1
|
Ke JW, Chen Y, Lei EZ, Xiao MZ, Ni W, Huang F, Li HM, Jiang HL, Ruan LG, Liu JZ. Investigation on improving immunologic reconstitution insufficiency using DiwuYanggan capsules in AIDS patients. Front Pharmacol 2024; 15:1485719. [PMID: 39568580 PMCID: PMC11576195 DOI: 10.3389/fphar.2024.1485719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/09/2024] [Indexed: 11/22/2024] Open
Abstract
Background This study aimed to explore the mechanism of action of DiWuYangGan (DWYG) capsule in improving Immunological non-responder (INR) by analyzing the active ingredients of DWYG. Methods The study employed a randomized, controlled, double-blind, single-simulation method. Patients were randomly divided into control and trial groups and treated with the primal highly effective antiretroviral therapy. To demonstrate the effect of DWYG on INR, patients in the control group were administered simulated DWYG, whereas patients in the trial group were administered DWYG capsules (ChiCTR1900024673). The chemical composition of DWYG was analyzed using ultra-performance liquid chromatography-high-resolution mass spectrometry. Potential targets of DWYG in the treatment of INR were identified and predicted using network pharmacology and molecular docking. The molecular mechanisms underlying the effects of DWYG were validated using a peripheral blood monocyte model. Results The CD4:CD8 ratio in the trial group was significantly higher than that in the control group (p < 0.01). A total of 210 DWYG compounds were identified and network pharmacology revealed 182 potential therapeutic targets for DWYG and INR. The results of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses showed that the toll-like receptor signaling pathway is one of the key pathways. This study demonstrated that DWYG reduced the expression level of TLR4 and the levels of IL-2, IL-10, and TNF-α, which are important cytokines involved in the immune response. Conclusion The efficacy of DWYG in the treatment of INR confirmed the potential practical components of DWYG. Moreover, the results of network pharmacology and experimental validation showed that DWYG could restore the immune function of acquired immune deficiency syndrome patients by inhibiting the expression of TLR4 and related signaling pathways and the overactivation of immune function. Clinical Trial Registration https://www.chictr.org.cn/index.html, identifier ChiCTR1900024673.
Collapse
Affiliation(s)
- Jing Wen Ke
- Hubei Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
| | - Yao Chen
- Hubei Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
| | - En Ze Lei
- Hubei University of Chinese Medicine, Wuhan, China
| | - Ming Zhong Xiao
- Hubei Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
- Hubei Key Laboratory of Liver and Kidney Research and Application of Traditional Chinese Medicine, Wuhan, China
| | - Wei Ni
- Hubei Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
- Hubei Key Laboratory of Liver and Kidney Research and Application of Traditional Chinese Medicine, Wuhan, China
| | - Fang Huang
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China
| | - Han Min Li
- Hubei Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
- Hubei Key Laboratory of Liver and Kidney Research and Application of Traditional Chinese Medicine, Wuhan, China
| | - Hong Lin Jiang
- Hubei provincial center for disease control and prevention, Wuhan, China
| | | | - Jian Zhong Liu
- Hubei Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
- Hubei University of Chinese Medicine, Wuhan, China
- Hubei Key Laboratory of Liver and Kidney Research and Application of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
2
|
Sun Y, Shen H, Fan C, Wang C, Fan Y, Hao L, Tian Q, Hou H. Typical structural characteristics and hepatoprotective effects of novel high Fischer ratio oligopeptides from Antarctic krill on acute alcoholic liver injury. Food Funct 2024; 15:9298-9314. [PMID: 39163024 DOI: 10.1039/d4fo02609h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
High Fischer ratio oligopeptides derived from Antarctic krill (HFOPs-AK) were screened, and their hepatoprotective effects and potential mechanisms were investigated. Herein, HFOPs-AK, with a Fischer ratio of 29 g/g (40.22 mol/mol) (MW < 1000 Da), were prepared via two-step enzymatic hydrolysis using chymotrypsin and flavourzyme and aromatic amino acid removal. Seventy-eight characteristic peptides were identified from HFOPs-AK through UHPLC-Q/TOF, with peptides containing Leu, Val, or Ile accounting for 79%. High hepatoprotective peptides were purified using GFC and RP-HPLC and identified as SDELGW and LLGWDDM. Furthermore, a murine model of acute liver injury induced by alcohol was successfully established. It was demonstrated that the oral administration of HFOPs-AK (800 mg per kg bw per d) remarkably increased the contents of ADH and ALDH compared with the model group, reaching 3.40 and 5.10 U mg-1 prot, respectively. Further, it was revealed that HFOPs-AK could effectively mitigate hepatic oxidative stress by increasing the levels of GSH-Px (p < 0.01) and decreasing the level of MDA (p < 0.05). Additionally, HFOPs-AK (800 mg per kg bw per d) attenuated liver inflammation by down-regulating the mRNA levels of TNF-α, IL-1β, and IL-6 by 40.45%, 38.48%, and 35.83%, respectively. Therefore, HFOPs-AK may have the potential as a new nutritional supplement for the treatment of alcoholic liver injury.
