1
|
Fan Z, Dong Z, Zhang B, Li H. Research progress on non covalent interaction dissolution characterization of insoluble wheat protein based on swelling. Int J Biol Macromol 2025; 284:138154. [PMID: 39613078 DOI: 10.1016/j.ijbiomac.2024.138154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/16/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
The non covalent interactions of proteins are usually characterized by solubility, which is based on the principle that specific solvents can disrupt non covalent interactions and promote protein dissolution. However, this method is generally applicable to highly soluble protein materials. The solubility of wheat protein is poor. When using this method to characterize non covalent interactions, there is always a portion of protein aggregates that can only reach a swollen state and cannot be completely dissolved. At present, there are no research reports on the role of non covalent interactions in swelling. In view of this, this article first reviews the swelling and dissolution processes of insoluble proteins such as wheat protein in solvents, focusing on the characterization mechanisms and influencing factors of three non covalent interactions using solubility characterization. At the same time, this article also explores the potential of swelling in characterizing non covalent interactions, aiming to improve the characterization methods of non covalent interactions between wheat proteins and provide methodological support for analyzing processing differences from the hierarchical analysis of wheat protein interactions in the future.
Collapse
Affiliation(s)
- Zhen Fan
- School of Food Science and Technology, Hebei Agricultural University, Hebei Baoding 071000, China; Institute of Food Science and Technology CAAS / Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Ziyan Dong
- Institute of Food Science and Technology CAAS / Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Bo Zhang
- Institute of Food Science and Technology CAAS / Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Huijing Li
- School of Food Science and Technology, Hebei Agricultural University, Hebei Baoding 071000, China.
| |
Collapse
|
2
|
Li M, Zou L, Zhang L, Ren G, Liu Y, Zhao X, Qin P. Plant-based proteins: advances in their sources, digestive profiles in vitro and potential health benefits. Crit Rev Food Sci Nutr 2024; 65:1929-1949. [PMID: 38343194 DOI: 10.1080/10408398.2024.2315448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Plant-based proteins (PBPs), which are environmentally friendly and sustainable sources of nutrition, can address the emerging challenges facing the global food supply due to the rapidly increasing population. PBPs have received much attention in recent decades as a result of high nutritional values, good functional properties, and potential health effects. This review aims to summarize the nutritional, functional and digestive profiles of PBPs, the health effects of their hydrolysates, as well as processing methods to improve the digestibility of PBPs. The diversity of plant protein sources plays an important role in improving the PBPs quality. Several types of models such as in vitro (the static and semi-dynamic INFOGEST) and in silico models have been proposed and used in simulating the digestion of PBPs. Processing methods including germination, fermentation, thermal and non-thermal treatment can be applied to improve the digestibility of PBPs. PBPs and their hydrolysates show potential health effects including antioxidant, anti-inflammatory, anti-diabetic, anti-hypertensive and anti-cancer activities. Based on the literature, diverse PBPs are ideal protein sources, and exhibit favorable digestive properties and health benefits that could be further improved by different processing technologies. Future research should explore the molecular mechanisms underlying the bioactivity of PBPs and their hydrolysates.
Collapse
Affiliation(s)
- Mengzhuo Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Lizhen Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Guixing Ren
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Yang Liu
- Baotou Vocational and Technical College, Baotou, China
| | - Xiaoyan Zhao
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Science, Beijing, China
| | - Peiyou Qin
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Science, Beijing, China
| |
Collapse
|
3
|
Ding X, Quan ZY, Chang WP, Li L, Qian JY. Effect of egg white protein on the protein structure of highland barley noodles during processing. Food Chem 2024; 433:137320. [PMID: 37683472 DOI: 10.1016/j.foodchem.2023.137320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/20/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
The effect of egg white protein on the protein structure of highland barely noodles during processing was investigated, and the underlying mechanism was examined. Egg white protein significantly influenced the stress relaxation of highland barley dough. 1% and 2% egg white protein improved the cooking and textural properties of highland barely noodles. During mixing and sheeting, it improved the structure of the protein network by promoting protein aggregation and cross-linking, whereas its effect on non-covalent interactions was quite different. During cooking, egg white protein promoted protein aggregation and cross-linking via heat-induced polymerization, and the distribution regularity of the protein network was improved as its flexibility diminished. The protein structure of highland barely noodles during processing was closely related to the addition amount of egg white protein, and the cooking, textural, and chemical interactions of highland barely noodles during processing changed considerably when more than 3% egg white protein was added.
