1
|
Wang H, Wang X, Lai K, Yan J. Stimulus-Responsive DNA Hydrogel Biosensors for Food Safety Detection. BIOSENSORS 2023; 13:320. [PMID: 36979532 PMCID: PMC10046603 DOI: 10.3390/bios13030320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Food safety has always been a major global challenge to human health and the effective detection of harmful substances in food can reduce the risk to human health. However, the food industry has been plagued by a lack of effective and sensitive safety monitoring methods due to the tension between the cost and effectiveness of monitoring. DNA-based hydrogels combine the advantages of biocompatibility, programmability, the molecular recognition of DNA molecules, and the hydrophilicity of hydrogels, making them a hotspot in the research field of new nanomaterials. The stimulus response property greatly broadens the function and application range of DNA hydrogel. In recent years, DNA hydrogels based on stimulus-responsive mechanisms have been widely applied in the field of biosensing for the detection of a variety of target substances, including various food contaminants. In this review, we describe the recent advances in the preparation of stimuli-responsive DNA hydrogels, highlighting the progress of its application in food safety detection. Finally, we also discuss the challenges and future application of stimulus-responsive DNA hydrogels.
Collapse
|
2
|
Dai B, Zhou R, Ping J, Ying Y, Xie L. Recent advances in carbon nanotube-based biosensors for biomolecular detection. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Bao H, Yuan M, Xiao C, Liu D, Lai W. Development of a signal-enhanced LFIA based on tyramine-induced AuNPs aggregation for sensitive detection of danofloxacin. Food Chem 2021; 375:131875. [PMID: 34959139 DOI: 10.1016/j.foodchem.2021.131875] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/02/2021] [Accepted: 12/14/2021] [Indexed: 12/16/2022]
Abstract
A signal-enhanced LFIA based on tyramine (TYR)-induced AuNPs aggregation has been developed for the sensitive detection of danofloxacin (DAN). In the model, the hydroxyl radical produced by HRP catalyzing H2O2 can trigger the TYR-AuNPs to aggregate on the T or C line for enhancing the detection signal. The linear range of TYR-AuNPs LFIA was 0.25-5 ng mL-1 with the limit of detection (LOD) of 0.032 ng mL-1, and the LOD was 8-fold lower than that of the traditional AuNPs LFIA (0.26 ng mL-1). The TYR-AuNPs LFIA could be used with the naked eyes to qualitatively detect DAN with a cut-off limit of 2.5 ng mL-1, which was 4-fold lower than that of the traditional AuNPs LFIA (10 ng mL-1). The recoveries of TYR-AuNPs LFIA were 86.04-105.14% and 92.41-110.19%, with the coefficient of variation of 1.71-2.05% and 4.42-5.89% in chicken and pork, respectively.
Collapse
Affiliation(s)
- Huanhuan Bao
- State Key Laboratory of Food Science and Technology, Nanchang University 235, East Nanjing Road, Nanchang 330047, China
| | - Meifang Yuan
- Jiangxi Institute for Food Control, Nanchang 330001, China
| | - Chengui Xiao
- Food Inspection and Quarantine Technology Center of Shenzhen Customs, Shenzhen Academy of Inspection and Quarantine, Shenzhen, Guangdong 518045, China
| | - Daofeng Liu
- Jiangxi Province Centre for Disease Control and Prevention, 555, East Beijing Road, Nanchang 330029, China
| | - Weihua Lai
- State Key Laboratory of Food Science and Technology, Nanchang University 235, East Nanjing Road, Nanchang 330047, China.
| |
Collapse
|
4
|
Shao Y, Zhou H, Wu Q, Xiong Y, Wang J, Ding Y. Recent advances in enzyme-enhanced immunosensors. Biotechnol Adv 2021; 53:107867. [PMID: 34774928 DOI: 10.1016/j.biotechadv.2021.107867] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/31/2021] [Accepted: 11/05/2021] [Indexed: 12/19/2022]
Abstract
Among the products for rapid detection in different fields, enzyme-based immunosensors have received considerable attention. Recently, great efforts have been devoted to enhancing the output signals of enzymes through different strategies that can significantly improve the sensitivity of enzyme-based immunosensors for the need of practical applications. In this manuscript, the significance of enzyme-based signal transduction patterns in immunoassay and the central role of enzymes in achieving precise control of reaction systems are systematically described. In view of the rapid development of this field, we classify these strategies based on the combination of immune recognition and enzyme amplification into three categories, namely enzyme-based enhancement strategies, combination of the catalytic amplification of enzymes with other signal amplification methods, and substrate-based enhancement strategies. The current focus and future direction of enzyme-based immunoassays are also discussed. This article is not exhaustive, but focuses on the latest advances in different signal generation methods based on enzyme-initiated catalytic reactions and their applications in the detection field, which could provide an accessible introduction of enzyme-based immunosensors for the community with a view to further improving its application efficiency.
Collapse
Affiliation(s)
- Yanna Shao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Huan Zhou
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qingping Wu
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou 510432, China
| | - Yu Ding
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
5
|
Peng YP, He YW, Shen YF, Liang AM, Zhang XB, Liu YJ, Lin JH, Wang JP, Li YB, Fu YC. Fluorescence Nanobiosensor for Simultaneous Detection of Multiple Veterinary Drugs in Chicken Samples. JOURNAL OF ANALYSIS AND TESTING 2021. [DOI: 10.1007/s41664-021-00199-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|