Collapse
Affiliation(s)
- Yan Sun
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province, 266404, P.R. China.
| | - Huiru Shen
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province, 266404, P.R. China.
| | - Chaozhong Fan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province, 266404, P.R. China.
| | - Cili Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province, 266404, P.R. China.
| | - Yan Fan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province, 266404, P.R. China.
| | - Li Hao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province, 266404, P.R. China.
| | - Qiaoji Tian
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province, 266404, P.R. China.
| | - Hu Hou
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province, 266404, P.R. China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, P.R. China
- Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao, Shandong Province, 266000, P.R. China
- Sanya Oceanographic Institution, Ocean University of China, Sanya, Hainan Province, 572024, P.R. China
| |
Collapse
|
3
|
Shi Q, He J, Chen G, Xu J, Zeng Z, Zhao X, Zhao B, Gao X, Ye Z, Xiao M, Li H. The chemical composition of Diwu YangGan capsule and its potential inhibitory roles on hepatocellular carcinoma by microarray-based transcriptomics. J Tradit Complement Med 2024; 14:381-390. [PMID: 39035694 PMCID: PMC11259662 DOI: 10.1016/j.jtcme.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/28/2023] [Accepted: 12/24/2023] [Indexed: 07/23/2024] Open
Abstract
The Traditional Chinese Medicine compound preparation known as Diwu Yanggan capsule (DWYG) can effectively hinder the onset and progression of hepatocellular carcinoma (HCC), which is recognized worldwide as a significant contributor to fatalities associated with cancer. Nevertheless, the precise mechanisms implicated have remained ambiguous. In present study, the model of HCC was set up by the 2-acetylaminofluorene (2-AAF)/partial hepatectomy (PH) in rats. To confirm the differentially expressed genes (DEGs) identified in the microarray analysis, real-time quantitative reverse transcription PCR (qRT-PCR) was conducted. In the meantime, the liquid chromatography-quadrupole time of flight mass spectrometry (LC-QTOF-MS/MS) was employed to characterize the component profile of DWYG. Consequently, the DWYG treatment exhibited the ability to reverse 51 variation genes induced by 2-AAF/PH. Additionally, there was an overlap of 54 variation genes between the normal and model groups. Upon conducting RT-qPCR analysis, it was observed that the expression levels of all genes were increased by 2-AAF/PH and subsequently reversed after DWYG treatment. Notably, the fold change of expression levels for all genes was below 0.5, with 3 genes falling below 0.25. Moreover, an investigation was conducted to determine the signaling pathway that was activated/inhibited in the HCC group and subsequently reversed in the DWYG group. Moreover, the component profile of DWYG encompassed a comprehensive compilation of 206 compounds that were identified or characterized. The findings of this study elucidated the potential alleviative mechanisms of DWYG in the context of HCC, thereby holding significant implications for its future clinical utilization and widespread adoption.