Collapse
Affiliation(s)
- Xiangli Ding
- School of Tourism and Culinary Science, Yangzhou University & Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Huayang Xilu 196, Yangzhou, Jiangsu 225127, PR China; Wuxi Awesomen Biotechnology Co., LTD, Yanyu Lu 506, Wuxi, Jiangsu 214122, PR China
| | - Zhen-Yang Quan
- School of Tourism and Culinary Science, Yangzhou University & Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Huayang Xilu 196, Yangzhou, Jiangsu 225127, PR China
| | - Wen-Ping Chang
- School of Tourism and Culinary Science, Yangzhou University & Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Huayang Xilu 196, Yangzhou, Jiangsu 225127, PR China
| | - Lun Li
- Wuxi Awesomen Biotechnology Co., LTD, Yanyu Lu 506, Wuxi, Jiangsu 214122, PR China
| | - Jian-Ya Qian
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, PR China.
| |
Collapse
|
4
|
Islam RU, Ashfaq A, Anjum Z, Khursheed N, Junaid PM, Manzoor A. Effect on functional properties of gluten-free pasta enriched with cereal brans. DEVELOPMENT OF GLUTEN-FREE PASTA 2024:207-226. [DOI: 10.1016/b978-0-443-13238-4.00004-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
Lux (née Bantleon) T, Spillmann F, Reimold F, Erdös A, Lochny A, Flöter E. Physical quality of gluten-free doughs and fresh pasta made of amaranth. Food Sci Nutr 2023; 11:3213-3223. [PMID: 37324914 PMCID: PMC10261804 DOI: 10.1002/fsn3.3301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/15/2023] [Accepted: 02/24/2023] [Indexed: 03/17/2023] Open
Abstract
Pasta is one of the most consumed foods in the world. Therefore, the development and investigation of the quality parameters of fresh gluten-free pasta made from amaranth was the subject of this study. For this purpose, different doughs (amaranth flour: water 1:2, 1:4, 1:6, 1:8, 1:10) were heat-treated and sodium alginate (1.0 and 1.5%) was added. The pasta was produced by extrusion into a 0.1 M calcium L-lactate pentahydrate-containing bath. Both the dough and the pasta were examined. The doughs for its viscosity properties, water content, and color and the pasta for its firmness, color, water content, water absorption, cooking loss, and swelling index. The pasta was cooked for 5, 10, and 15 min for the cooking quality study. A higher alginate content of 1.5% and a higher proportion of amaranth flour resulted in a significant difference in color, water content, and shear-dependent viscosity of the dough (p < .001). It was also found that both doughs with amaranth flour-water content of 1:2 and 1:10 had significant effects on processing properties and pasta quality, especially on firmness, swelling index, and cooking loss. For the doughs with a 1:2 ratio, the high flour content resulted in very soft pasta, and for the doughs with a 1:10 ratio, the high-water content resulted in very firm pasta with a smooth, watery surface. Overall, cooking loss, swelling index, and water absorption were low for the pasta with 1.5% alginate. Even with cooking times of 15 min, the pasta retained its shape.
Collapse
Affiliation(s)
- Tanja Lux (née Bantleon)
- Technische Universität Berlin, Institute for Food Technology and Food ChemistryDepartment of Food Processing TechnologyBerlinGermany
- Institute for Agricultural and Urban Ecological Projects (IASP) affiliated to Humboldt Universität BerlinBerlinGermany
| | - Frauke Spillmann
- University of Applied Sciences Bremerhaven, Food Technology of Animal ProductsBremerhavenGermany
| | - Frederike Reimold
- University of Applied Sciences Bremerhaven, Food Technology of Animal ProductsBremerhavenGermany
| | - Adam Erdös
- Institute for Agricultural and Urban Ecological Projects (IASP) affiliated to Humboldt Universität BerlinBerlinGermany
| | - Annekathrin Lochny
- Institute for Agricultural and Urban Ecological Projects (IASP) affiliated to Humboldt Universität BerlinBerlinGermany
| | - Eckhard Flöter
- Technische Universität Berlin, Institute for Food Technology and Food ChemistryDepartment of Food Processing TechnologyBerlinGermany
| |
Collapse
|
6
|
Sharma N, Sahu JK, Bansal V, Esua OJ, Rana S, Bhardwaj A, Punia Bangar S, Adedeji AA. Trends in millet and pseudomillet proteins - Characterization, processing and food applications. Food Res Int 2023; 164:112310. [PMID: 36737904 DOI: 10.1016/j.foodres.2022.112310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
Millets are small-seeded crops which have been well adopted globally owing to their high concentration of macro and micronutrients such as protein, dietary fibre, essential fatty acids, minerals and vitamins. Considering their climate resilience and potential role in nutritional and health security, the year 2023 has been declared as 'International Year of Millets' by the United Nations. Cereals being the major nutrient vehicle for a majority population, and proteins being the second most abundant nutrient in millets, these grains can be a suitable alternative for plant-based proteins. Therefore, this review was written with an aim to succinctly provide an overview of the available literature take on the characterization, processing and applications of millet-based proteins. This information would play an important role in realizing the research gap restricting the utilization of complete potential of millet proteins. This can be further used by researchers and food industries for understanding the scope of millet proteins as an ingredient for novel food product development.
