1
|
Yan L, Wu S, Ji S, Ding S, Wang X. Effect of magnetic induction electric field treatment of soybean protein isolate on their structural and interfacial properties. Int J Biol Macromol 2025; 290:139006. [PMID: 39708851 DOI: 10.1016/j.ijbiomac.2024.139006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/05/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Induction electric field (IEF) technology is a new green treatment technology based on electric field, and its application has not been widely reported, especially in the direction of soybean protein isolate (SPI) modification. Therefore, IEF and several commonly used physical modification methods were used to investigate the effect on the structure and interfacial properties of SPI. The IEF treatment was found to be superior to the other groups in terms of emulsification performance, solubility and flexibility, which were enhanced by 44.61 %, 16.33 % and 30.55 %, as compared to untreated SPI. DSC shows more prominent thermal stabilisation of proteins after treatment. Secondary structure measurements revealed a decrease in α-helix content and an increase in random coil content, as well as an increase in surface hydrophobicity and free sulfhydryl groups, demonstrating a shift towards a loosely packed and disordered protein structure. At the same time, the IEF treatment particle size reaches a minimum and is uniformly distributed under the microscope, showing specific advantages in stabilising emulsions. In short, IEF provides a new way of thinking about protein modification, which is conducive to expanding the range of applications in the food industry.
Collapse
Affiliation(s)
- Lingdan Yan
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Sitong Wu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Shaoxiong Ji
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Sihao Ding
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xibo Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
2
|
Xue L, Zheng Z, Wu Y, Zhang L, Zhang H, Yang N, Xu X, Jin Y, Meng M, Wang F. Induced electric field as alternative pasteurization to improve microbiological safety and quality of bayberry juice. Food Chem 2025; 463:141137. [PMID: 39255704 DOI: 10.1016/j.foodchem.2024.141137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/21/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
Recently, unconventional techniques like induced electric field (IEF) for continuous pasteurization of liquid food have received great attention. In this study, the effect of IEF on temperature rise, microbiological and quality characteristics of bayberry juice was investigated. Voltage, current, and flow rate affected the terminal temperature. Both IEF (600 V, 4 L/h; 700 V, 6 L/h) and thermal pasteurization (95 °C, 2 min) completely inactivated total plate count, coliforms, yeast and mold in bayberry juice. The pH, total soluble solid and titratable acidity did not vary significantly post-IEF, but conductivity changed slightly. IEF-treated samples exhibited the lowest ΔE values without exceeding 3. Thermal pasteurization (95 °C, 2 min) scored the lowest in color, flavor, odor, and acceptance. GC-MS results demonstrated a significant increase in the content of total volatile compounds following IEF treatments, with the maximum increment reaching 10.65 %. Generally, IEF is a potential technology for processing liquid beverages.
Collapse
Affiliation(s)
- Liping Xue
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Life Science and Engineering, Jining University, 1 Xingtan Road, Qufu 273155, China.
| | - Zitao Zheng
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Yuhang Wu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Lingtao Zhang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Huang Zhang
- Henan University of Animal Husbandry and Economy, No. 6 Longzihu North Road, Zhengzhou 450046, China
| | - Na Yang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Xueming Xu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Yamei Jin
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Man Meng
- Licheng Detection & Certification Group Co., Ltd, 6 Shennong Road, Zhongshan 528437, China
| | - Fu Wang
- Licheng Detection & Certification Group Co., Ltd, 6 Shennong Road, Zhongshan 528437, China
| |
Collapse
|
3
|
Wu Y, Yang N, Xiao Z, Luo Y, Jin Y, Meng M, Xu X. Influence of induced electric field on cold brew coffee: Temperature rise, physicochemical properties, and shelf life. Food Chem X 2024; 24:102036. [PMID: 39687633 PMCID: PMC11647621 DOI: 10.1016/j.fochx.2024.102036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/10/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Cold brew coffee has gained significant popularity in the global market. This study examined the differences in chemical properties and flavor of cold brew coffee during storage, which was subjected to low-temperature pasteurization using induced electric field (IEF) at temperatures of 52 °C and 58 °C for 92 s, corresponding to 18.52 V/cm and 25.92 V/cm. Then, a high-temperature short-time (HTST) pasteurization was performed at 93 °C for 2 min as the control. Microbial analysis demonstrated that IEF treatment at 58 °C achieved a bactericidal effect. Both the IEF and HTST groups exhibited consistent trends in total sugar and total phenol content, showing approximately 28 μg GAE/mL after 28 days for IEF-2 group, compared to 25 μg/mL for HTST. Flavor analysis indicated that IEF group preserved the aroma characteristics during storage period. Further, IEF treatment effectively retained the key aroma compounds in cold brew coffee through GC-MS analysis, particularly pyrazine compounds with a relative content increased by 0.96 % in IEF-2 group after 28 days. Moreover, the bioactive compounds initially increased and subsequently decreased over the storage.