Collapse
Affiliation(s)
- Qingxin Shi
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Jiangcheng He
- Wuhan Integrated Traditional Chinese and Western Medicine Orthopedic Hospital, Affiliated Hospital of Wuhan Sports University, Wuhan, 430079, China
| | - Guangya Chen
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Jinlin Xu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zhaoxiang Zeng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xueyan Zhao
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Binbin Zhao
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xiang Gao
- Institute of Liver Diseases, Hubei Key Laboratory of the Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430074, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, China
| | - Zhihua Ye
- Institute of Liver Diseases, Hubei Key Laboratory of the Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430074, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, China
| | - Mingzhong Xiao
- Institute of Liver Diseases, Hubei Key Laboratory of the Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430074, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, China
| | - Hanmin Li
- Institute of Liver Diseases, Hubei Key Laboratory of the Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430074, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, China
| |
Collapse
|
4
|
Yang M, Sun S, Jia X, Wen X, Tian X, Niu Y, Wei J, Jin Y, Du Y. Study on mechanism of hepatoprotective effect of Chrysanthemum morifolium Ramat. based on metabolomics with network analysis and network pharmacology. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1222:123711. [PMID: 37059010 DOI: 10.1016/j.jchromb.2023.123711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/21/2023] [Accepted: 04/03/2023] [Indexed: 04/16/2023]
Abstract
Hangju (HJ), the dried flower heads of Chrysanthemum morifolium Ramat., has a significant hepatoprotective effect. However, its underlying protection mechanism against acute liver injury (ALI) has been unclear. An integrated strategy based on metabolomics with network analysis and network pharmacology was developed to explore the potential molecular mechanism of HJ on ALI protection. Firstly, differential endogenous metabolites were screened and identified by metabolomics approach and metabolic pathway analysis was performed by MetaboAnalyst. Secondly, marker metabolites were used to construct metabolite-response-enzyme-gene networks and discover hub metabolites and potential gene targets in network analysis. Thirdly, hub genes through the protein-protein interaction (PPI) network were acquired by the aid of network pharmacology. Finally, the gene targets were taken to intersect with the relevant active ingredients for validation by molecular docking. In total, 48 flavonoids were identified in HJ, which were associated with 8 potential therapeutic targets in network pharmacological analysis. Biochemistry and histopathology analysis demonstrated that HJ exerted hepatoprotective effects. 28 biomarkers were successfully identified as possible biomarkers for the prevention of ALI. The sphingolipid metabolic pathway and the glycerophospholipid metabolic pathway was considered a crucial signaling pathway by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. In addition, phosphatidylcholine and sphingomyelin were considered as hub metabolites. Twelve enzymes and 38 genes were considered as potential targets in the network analysis. Based on the combined analysis above, HJ was shown to modulate 2 key upstream targets, including PLA2G2A and PLA2G4A. Molecular docking showed that active compounds of HJ had high binding affinity with these key targets. In conclusion, the flavonoid components of HJ can inhibit PLA2 and regulate glycerophospholipid and sphingolipid metabolism pathway to delay the pathological process of ALI, which may be a potential mechanism of HJ against ALI.
Collapse
Affiliation(s)
- Mengxin Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Shilin Sun
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Xinming Jia
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Xuqing Wen
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China
| | - Xi Tian
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Yukun Niu
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Jinhuan Wei
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Yiran Jin
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, PR China.
| | - Yingfeng Du
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China.
| |
Collapse
|
5
|
Kuang Y, Ma X, Shen W, Rao Q, Yang S. Discovery of 3CLpro inhibitor of SARS-CoV-2 main protease. Future Sci OA 2023; 9:FSO853. [PMID: 37090493 PMCID: PMC10116374 DOI: 10.2144/fsoa-2023-0020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
Coronavirus main protease (3CLpro), a special cysteine protease in coronavirus family, is highly desirable in the life cycle of coronavirus. Here, molecular docking, ADMET pharmacokinetic profiles and molecular dynamics (MD) simulation were performed to develop specific 3CLpro inhibitor. The results showed that the 137 compounds originated from Chinese herbal have good binding affinity to 3CLpro. Among these, Cleomiscosin C, (+)-Norchelidonine, Protopine, Turkiyenine, Isochelidonine and Mallotucin A possessed prominent drug-likeness properties. Cleomiscosin C and Turkiyenine exhibited excellent pharmacokinetic profiles. Furthermore, the complex of Cleomiscosin C with SARS-CoV-2 main protease presented high stability. The findings in this work indicated that Cleomiscosin C is highly promising as a potential 3CLpro inhibitor, thus facilitating the development of effective drugs for COVID-19.