Collapse
Affiliation(s)
- Nitya Sharma
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110 016, India
| | - Jatindra K Sahu
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110 016, India.
| | - Vasudha Bansal
- Department of Foods and Nutrition, Government Home Science College, Chandigarh 160 010, India
| | - Okon Johnson Esua
- Department of Agricultural and Food Engineering, University of Uyo, Uyo 520101, Nigeria; School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Sudha Rana
- Department of Food Science and Technology, Punjab Agriculture University, Ludhiana, Punjab 141004, India
| | - Aastha Bhardwaj
- Department of Food Technology, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, 29631, USA
| | - Akinbode A Adedeji
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
7
|
An D, Li H, Li D, Zhang D, Huang Y, Obadi M, Xu B. The relation between wheat starch properties and noodle springiness: From the view of microstructure quantitative analysis of gluten-based network. Food Chem 2022; 393:133396. [DOI: 10.1016/j.foodchem.2022.133396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/03/2022] [Accepted: 06/01/2022] [Indexed: 11/04/2022]
|
8
|
Xu B, Wang X, Zheng Y, Shi P, Zhang Y, Liu Y, Long N. Millet bran globulin hydrolysate derived tetrapeptide-ferrous chelate: Preparation, structural characterization, security prediction in silico, and stability against different food processing conditions. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Garcia-Valle DE, Bello-Pérez LA, Agama-Acevedo E, Tovar J, Aguirre-Cruz A, Alvarez-Ramirez J. Effect of the preparation method on structural and in vitro digestibility properties of type II resistant starch-enriched wheat semolina pasta. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Zheng Y, Xu B, Shi P, Tian H, Li Y, Wang X, Wu S, Liang P. The influences of acetylation, hydroxypropylation, enzymatic hydrolysis and crosslinking on improved adsorption capacities and in vitro hypoglycemic properties of millet bran dietary fibre. Food Chem 2022; 368:130883. [PMID: 34438179 DOI: 10.1016/j.foodchem.2021.130883] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/09/2021] [Accepted: 08/15/2021] [Indexed: 01/03/2023]
Abstract
The effects of acetylation, hydroxypropylation, cellulase hydrolysis and crosslinking on adsorption capacities and in vitro hypoglycemic activities of millet bran dietary fibre (MBDF) were studied. The results demonstrated that both acetylation and hydroxypropylation improved water swelling ability of MBDF, and adsorption capacities of cholesterol, cholate and copper ion on MBDF. Acetylation and hydroxypropylation also enhanced α-glucosidase and α-amylase inhibition activities, glucose-binding ability and glucose diffusion retardation index (GDRI) of MBDF. Acetylated MBDF showed the highest cholate (77.31 mg/g) and cholesterol (13.97 mg/g) adsorption capacities. The crosslinking improved adsorption of cholate, cholesterol, copper ion (25.64 mg/g) and nitrite ion (181.59 μg/g) on MBDF; but reduced α-amylase inhibition activity (p < 0.05). Moreover, cellulase hydrolyzed MBDF exhibited the highest GDRI (39.60%) and α-amylase inhibition activity (34.53%), but the lowest oil and cholate adsorption capacities. The results suggest that the modified MBDFs can be used as an ingredient of hypoglycemic foods.
