1
|
Rong Y, Hassan MM, Wu J, Chen S, Yang W, Li Y, Zhu J, Huang J, Chen Q. Enhanced detection of acrylamide using a versatile solid-state upconversion sensor through spectral and visual analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133369. [PMID: 38278076 DOI: 10.1016/j.jhazmat.2023.133369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/14/2023] [Accepted: 12/23/2023] [Indexed: 01/28/2024]
Abstract
Acrylamide (AM) generally forms in high-temperature processes and has been classified as a potential carcinogen. In this study, we put forward a maneuverable solid-state luminescence sensor using polydimethylsiloxane (PDMS) as the matrix coupled with upconversion nanoparticles as the indicator. The core-shell upconversion nanoparticles emitting cyan light were uniformly encapsulated in PDMS. Then it was further modified with complementary DNA of AM aptamer. The nanocrystalline fluorescein isothiocyanate isomer (FITC), coupled with AM aptamer, was attached to the surface of PDMS. FITC effectively quenched the upconversion luminescence through fluorescence resonance energy transfer (FRET). The introduction of AM resulted in preferentially bound to aptamer caused the separation of the quencher and the donor, and led to luminescence recovery. The developed sensor was applied for both spectral and visual monitoring, demonstrating a detection limit (LOD) of 1.00 nM and 1.07 nM, respectively. Importantly, in the actual foodstuffs detection, there is no obvious difference between the results of this study and the standard method, which indicates the developed method has good accuracy. Therefore, this solid-state sensor has the potential for on-site detection using a smartphone device and an Android application.
Collapse
Affiliation(s)
- Yawen Rong
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, 310023, PR China
| | - Md Mehedi Hassan
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Jizhong Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Shuo Chen
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, 310023, PR China
| | - Wancheng Yang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, 310023, PR China
| | - Yunhao Li
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, 310023, PR China
| | - Jiaji Zhu
- School of Electrical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Jun Huang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, 310023, PR China.
| | - Quansheng Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
2
|
Yang B, Yu X, Shan J, Tian X, Adegoke TV, Yang S, Wang G, Tai B, Ma J, Yu Q, Xing F. Migration of hazardous substances during peanut oil squeezing for their dietary assessment. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
3
|
Gong S, Zheng J, Zhang J, Han J. Arabinogalactan ameliorates benzo[a]pyrene-induced intestinal epithelial barrier dysfunction via AhR/MAPK signaling pathway. Int J Biol Macromol 2023:124866. [PMID: 37196716 DOI: 10.1016/j.ijbiomac.2023.124866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Benzo[a]pyrene (B[a]P), a kind of pollutant, can disrupt the gut microbiota, but its effects on the function of intestinal epithelial barrier (IEB) is still unclear. Arabinogalactan (AG), a natural polysaccharide, can protect intestinal tract. Thus, the purpose of this study was to evaluate the effect of B[a]P on IEB function and the mitigation effect of AG on the IEB dysfunction induced by B[a]P using a Caco-2 cell monolayer model. We found B[a]P could damage the IEB integrity by inducing cell cytotoxicity, increasing lactate dehydrogenase leakage, decreasing the transepithelial electrical resistance, and increasing fluorescein isothiocyanate-dextran flux. The mechanism of B[a]P-induced IEB damage may through induction of oxidative stress, including increasing reactive oxygen species levels, decreasing glutathione levels, reducing the activity of superoxide dismutase, and increasing malonaldehyde levels. Moreover, it can be due to increasing secretion of pro-inflammatory cytokines (interleukin [IL]-1β, IL-6, and tumor necrosis factor [TNF]-α), down-regulated expression of tight junction (TJ) proteins (claudin-1, zonula occludens [ZO]-1, and occludin), and induced activation of aryl hydrocarbon receptor (AhR)/mitogen activated protein kinase (MAPK) signaling pathway. Remarkably, AG ameliorated B[a]P-induced IEB dysfunction through inhibited oxidative stress and pro-inflammatory factor secretion. Our study demonstrated B[a]P could damage the IEB and AG could alleviate this damage.
Collapse
Affiliation(s)
- Shaoying Gong
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jiachen Zheng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Junjie Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jianchun Han
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
4
|
da Costa DS, Albuquerque TG, Costa HS, Bragotto APA. Thermal Contaminants in Coffee Induced by Roasting: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5586. [PMID: 37107868 PMCID: PMC10138461 DOI: 10.3390/ijerph20085586] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/29/2023] [Accepted: 04/14/2023] [Indexed: 05/10/2023]
Abstract
Roasting is responsible for imparting the main characteristics to coffee, but the high temperatures used in the process can lead to the formation of several potentially toxic substances. Among them, polycyclic aromatic hydrocarbons, acrylamide, furan and its derivative compounds, α-dicarbonyls and advanced glycation end products, 4-methylimidazole, and chloropropanols stand out. The objective of this review is to present a current and comprehensive overview of the chemical contaminants formed during coffee roasting, including a discussion of mitigation strategies reported in the literature to decrease the concentration of these toxicants. Although the formation of the contaminants occurs during the roasting step, knowledge of the coffee production chain as a whole is important to understand the main variables that will impact their concentrations in the different coffee products. The precursors and routes of formation are generally different for each contaminant, and the formed concentrations can be quite high for some substances. In addition, the study highlights several mitigation strategies related to decreasing the concentration of precursors, modifying process conditions and eliminating/degrading the formed contaminant. Many of these strategies show promising results, but there are still challenges to be overcome, since little information is available about advantages and disadvantages in relation to aspects such as costs, potential for application on an industrial scale and impacts on sensory properties.