Collapse
Affiliation(s)
- Yi Kuang
- College of Chemical & Materials Engineering, Zhejiang A&F University, Lin'an, Zhejiang, 311300, PR China
| | - Xiaodong Ma
- College of Chemical & Materials Engineering, Zhejiang A&F University, Lin'an, Zhejiang, 311300, PR China
| | - Wenjing Shen
- College of Chemical & Materials Engineering, Zhejiang A&F University, Lin'an, Zhejiang, 311300, PR China
| | - Qingqing Rao
- College of Chemical & Materials Engineering, Zhejiang A&F University, Lin'an, Zhejiang, 311300, PR China
| | - Shengxiang Yang
- College of Chemical & Materials Engineering, Zhejiang A&F University, Lin'an, Zhejiang, 311300, PR China
| |
Collapse
|
6
|
Gao Y, Zong Z, Xia W, Fang X, Liu R, Wu W, Mu H, Han Y, Xiao S, Gao H, Chen H. Hepatoprotective effect of water bamboo shoot (
Zizania latifolia
) extracts against acute alcoholic liver injury in a mice model and screening of bioactive phytochemicals. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
7
|
Xu W, Du X, Li J, Zhang Z, Ma X, Luo D, Xiao M, Sun Q. SiNiSan alleviates liver injury by promoting hepatic stem cell differentiation via Wnt/β-catenin signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:153969. [PMID: 35183930 DOI: 10.1016/j.phymed.2022.153969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/11/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND SiNiSan, a Traditional Chinese Medicine containing Radix Bupleuri, Radix Paeoniae Alba, Fructus Aurantii Immaturus, and Radix Glycyrrhizae, has been shown to be clinically effective in treating liver damage, its underlying molecular mechanisms however remains unclear. PURPOSE The aim of the current study was to understand the molecular mechanisms of SiNiSan in the treatment of liver damage utilizing mice and cell culture models. METHODS Here, mice were gavaged with 0.2% CCl4 to obtain acute liver injury model and with alcohol to obtain chronic liver injury model. H&E staining was performed to detect liver histomorphology. HPLC-MS was performed to analyze the composition of SiNiSan decoction and SiNiSan-medicated serum (SMS). In addition, western blots were done to analyze the representative protein expression in Wnt/β-catenin signaling. Immunofluorescence staining was done to analyze the protein levels in WB-F344 cells. Finally, in an attempt to measure the influence of SiNiSan on liver regeneration in rats, we constructed a rats partial hepatectomy models. RESULTS We demonstrated that SiNiSan treatment mitigated liver damage in mice, as evidenced by the decrease in serum AST and ALT levels, as well as improved liver tissue morphology. HPLC-MS results showed that SMS contained a variety of components from the SiNiSan decoction. Next, our results showed that SMS reduced the expression of α-fetoprotein (AFP) and enhanced the expression of albumin (ALB) and cytokeratin 19 (CK19) in WB-F344 cells. Further, SMS treatment induced the accumulation of β-catenin. After 14 days of SMS treatment, β-catenin protein underwent nuclear translocation and bound to the LEF1 receptor in the nucleus, which regulated c-Myc and Cyclin D1 factors to activate Wnt/β-catenin signaling and promoted differentiation of WB-F344 cells. In addition, we demonstrated that SiNiSan increased liver regeneration in rat hepatectomy. CONCLUSION Collectively, the current study revealed that SiNiSan alleviated the acute liver injury induced by CCl4 as well as the chronic liver damage triggered by alcohol and sucrose in vitro. Concurrently, SMS treatment induced hepatic stem cell differentiation by activating Wnt/β-catenin signaling in vivo. Further study showed that SiNiSan promoted the regeneration of rats liver. The current study provides a theoretical basis for the clinical treatment of liver-related diseases with SiNiSan.