Collapse
Affiliation(s)
- Yajun Zheng
- College of Food Science, Shanxi Normal University, Linfen 041004, China.
| | - Bufan Xu
- College of Food Science, Shanxi Normal University, Linfen 041004, China
| | - Panqi Shi
- College of Food Science, Shanxi Normal University, Linfen 041004, China
| | - Hailong Tian
- College of Food Science, Shanxi Normal University, Linfen 041004, China
| | - Yan Li
- College of Food Science, Shanxi Normal University, Linfen 041004, China
| | - Xueying Wang
- College of Food Science, Shanxi Normal University, Linfen 041004, China
| | - Song Wu
- College of Food Science, Shanxi Normal University, Linfen 041004, China
| | - Pengfei Liang
- College of Food Science, Shanxi Normal University, Linfen 041004, China
| |
Collapse
|
11
|
Development of a New Pasta Product by the Incorporation of Chestnut Flour and Bee Pollen. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11146617] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This work aimed at developing fortified pastas incorporating chestnut flour (25–55%) and powdered pollen (5–20%), either separately or in combination, as well as the characterization of the products obtained. To this, a physical characterization was carried out (analyzing texture and color), complemented with chemical analyses to determine the nutritional composition. Results showed that adding chestnut flour over 40% to wheat-flour pasta shortened optimum cooking time and lowered cooking yield, and the addition to pasta prepared with wheat flour and eggs maintained approximately constant the cooking yield. Additionally, the incorporation of pollen powder (up to 20%) in pasta prepared with wheat flour and water or fresh egg shortened the cooking time and cooking yield, in both fresh and dried pasta. The most suitable percentages of the new ingredients were 50% for chestnut and 10% for pollen. Comparing with the control pasta recipe (wheat flour and egg), the addition of chestnut flour (50%) or pollen powder (10%) increased stickiness, adhesiveness and the darkening of the final product (fresh or dried) but maintained the firmness of the pasta. The cooking of fresh or dried pasta enriched with both ingredients turned the pasta clearer and slightly stickier. On the other hand, the addition of chestnut flour and pollen powder in pasta formulation delivered a nutritionally balanced product with high fiber, vitamins and minerals. Overall, chestnut flour and powdered pollen represent promising ingredients for the development of functional fresh and dried pasta formulations.
Collapse
|
12
|
Zheng Y, Shi P, Li Y, Zhuang Y, Linzhang Y, Liu L, Wang W. A novel ACE-inhibitory hexapeptide from camellia glutelin-2 hydrolysates: Identification, characterization and stability profiles under different food processing conditions. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111682] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Garcia-Valle DE, Bello-Pérez LA, Agama-Acevedo E, Alvarez-Ramirez J. Structural characteristics and in vitro starch digestibility of pasta made with durum wheat semolina and chickpea flour. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111347] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Garcia-Valle DE, Bello-Pérez LA, Agama-Acevedo E, Alvarez-Ramirez J. Effects of mixing, sheeting, and cooking on the starch, protein, and water structures of durum wheat semolina and chickpea flour pasta. Food Chem 2021; 360:129993. [PMID: 33984560 DOI: 10.1016/j.foodchem.2021.129993] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/14/2021] [Accepted: 04/28/2021] [Indexed: 11/18/2022]
Abstract
The influence of the pasta preparation stages on starch, proteins, and water structures of semolina and chickpea pasta was studied. The hydrated starch structures (995/1022 FTIR ratio) increased in semolina and reduced in chickpea pasta. The processing stages in semolina pasta led to a significant increase of β-sheet structures (~50% to ~68%). The β-sheet structures content in chickpea pasta was lower (~52%), and was most affected by sheeting and cooking. The water structure was assessed by the analysis of the OH fingerprint FTIR region (3700-2800 cm-1) and showing that water molecules (~90%) are strongly and moderately bound. The chickpea pasta displayed the highest content of strongly bonded water (about 55%) in contrast to the semolina pasta (~48%). A principal component analysis showed that the molecular organization of semolina pasta was mostly affected by dough formation and cooking; the molecular organization of chickpea pasta was determined by the cooking stage.