Collapse
Affiliation(s)
- Yuhang Wu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Na Yang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhenlei Xiao
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States
| | - Yamei Jin
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Man Meng
- Licheng Detection & Certification Group Co., Ltd., 6 Shennong Road, Zhongshan 528437, China
| | - Xueming Xu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
4
|
Sepúlveda F, Puente-Diaz L, Ortiz-Viedma J, Rodríguez A, Char C. Encapsulation of Cinnamaldehyde and Vanillin as a Strategy to Increase Their Antimicrobial Activity. Foods 2024; 13:2032. [PMID: 38998538 PMCID: PMC11241658 DOI: 10.3390/foods13132032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
Many studies have suggested that the encapsulation of natural antimicrobials increases their antimicrobial activity. In this sense, the objective was to study the inactivation of microorganisms with encapsulated cinnamaldehyde and vanillin (E-CIN and E-VN), in comparison with the unencapsulated antimicrobials (CIN and VN) in protein beverages. Additionally, the microbial response was quantified through mathematical modeling. Cinnamaldehyde and vanillin were encapsulated using whey protein concentrate (WPC) as the encapsulating agent. The effectiveness at inactivating Escherichia coli, Listeria innocua, and Saccharomyces cerevisiae was evaluated in a protein-apple juice beverage during storage (4 °C). Encapsulation increased the effectiveness of cinnamaldehyde, reaching reductions of 1.8, 3.3, and 5.3 log CFU/mL in E. coli, L. innocua, and S. cerevisiae, respectively, while vanillin encapsulation had little effect on antimicrobial activity, reducing by 0.5, 1.4, and 1.1 log cycles, respectively. The combined treatments (E-CIN + E-VN) had an additive effect in reducing E. coli and a synergistic effect against S. cerevisiae. The Gompertz model was more versatile and better described the biphasic curves, whereas the Weibull model complemented the information regarding the spectrum of resistances within the microbial population. In conclusion, the encapsulation of cinnamaldehyde with WPC enhanced its activity. However, further studies are necessary to improve the antimicrobial activity of vanillin.
Collapse
Affiliation(s)
- Francisco Sepúlveda
- Departamento de Ciencias de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Av. Dr. Carlos Lorca Tobar 964, Independencia, Santiago P.O. Box 1004, Chile
| | - Luis Puente-Diaz
- Departamento de Ciencias de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Av. Dr. Carlos Lorca Tobar 964, Independencia, Santiago P.O. Box 1004, Chile
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Jaime Ortiz-Viedma
- Departamento de Ciencias de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Av. Dr. Carlos Lorca Tobar 964, Independencia, Santiago P.O. Box 1004, Chile
| | - Alicia Rodríguez
- Departamento de Ciencias de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Av. Dr. Carlos Lorca Tobar 964, Independencia, Santiago P.O. Box 1004, Chile
| | - Cielo Char
- Departamento de Ciencias de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Av. Dr. Carlos Lorca Tobar 964, Independencia, Santiago P.O. Box 1004, Chile
| |
Collapse
|
5
|
Zhao Z, Wang J, Li C, Zhang Y, Sun X, Ma T, Ge Q. Effects of Seven Sterilization Methods on the Functional Characteristics and Color of Yan 73 ( Vitis vinifera) Grape Juice. Foods 2023; 12:3722. [PMID: 37893615 PMCID: PMC10606831 DOI: 10.3390/foods12203722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/26/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Yan 73 (Vitis vinifera) is a dyed grape variety cultivated in China. Currently, most studies have focused on the mechanism of anthocyanins or the impact of anthocyanins as auxiliary color varieties on wine color. There is little research on its direct use or direct processing of products such as juice. In order to investigate the effects of different processing methods on the juice of Yan 73 grapes, the physicochemical and functional properties, as well as the sensory indexes of the juice, were analyzed by using thermal pasteurization (TP), thermosonication (TS), TS combined with nisin (TSN), TS combined with ε-Polylysine (TSε), irradiation (IR), and high hydrostatic pressure (HHP). The physicochemical indexes, functional properties, and sensory indexes of Smoke 73 grape juice were determined and analyzed. The results of the study showed that among the seven sterilization methods, total polyphenol content (TPC) in juice was significantly increased in all treatments except HHP. TPC was the highest in TP (3773.33 mg GAE/L). Total anthocyanin content (TAC) was increased except IR5, and TSN (1202.67 mg/L) had the highest TAC. In terms of color, TP (a* = 36.57, b* = 19.70, L* = 14.81, C* = 41.55, h° = 28.30, ΔE = 5.9) promotes the dissolution of anthocyanins because of high temperatures, which basically improves all the color indicators of grape juice and makes the color of grape juice more vivid. After HHP treatment, the color (ΔE = 1.72) and aroma indicators are closer to the grape juice itself. The Entropy weight-TOPSIS, CRITIC-Topsis, and PCA integrated quality evaluation models showed that all selected TP as the best integrated quality.
