.094 μg/mL. In general, a simple and novel method for the detection of hydroxytyrosol by SALDI-MS using boric acid functionalized polymer was developed for the first time, showing a good practical application value.
Collapse
Affiliation(s)
- Xiaohui Huang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo 315211, China
| | - Baichun Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo 315211, China
| | - Rui Zhai
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo 315211, China
| | - Xiang Fang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China
| | - Xinhua Dai
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China.
| | - Yinghua Yan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
3
|
Yao Y, Yuan H, Chen C, Liang J, Li C. Study of the Antioxidant Capacity and Oxidation Products of Resveratrol in Soybean Oil. Foods 2023; 13:29. [PMID: 38201057 PMCID: PMC10778236 DOI: 10.3390/foods13010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Resveratrol (3,5,4'-trihydroxystilbene), a naturally occurring polyphenol that is widely utilized in functional food due to its antioxidant, anti-inflammatory, anti-cancer and anti-aging properties. In the present study, the antioxidant capacity and oxidation products of resveratrol in soybean oil were investigated. The antioxidant activity of resveratrol was evaluated by employing various in vitro antioxidant assays such as DPPH scavenging activities, ferric reducing abilities (FRAP) and oxygen radical absorbance capacity (ORAC). Furthermore, monitoring the peroxide value and the acid value of soybean oil with the addition of 200-1000 μg/g of resveratrol at 60 and 180 °C. It was found that when the concentration of resveratrol in soybean oil was 600 µg/g, the antioxidant capacity was most effective. Resveratrol and its thermal degradation products were identified using liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS). There were seven nonvolatile oxidation products with mass-to-charge ratios of 138.03, 171.04, 185.10, 157.03, 436.13, 244.07 and 306.09 kg/C and two volatile oxidation products with mass-to-charge ratios of 100.05 and 158.13 kg/C were identified. The research findings may provide essential information for the development of resveratrol as functional oils in future.
Collapse
Affiliation(s)
| | | | | | | | - Changmo Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.Y.); (H.Y.); (C.C.); (J.L.)
| |
Collapse
|
4
|
Gallardo-Fernández M, Gonzalez-Ramirez M, Cerezo AB, Troncoso AM, Garcia-Parrilla MC. Hydroxytyrosol in Foods: Analysis, Food Sources, EU Dietary Intake, and Potential Uses. Foods 2022; 11:foods11152355. [PMID: 35954121 PMCID: PMC9368174 DOI: 10.3390/foods11152355] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 07/29/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Hydroxytyrosol (HT) is a phenolic compound with proven biological properties present in a limited number of foods such as table olives, virgin olive oil (VOO) and wines. The present work aims to evaluate the dietary intake of HT in the European (EU) population by compiling scattered literature data on its concentration in foods. The consumption of the involved foods was estimated based on the EFSA Comprehensive European Food Consumption Database. The updated average contents of HT are as follows: 629.1, 5.2 and 2.1 µg/g for olives, olive oil and wine, respectively. The HT estimated intake in the European Union (EU) adult population falls within 0.13–6.82 mg/day/person, with table olives and wine being the main contributors. The estimated mean dietary intake of HT in EU countries is 1.97 ± 2.62 mg/day. Greece showed the highest HT intake (6.82 mg/day), while Austria presented the lowest (0.13 mg/day). Moreover, HT is an authorized novel food ingredient in the EU that can be added to different foods. Since the estimated HT intake is substantially low, the use of HT as a food ingredient seems feasible. This opens new possibilities for revalorizing waste products from olive oil and olive production which are rich HT sources.
Collapse
|
5
|
Anti-VEGF Effect of Bioactive Indolic Compounds and Hydroxytyrosol Metabolites. Foods 2022; 11:foods11040526. [PMID: 35206003 PMCID: PMC8871452 DOI: 10.3390/foods11040526] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
Angiogenesis is a key process involved in both cancer and cardiovascular diseases, the vascular endothelial growth factor (VEGF) and its VEGF receptor-2 (VEGFR-2) being the main triggers. The aim of this study was to determine the molecular mechanism underlying the potent inhibition of VEGF signaling by hydroxytyrosol (HT) metabolites and indolic compounds and establish a relation between their structure and bioactivity. Experiments involved the evaluation of their potential to inhibit VEGF on human umbilical vein endothelial cells (HUVECs) by ELISA assay and their subsequent effect on the downstream signaling pathway (PLCγ1, Akt, and endothelial nitric oxide synthetase (eNOS)) by Western blot. Respectively, 3,4-dihydroxyphenylacetaldehyde (DOPAL) (100 µM) and indole pyruvic acid (IPy) (1 mM) were capable of inhibiting VEGFR-2 activation with an IC50 value of 119 µM and 1.037 mM. The anti-angiogenic effect of DOPAL and IPy is mediated via PLCγ1. Additionally, DOPAL significantly increases eNOS phosphorylation, while IPy maintained it. These data provide for the first time evidence of the anti-angiogenic effect of DOPAL and IPy for future use as potential bioactive food ingredients.