Collapse
Affiliation(s)
| | | | | | - Jose Alvarez-Ramirez
- Departamento de Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana-Iztapalapa, Apartado Postal 55-534, Iztapalapa 09340, Mexico
| |
Collapse
|
15
|
Effect of Using Quinoa Flour ( Chenopodium quinoa Willd.) on the Physicochemical Characteristics of an Extruded Pasta. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2021:8813354. [PMID: 33928144 PMCID: PMC8053053 DOI: 10.1155/2021/8813354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 02/11/2021] [Accepted: 03/18/2021] [Indexed: 11/18/2022]
Abstract
Quinoa is a promising raw material for the production of foods with high nutritional quality. This study used quinoa flour (Chenopodium quinoa Willd.), egg white, and yucca starch to obtain an extruded pasta. By means of a proximate analysis, the nutritional content of the raw materials, uncooked and cooked pasta, was evaluated. The effects of quinoa flour on the protein composition, physical properties (color, texture, loss through cooking, water absorption, and swelling indices), moisture, DSC, and SEM were evaluated through its comparison with a commercial pasta (control) formulated with quinoa (PCQ). The values obtained during the study were subjected to a simple analysis of variance (ANOVA) to determine the interaction between the factors and the variables by using a statistical program. Incorporation of quinoa flour in the formulations (F1, F2, and F3) increased notoriously the protein content (p < 0.05) and decreased the carbohydrate content, and no significant differences were observed for lipids and ash. The energy value increased due to the essential amino acids present in quinoa. The values obtained for L∗, a∗, and b∗ increased with the increase in quinoa flour, and significant differences for b∗ (p < 0.05) were attributed to the characteristic color of quinoa, drying time, and moisture content. The lack of molecular interaction between starch and protein due to the conditions used in the extrusion process influenced the decrease in rupture strength, increase in the water absorption and swelling indices, and losses due to cooking (8 g/100 g) within an acceptable range. Consequently, affected by the enthalpy of fusion, the starch granules of the quinoa flour did not gelatinize, as observed in the SEM micrographs. The results obtained and the parameters used in the extrusion process influenced the characteristics of the pasta, indicating that quinoa flour is a promising raw material for obtaining gluten-free products.
Collapse
|
16
|
Sharma R, Sharma S, Dar B, Singh B. Millets as potential nutri‐cereals: a review of nutrient composition, phytochemical profile and techno‐functionality. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15044] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Rajan Sharma
- Department of Food Science & Technology Punjab Agricultural University Ludhiana141001India
| | - Savita Sharma
- Department of Food Science & Technology Punjab Agricultural University Ludhiana141001India
| | - B.N. Dar
- Department of Food Technology Islamic University of Science & Technology 1‐University Avenue Awantipora Srinagar Kashmir192122India
| | - Baljit Singh
- Department of Food Science & Technology Punjab Agricultural University Ludhiana141001India
| |
Collapse
|
17
|
Marti A, Tyl C. Capitalizing on a double crop: Recent advances in proso millet's transition to a food crop. Compr Rev Food Sci Food Saf 2020; 20:819-839. [PMID: 33443801 DOI: 10.1111/1541-4337.12681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/07/2020] [Accepted: 11/06/2020] [Indexed: 12/19/2022]
Abstract
Across the globe, strategies to adapt food production to a changing climate as well as to unforeseen events (such as a pandemic) are needed, for example, if farmers miss planting times due to abnormal weather patterns or harvests are lost. Such food security considerations represent reasons for why proso millet deserves a more prominent place at the table. It has one of the shortest growing seasons and water requirements among cereals and is already grown in rotation with other crops, for example, in the American Midwest. Yet, most consumers in the Western world are unfamiliar with it, which limits its market potential. Introducing proso millet to consumers requires development of products with acceptable textural and sensory attributes as well as convincing selling points. These can be found in its nutritional profile, as it is a gluten-free "ancient" grain and millet-based products frequently have low glycemic indices. This review presents a synthesis of recent studies that utilized processing strategies to advance proso millet functionality. Results are put into the context of the most frequently addressed compositional and functional attributes, organized in clusters. Diversity across varieties in amylose to amylopectin ratios presents an opportunity to utilize proso millet for foods with specific pasting requirements, as in bread versus pasta. Hydrothermal or pressure treatments may further adapt its functionality for baked goods. Bitterness remains an unsolved issue, even when decorticated material is used. In addition, heating dramatically lowers in vitro protein digestibility, whereas starch digestibility appears to be matrix dependent (more than raw material dependent).
Collapse
Affiliation(s)
- Alessandra Marti
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Catrin Tyl
- Department of Food Science and Technology, University of Georgia, Athens, Georgia
| |
Collapse
|