Collapse
Affiliation(s)
- Zixian Zhao
- Quality Standards and Testing Institute of Agricultural Technology, Yinchuan 750002, China; (Z.Z.); (C.L.)
- College of Enology, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling 712100, China; (J.W.); (Y.Z.); (X.S.)
| | - Jiaqi Wang
- College of Enology, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling 712100, China; (J.W.); (Y.Z.); (X.S.)
| | - Caihong Li
- Quality Standards and Testing Institute of Agricultural Technology, Yinchuan 750002, China; (Z.Z.); (C.L.)
| | - Yuanke Zhang
- College of Enology, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling 712100, China; (J.W.); (Y.Z.); (X.S.)
| | - Xiangyu Sun
- College of Enology, Viti-Viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling 712100, China; (J.W.); (Y.Z.); (X.S.)
| | - Tingting Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Qian Ge
- Quality Standards and Testing Institute of Agricultural Technology, Yinchuan 750002, China; (Z.Z.); (C.L.)
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
6
|
Zhang L, Yang N, Jin Y, Xu X. Putative inactivation mechanism and germicidal efficacy of induced electric field against Staphylococcus aureus. Food Microbiol 2023; 111:104208. [PMID: 36681392 DOI: 10.1016/j.fm.2022.104208] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
Induced electric field (IEF), as an alternative non-conventional processing technique, is utilized to sterilize liquid foods. In this study, the survival and sublethal injury of S. aureus under IEF were investigated in 0.85% normal saline, and the inactivation mechanism of IEF was expounded. The plate count results showed that the sublethal injury rates remained above 90% after IEF treatment for more than 8.4 s, and 7.1 log CFU/mL of S. aureus was completely inactivated after 14 s IEF treatment. Scanning electron microscopy and transmission electron microscope images showed that IEF caused the destruction of cell membrane and internal substructure, and the damage to intracellular substructure was more severe. Altered membrane integrity or permeability was demonstrated through flow cytometry and confocal laser scanning microscope analysis, and the different damage to cells was quantified by propidium iodide & 5-carboxy fluorescein diacetate single and double staining. In addition, IEF treatment also decreased the membrane potential and esterase activity of S. aureus cells. Putative inactivation mechanism of IEF against S. aureus is a complex process, and its apoptosis is the result of the combination of several factors, which provide a basis for understanding the inactivation mechanism of IEF.
Collapse
Affiliation(s)
- Lingtao Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Na Yang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Yamei Jin
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xueming Xu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
7
|
Zare F, Ghasemi N, Bansal N, Hosano H. Advances in pulsed electric stimuli as a physical method for treating liquid foods. Phys Life Rev 2023; 44:207-266. [PMID: 36791571 DOI: 10.1016/j.plrev.2023.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
There is a need for alternative technologies that can deliver safe and nutritious foods at lower costs as compared to conventional processes. Pulsed electric field (PEF) technology has been utilised for a plethora of different applications in the life and physical sciences, such as gene/drug delivery in medicine and extraction of bioactive compounds in food science and technology. PEF technology for treating liquid foods involves engineering principles to develop the equipment, and quantitative biochemistry and microbiology techniques to validate the process. There are numerous challenges to address for its application in liquid foods such as the 5-log pathogen reduction target in food safety, maintaining the food quality, and scale up of this physical approach for industrial integration. Here, we present the engineering principles associated with pulsed electric fields, related inactivation models of microorganisms, electroporation and electropermeabilization theory, to increase the quality and safety of liquid foods; including water, milk, beer, wine, fruit juices, cider, and liquid eggs. Ultimately, we discuss the outlook of the field and emphasise research gaps.