Collapse
|
6
|
Schwarz M, Weber F, Durán-Guerrero E, Castro R, Rodríguez-Dodero MDC, García-Moreno MV, Winterhalter P, Guillén-Sánchez D. HPLC-DAD-MS and Antioxidant Profile of Fractions from Amontillado Sherry Wine Obtained Using High-Speed Counter-Current Chromatography. Foods 2021; 10:foods10010131. [PMID: 33435411 PMCID: PMC7826704 DOI: 10.3390/foods10010131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 01/18/2023] Open
Abstract
In the present work, the polyphenolic profile of a complex matrix such as Amontillado sherry has been processed by means of high-speed counter-current chromatography (HSCCC) and characterized by HPLC-DAD-MS. An Amberlite XAD-7 column was used to obtain the wine extract, and three different biphasic solvent systems were applied for HSCCC separation: MTBE (methyl tert-butyl ether)/n-butanol/acetonitrile/water (1.1/3/1.1/5+0.1% trifluoroacetic acid), MTBE/n-butanol/acetonitrile/water (2/2/1/5), and hexane/ethyl acetate/ethanol/water (1/5/1/5). As a result, 42 phenolic compounds and furanic derivatives have been identified by means of HPLC-DAD-MS, with 11 of them being identified for the first time in Sherry wines: 3-feruloylquinic acid, isovanillin, ethyl vanillate, furoic acid, dihydro-p-coumaric acid, 6-O-feruloylglucose, ethyl gallate, hydroxytyrosol, methyl protocatechuate, homoveratric acid and veratraldehyde. In addition, the antioxidant capacity (ABTS) of the obtained fractions was determined, revealing higher values in those fractions in which compounds such as gallic acid, protocatechuic acid, protocatechualdehyde, trans-caftaric acid, syringic acid, isovanillin or tyrosol, among others, were present. This is the first time that HSCCC has been used to characterize the phenolic composition of Sherry wines.
Collapse
Affiliation(s)
- Mónica Schwarz
- “Salus Infirmorum” Faculty of Nursing, University of Cadiz, 11001 Cadiz, Spain;
- Nutrition and Bromatology Area, Faculty of Medicine, University of Cadiz, Plaza Falla, 9, 11003 Cadiz, Spain
| | - Fabian Weber
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Endenicher Allee 19b, D-53115 Bonn, Germany;
| | - Enrique Durán-Guerrero
- Analytical Chemistry Department, Faculty of Sciences-IVAGRO, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), Pol. Río San Pedro, s/n, Puerto Real, 11510 Cadiz, Spain; (R.C.); (M.d.C.R.-D.); (M.V.G.-M.); (D.G.-S.)
- Correspondence: ; Tel.: +34-956-016-456
| | - Remedios Castro
- Analytical Chemistry Department, Faculty of Sciences-IVAGRO, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), Pol. Río San Pedro, s/n, Puerto Real, 11510 Cadiz, Spain; (R.C.); (M.d.C.R.-D.); (M.V.G.-M.); (D.G.-S.)
| | - María del Carmen Rodríguez-Dodero
- Analytical Chemistry Department, Faculty of Sciences-IVAGRO, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), Pol. Río San Pedro, s/n, Puerto Real, 11510 Cadiz, Spain; (R.C.); (M.d.C.R.-D.); (M.V.G.-M.); (D.G.-S.)
| | - Maria Valme García-Moreno
- Analytical Chemistry Department, Faculty of Sciences-IVAGRO, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), Pol. Río San Pedro, s/n, Puerto Real, 11510 Cadiz, Spain; (R.C.); (M.d.C.R.-D.); (M.V.G.-M.); (D.G.-S.)
| | - Peter Winterhalter
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstrasse 20, 38106 Braunschweig, Germany;
| | - Dominico Guillén-Sánchez
- Analytical Chemistry Department, Faculty of Sciences-IVAGRO, University of Cadiz, Agrifood Campus of International Excellence (ceiA3), Pol. Río San Pedro, s/n, Puerto Real, 11510 Cadiz, Spain; (R.C.); (M.d.C.R.-D.); (M.V.G.-M.); (D.G.-S.)
| |
Collapse
|