Collapse
Affiliation(s)
- David Silva da Costa
- Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Cidade Universitária, R. Monteiro Lobato 80, Campinas 13083-862, Brazil
| | - Tânia Gonçalves Albuquerque
- Departamento de Alimentação e Nutrição, Instituto Nacional de Saúde Doutor Ricardo Jorge, I.P. Av. Padre Cruz, 1649-016 Lisboa, Portugal
- REQUIMTE-LAQV, Faculdade de Farmácia da Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Helena Soares Costa
- Departamento de Alimentação e Nutrição, Instituto Nacional de Saúde Doutor Ricardo Jorge, I.P. Av. Padre Cruz, 1649-016 Lisboa, Portugal
- REQUIMTE-LAQV, Faculdade de Farmácia da Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Adriana Pavesi Arisseto Bragotto
- Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Cidade Universitária, R. Monteiro Lobato 80, Campinas 13083-862, Brazil
| |
Collapse
|
5
|
Nithya G, Santhanasabapathy R, Vanitha MK, Anandakumar P, Sakthisekaran D. Antioxidant, antiproliferative, and apoptotic activity of thymoquinone against benzo(a)pyrene-induced experimental lung cancer. J Biochem Mol Toxicol 2023; 37:e23230. [PMID: 36193556 DOI: 10.1002/jbt.23230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 08/09/2022] [Accepted: 09/16/2022] [Indexed: 01/18/2023]
Abstract
Several studies have suggested that increased consumption of phytochemicals is a comparatively easy and practical strategy to significantly decrease the incidence of cancer. In the present study, we have reported the protective effect of a natural compound, thymoquinone (TQ) against benzo(a)pyrene (B(a)P)-induced lung carcinogenesis in Swiss albino mice. B(a)P (50 mg/kg body weight) was administered twice weekly for four successive weeks and left until 20 weeks to induce lung cancer in mice. TQ (20 mg/kg body weight) was given orally as a pretreatment and posttreatment drug to determine its chemopreventive and therapeutic effects. B(a)P-induced lung cancer-bearing animals displayed cachexia-like symptoms along with an abnormal increase in lung weight and the activities of marker enzymes adenosine deaminase, aryl hydrocarbon hydroxylase, gamma-glutamyl transpeptidase, 5'-nucleotidase and lactate dehydrogenase; tumor marker carcinoembryonic antigen levels. Furthermore, B(a)P-induced animals showed elevated levels of lipid peroxides with subsequent depletion in the antioxidant status and histological aberrations. These anomalies were accompanied by increased expressions of proliferating cell nuclear antigen and cyclin D1 in the lung sections derived from B(a)P-induced animals. On TQ treatment, all the above alterations were returned to near normalcy. Furthermore, TQ administration in B(a)P-induced animals downregulated phosphatidylinositol 3-kinase/protein kinase B signaling pathway and induced apoptosis as evidenced by a decrease in cytochrome c, proapoptotic Bax, caspase-3, and p53 with a parallel increase in antiapoptotic Bcl-2. Our present results demonstrate the potential effectiveness of TQ as an antioxidant, antiproliferative, and apoptotic agent against B(a)P-induced experimental lung tumorigenesis.
Collapse
Affiliation(s)
- Gajendran Nithya
- Department of Medical Biochemistry, Dr. ALM PGIBMS, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India
| | | | - Manickam Kalappan Vanitha
- Department of Medical Biochemistry, Dr. ALM PGIBMS, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India
| | | | - Dhanapalan Sakthisekaran
- Department of Medical Biochemistry, Dr. ALM PGIBMS, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India
| |
Collapse
|
6
|
Zhang B, Tan C, Zou F, Sun Y, Shang N, Wu W. Impacts of Cold Plasma Technology on Sensory, Nutritional and Safety Quality of Food: A Review. Foods 2022; 11:foods11182818. [PMID: 36140945 PMCID: PMC9497965 DOI: 10.3390/foods11182818] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
As an emerging non-thermal food processing technology, cold plasma (CP) technology has been widely applied in food preservation due to its high efficiency, greenness and lack of chemical residues. Recent studies have indicated that CP technology also has an impressing effect on improving food quality. This review summarized the impact of CP on the functional composition and quality characteristics of various food products. CP technology can prevent the growth of spoilage microorganisms while maintaining the physical and chemical properties of the food. It can maintain the color, flavor and texture of food. CP can cause changes in protein structure and function, lipid oxidation, vitamin and monosaccharide degradation, starch modification and the retention of phenolic substances. Additionally, it also degrades allergens and toxins in food. In this review, the effects of CP on organoleptic properties, nutrient content, safety performance for food and the factors that cause these changes were concluded. This review also highlights the current application limitations and future development directions of CP technology in the food industry. This review enables us to more comprehensively understand the impacts of CP technology on food quality and promotes the healthy application of CP technology in the food industry.