Collapse
Affiliation(s)
- Farzan Zare
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, St Lucia QLD 4072, Australia; School of Agriculture and Food Sciences, The University of Queensland, St Lucia QLD 4072, Australia
| | - Negareh Ghasemi
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, St Lucia QLD 4072, Australia
| | - Nidhi Bansal
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia QLD 4072, Australia
| | - Hamid Hosano
- Biomaterials and Bioelectrics Department, Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto 860-8555, Japan.
| |
Collapse
|
8
|
Wu S, Xu X, Yang N, Jin Y, Jin Z, Xie Z. Non-Conventional Induction Heat Treatment: Effect of Design and Electrical Parameters on Apple Juice Safety and Quality. Foods 2022; 11:3937. [PMID: 36496744 PMCID: PMC9735545 DOI: 10.3390/foods11233937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/26/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The proposed non-conventional induction heating, which combines an MSCP and VDC structure, was proved to have excellent thermal effect. Different from other electric field sterilization, this electrotechnology operates with no electrodes, and it is a continuous-flow process with short-duration (about 20 s). In current study, the parameters related to temperature rise were investigated, including applied voltage, frequency, the diameter of the secondary coil and heating tube, as well as their length, etc. It was demonstrated that a smaller diameter of the heating tube, parallel connection sample coils, and higher frequency were beneficial for the inactivation of microorganisms. At 500 Hz, the optimal condition is 800 V, d1 = 2 mm, and L1 = 10 cm. Notably, the system could inactivate all microorganisms and maintained the physicochemical properties of apple juice at 40 kHz. It suggests that this structural design has the potential for industrial applications and the proposed induction heating can realize the rapid sterilization of liquid food without applying electrodes.
Collapse
Affiliation(s)
- Shilin Wu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Xueming Xu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Na Yang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academic of Sciences, Jinan 250301, China
| | - Yamei Jin
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academic of Sciences, Jinan 250301, China
| | - Zhengyu Jin
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhengjun Xie
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
9
|
Zhang L, Liu F, Jin Y, Wu S, Xu X, Yang N. Current Applications and Challenges of Induced Electric Fields for the Treatment of Foods. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09314-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Han AM, Xu X, Yang N, Jin Y, Jin Z, Xie Z. Application of induced voltage in cloudy apple juice: enzymatic browning and bioactive and flavouring compounds. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aye Myo Han
- State Key Laboratory of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi 214122 China
- School of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi 214122 China
| | - Xueming Xu
- State Key Laboratory of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi 214122 China
- School of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi 214122 China
| | - Na Yang
- State Key Laboratory of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi 214122 China
- School of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi 214122 China
- State Key Laboratory of Biobased Material and Green Papermaking Qilu University of Technology, Shandong Academy of Sciences 3501 Daxue Road Jinan 250353 China
| | - Yamei Jin
- State Key Laboratory of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi 214122 China
- School of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi 214122 China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi 214122 China
- School of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi 214122 China
| | - Zhengjun Xie
- State Key Laboratory of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi 214122 China
- School of Food Science and Technology Jiangnan University 1800 Lihu Road Wuxi 214122 China
| |
Collapse
|
11
|
Wu S, Xu X, Yang N, Jin Y, Jin Z, Xie Z. Inactivation of Escherichia coli O157:H7 in apple juice via induced electric field (IEF) and its bactericidal mechanism. Food Microbiol 2021; 102:103928. [PMID: 34809954 DOI: 10.1016/j.fm.2021.103928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/28/2022]
Abstract
Non-conventional heating technology based on electric fields can be utilized to process liquid foods. In this study, the induced electric field (IEF) was investigated to clarify its inactivation mechanism on E.coli. Staining results show that inactivation of E.coli by IEF can be attributed to the reversible destruction of the cell membrane, followed by the denaturation of intracellular enzymes, and finally the irreversible rupture of the cell membrane. The increased levels of extracellular proteins and nucleic acids were also observed. IEF treatment at 400 Hz and 800 V (or 53 V/cm) results in a reduction of 4.5 log CFU·mL-1 in the number of E.coli. Storage life analysis shows that IEF treatment can improve the stability of apple juice and the content of bioactive components. Thus, IEF is a potential technique for liquid food processing.
Collapse
Affiliation(s)
- Shilin Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, PR China
| | - Xueming Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, PR China; International Joint Laboratory on Food Safety, Synergetie Innovation Center of Food Satety and Nutrition, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, PR China
| | - Na Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, PR China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academic of Sciences, Jinan, 250301, PR China; South China Agricultural University, Guangzhou, 510642, PR China.
| | - Yamei Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, PR China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, PR China
| | - Zhengjun Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, PR China
| |
Collapse
|
12
|
Zhang L, Zhang M, Mujumdar AS. New technology to overcome defects in production of fermented plant products- a review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
13
|
Assessment of milk fat based on signal-to-ground voltage. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00733-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|