Collapse
Affiliation(s)
- Weidong Xu
- Department of Traditional Chinese Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212013, China; School of Pharmacy, Jiangsu University, Zhenjiang 212013, China; Hepatic Disease Institute, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, China
| | - Xia Du
- The Fourth People's Hospital of Zhenjiang, Zhenjiang 212013, China
| | - Jiayao Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Zhiyi Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Xiaoyuan Ma
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Dan Luo
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Mingzhong Xiao
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan 430074, China.
| | - Quancai Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
8
|
Zhang Y, Xu S, Liu M, Xu X, Han T, Jia Z, Li X, Lin R. Pharmacokinetic/Pharmacodynamic Study of Salt-Processed Product of Cuscutae Semen with Hepatoprotective Effects. Curr Drug Metab 2022; 23:964-972. [PMID: 36411565 DOI: 10.2174/1389200224666221118112009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/04/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Salt-processed product of cuscutae semen (SCS), which is documented in Chinese pharmacopoeia (2020 edition), is one of the processed products of cuscustae semen. SCS possesses hepatoprotective effects. However, Pharmacokinetic/Pharmacodynamic (PK-PD) study of SCS with intervening acute liver injury (ALI) has not been reported yet. Effective constituents are still not well addressed. OBJECTIVE This study was performed to study PK-PD properties with the purpose of linking SCS hepatoprotective effects to key therapeutic outlines to guide therapeutic use in clinical settings. METHODS Rats were orally administered SCS after the acute liver injury model was established. Plasma biochemical analysis, antioxidative analysis, and liver histopathology were measured to evaluate the hepatoprotective effects of SCS. Blood samples were collected at different time points (0 h, 0.083 h, 0.25 h, 0.5 h, 1 h, 1.5 h, 2 h, 3 h, 4 h, 8 h, 12 h, 24 h) for PK/PD study after SCS administration. Contents of chlorogenic acid, hyperoside and astragalin were estimated by UHPLC-ESI-MS. The relationship between concentrations of chlorogenic acid, hyperoside, and astragalin and hepatoprotective effects was assessed by PK-PD modeling. RESULTS The results showed that SCS ameliorated liver repair and decreased the serum levels of alanine aminotransferase (ALT), aspartate transaminase (AST) markedly. Hepatic oxidative stress was inhibited by SCS, as evidenced by a decrease in malondialdehyde (MDA) and an increase in glutathione (GSH) and superoxide dismutase (SOD) in the liver. PK-PD correlation analysis indicated that concentrations of chlorogenic acid, hyperoside, and astragalin were negatively correlated with level of AST and ALT. CONCLUSION The encouraging finding indicates that SCS has beneficial effects on CCl4-induced liver damage. Chlorogenic acid, hyperoside, and astragalin are three effective constituents to exert hepatoprotective effects while astragalin may have maximum pharmacological activity. PK-PD study reveals the positive relationship between drug concentration and action intensity of SCS against liver injury. This research provides a robust foundation for future studies.
Collapse
Affiliation(s)
- Ying Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shuya Xu
- College of Pharmacy Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Mengnan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xinfang Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ting Han
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhe Jia
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiangri Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ruichao Lin
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
9
|
Xue L, Li C, Ge G, Zhang S, Tian L, Wang Y, Zhang H, Ma Z, Lu Z. Jia-Wei-Yu-Ping-Feng-San Attenuates Group 2 Innate Lymphoid Cell-Mediated Airway Inflammation in Allergic Asthma. Front Pharmacol 2021; 12:703724. [PMID: 34305612 PMCID: PMC8299004 DOI: 10.3389/fphar.2021.703724] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/24/2021] [Indexed: 01/21/2023] Open
Abstract