Collapse
Affiliation(s)
- Bo Zhang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Chunming Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Fanglei Zou
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Yu Sun
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Nan Shang
- College of Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Correspondence: (N.S.); (W.W.)
| | - Wei Wu
- College of Engineering, China Agricultural University, Beijing 100083, China
- Correspondence: (N.S.); (W.W.)
| |
Collapse
|
7
|
Li X, Sun CL, Xu Y, Shan SH, Zheng H, Guo XL, Hu JN. Construction of novel magnetic nanoparticles for enrichment of benzo(α)pyrene from edible oils followed by HPLC determination. Food Chem 2022; 386:132838. [PMID: 35509171 DOI: 10.1016/j.foodchem.2022.132838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/22/2022] [Accepted: 03/26/2022] [Indexed: 11/30/2022]
Abstract
A novel method for benzo(α)pyrene (Bαp) enrichment from an oil matrix was developed by using magnetic nanoparticles (Fe3O4@dopamine/graphene oxide, Fe3O4@DA/GO) as extraction absorbents, and the chemical properties of the synthesized nanoparticles were characterized. Various parameters were investigated to optimize the extraction of Bαp from oils. Under optimal conditions (pH, 4; extraction time, 0.5 min; elution solvent, 1 mL; absorbent weight, 20 mg; elution time, 0.5 min), these nanoparticles showed excellent abilities to enrich Bαp from the saponified oil solution and were easily separated by a magnet. High-performance liquid chromatography plus fluorescence detection (HPLC-FLD) was then applied to determine the Bαp content with excellent linearity (R2 = 0.999). The detection limit was 0.13 µg/kg, while the limit of quantification was 0.42 µg/kg. The spiked recoveries of Bαp in oils ranged from 73.5% to 121%. Compared with previous reports, the proposed method displayed many advantages, including a high efficiency of oil matrix removal, short extraction time, and convenient extraction procedure.
Collapse
Affiliation(s)
- Xiang Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Chang-Ling Sun
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yu Xu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Shi-Hui Shan
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Han Zheng
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiao-Lu Guo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiang-Ning Hu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
8
|
An upconversion biosensor based on DNA hybridization and DNA-templated silver nanoclusters for the determination of acrylamide. Biosens Bioelectron 2022; 215:114581. [DOI: 10.1016/j.bios.2022.114581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/19/2022] [Accepted: 07/17/2022] [Indexed: 11/17/2022]
|
9
|
Potential valorisation of baobab (Adansonia digitata) seeds as a coffee substitute: Insights and comparisons on the effect of roasting on quality, sensory profiles, and characterisation of volatile aroma compounds by HS-SPME/GC-MS. Food Chem 2022; 394:133475. [PMID: 35717922 DOI: 10.1016/j.foodchem.2022.133475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/01/2022] [Accepted: 06/10/2022] [Indexed: 11/20/2022]
Abstract
The seeds of Africa's majestic baobab are often discarded or poorly utilized. Few studies explored its potential as a coffee substitute, while the key volatile compounds are still unknown. These compounds were hypothesized to be responsible for baobab's sensory acceptance. In this study, the physicochemical, sensory, and key volatile composition of brews from coffee beans and baobab seeds subjected to different roasting conditions were reported. Roasting increases pH while reducing acidity, total soluble solids, lightness (L*), redness/greenness (a*), and yellowness/blueness (b*) in coffee and baobab brews. Phenolic contents increased significantly (p < 0.05) with increased roasting intensity in baobab while degrading in coffee. Significant variability of volatile composition existed among coffee and baobab matrices and the roasting conditions. Nevertheless, the presence of several key coffee odorants in baobab from pyrazines, phenols, and furans chemical families, owing to their odour active value ≥ 1, likely contributed to its sensory acceptance.
Collapse
|
10
|
Barrios-Rodríguez YF, Gutiérrez-Guzmán N, Pedreschi F, Mariotti-Celis MS. Rational design of technologies for the mitigation of neo-formed contaminants in roasted coffee. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Rong Y, Ali S, Ouyang Q, Wang L, Wang B, Chen Q. A turn-on upconversion fluorescence sensor for acrylamide in potato chips based on fluorescence resonance energy transfer and thiol-ene Michael addition. Food Chem 2021; 351:129215. [DOI: 10.1016/j.foodchem.2021.129215] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/12/2021] [Accepted: 01/23/2021] [Indexed: 10/22/2022]
|
12
|
Wang Z, Cai R, Yang X, Gao Z, Yuan Y, Yue T. Changes in aroma components and potential Maillard reaction products during the stir-frying of pork slices. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107855] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|