The incidence of asthma has increased in recent decades. Although corticosteroids and bronchodilators are used in clinical practice, the control of asthma remains a challenge. Allergic asthma is characterized airway inflammation mediated by type 2 immune response. Group 2 innate lymphoid cells (ILC2s) are an important source of type 2 cytokines IL-5 and IL-13, which contribute to the progress of asthma. Jia-Wei-Yu-Ping-Feng-San (JWYPFS), a traditional Chinese medicine, has been widely used to treat asthma in China. In this study we investigated the mechanisms of JWYPFS in the treatment of asthma, especially the effect on ILC2s important in airway inflammation. Female C57BL/6 mice were sensitized and challenged with OVA to establish a model of allergic asthma. Airway hyperresponsiveness was examined by direct airway resistance analysis. Inflammatory cell counts were determined in bronchoalveolar lavage fluid (BALF). Inflammatory cell infiltration and mucus hypersecretion in lung tissue sections was observed by HE and PAS staining, respectively. The numbers and proportions of ILC2s as well as the ILC2s-related transcription factors GATA3, IRF4, and type 2 cytokines were measured in lung tissue samples. Additionally, ILC2s were collected from mouse lung; ILC2s-related cytokines and GATA3 and IRF4 were evaluated after IL-33-induced activation of ILC2s in vitro. Elevated inflammatory cells, mucus secretion, airway hyperresponsiveness and type 2 cytokines in the OVA-treated asthma group indicated that an allergic asthma model had been established. JWYPFS treatment attenuated airway resistance and reduced inflammatory cells including eosinophils, and inhibited mucus production and type 2 cytokines in these asthmatic mice. Moreover, JWYPFS treatment dramatically decreased the numbers and proportions of ILC2s and the mRNA levels of GATA3 and IRF4. In an in vitro experiment JWYPFS significantly suppressed GATA3, IRF4 and type 2 cytokine expression, including IL-5 and IL-13 in IL-33-stimulated ILC2s. JWYPFS alleviates ILC2s-mediated airway inflammation, suggesting that JWYPFS might be an effective agent to treat allergic asthma.
Collapse
Affiliation(s)
- Lingna Xue
- Institute of Respiratory Disease, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cui Li
- Institute of Respiratory Disease, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangbo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shaoyan Zhang
- Institute of Respiratory Disease, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liming Tian
- Institute of Respiratory Disease, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Wang
- Institute of Respiratory Disease, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huiyong Zhang
- Institute of Respiratory Disease, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zifeng Ma
- Institute of Respiratory Disease, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhenhui Lu
- Institute of Respiratory Disease, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
10
|
Garcia-Oliveira P, Barral M, Carpena M, Gullón P, Fraga-Corral M, Otero P, Prieto MA, Simal-Gandara J. Traditional plants from Asteraceae family as potential candidates for functional food industry. Food Funct 2021; 12:2850-2873. [PMID: 33683253 DOI: 10.1039/d0fo03433a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Traditional plants have been used in the treatment of disease and pain due to their beneficial properties such as antioxidant, antiinflammation, analgesic, and antibiotic activities. The Asteraceae family is one of the most common groups of plants used in folk medicine. The species Achillea millefolium, Arnica montana, Bellis perennis, Calendula officinalis, Chamaemelum nobile, Eupatorium cannabinum, Helichrysum stoechas, and Taraxacum officinale have been used in different remedies in Northwest Spain. Besides health benefits, some of them like C. nobile and H. stoechas are already employed in cooking and culinary uses, including cocktails, desserts, and savory dishes. This study aimed to review the current information on nutritive and beneficial properties and bioactive compounds of these plants, which are not mainly used as foods but are possible candidates for this purpose. The report highlights their current uses and suitability for the development of new functional food industrial applications. Phenolic compounds, essential oils, and sesquiterpene lactones are some of the most important compounds, being related to different bioactivities. Hence, they could be interesting for the development of new functional foods.
Collapse
Affiliation(s)
- Paula Garcia-Oliveira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Apigenin-8-C-glucoside (vitexin), a natural phytochemical contained in hawthorn, has been reported to have versatile beneficial bioactivities, such as antioxidation, anticancer property, and adipogenesis inhibition. The present research aimed to determine the influence of vitexin on insulin resistance elicited by HFD in mice and HepG2 cells. Vitexin markedly alleviated body weight gain and improved glucose and insulin intolerance induced by HFD. Vitexin partially normalized blood glucose, cholesterol, TNF-α, and hepatic lipid content. Moreover, vitexin recovered the reduced glucose uptake induced by glucosamine. The present results indicate that vitexin prevents HFD-induced insulin resistance.
Collapse
|