1
|
Wang KL, Yu BK, Zhao HF, Liu YX, Wu CY, Zhang YH, Mu ZS. Preparation and characterization of microcapsules for tuna oil by maillard reaction products of whey protein isolate and Arabic gum via complex coacervation. Food Chem 2025; 475:143269. [PMID: 39956057 DOI: 10.1016/j.foodchem.2025.143269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 02/18/2025]
Abstract
This study aimed to prepare Maillard reaction products (MRPs) from whey protein isolate (WPI) and different reducing sugars (glucose, fructose, maltose, lactose), and utilize the optimal MRPs to fabricate tuna oil (TO) microcapsules for enhancing TO's storage stability. The results showed that the optimal wet heat reaction duration of WPI and reducing sugar was 8 h at 75 °C. Glycosylation improves the functional properties of WPI. WPI-maltose coupling (WPI-M) and Arabic gum were selected as the wall material to prepare TO microcapsules by complex coacervation, and the encapsulation efficiency of microcapsules reached 87.41 %. Compared to WPI, WPI-M microcapsules have a more homogeneous emulsion morphology. The peroxide value of microencapsulated protected TO was 35.78 % lower than that of free TO after accelerated oxidation at 55 °C for 16 days. Microcapsules prepared with MRPs wall materials by complex coacervation offer a promising approach for the preservation of compounds.
Collapse
Affiliation(s)
- Kun-Long Wang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Bo-Kang Yu
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Hong-Fu Zhao
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Ye-Xuan Liu
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Chun-Ying Wu
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Ying-Hua Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China.
| | - Zhi-Shen Mu
- Inner Mongolia Enterprise Key Laboratory of Dairy Nutrition, Health & Safety, Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Huhhot 011500, PR China.
| |
Collapse
|
2
|
Zhang H, Hou Z, Jia Z, Cheng K, Fan Z, Dong SY. Effect of sous-vide processing duration on flavor and taste variations of oyster (Crassostrea gigas). Food Chem 2025; 465:142066. [PMID: 39566313 DOI: 10.1016/j.foodchem.2024.142066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/02/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
Sous-vide (SV), as a mild processing technique, exhibits some potential for keeping the original flavor of oyster. The dynamic changes mechanism of flavor and taste in oyster during SV processing (0-30 min/75 °C) were investigated. SV processing for 10-15 min improved the umami of oysters, likely due to the increase in adenosine monophosphate and glutamate, while processing for 20-30 min resulted in a significant loss of "grassy" flavor. GC-MS and GC-IMS analysis showed that the loss of short-chain aldehydes, such as (E)-2-pentenal, (E)-2-hexenal and (E, E)-2,4-hexadienal may be related to the weakening of the "grassy" flavor, and the formation of 2,3-diethylpyrazine and octanal produced a "cooked" and "fatty" flavor. The analysis of lipidomics indicated that phosphatidylethanolamine, lysophosphatidylcholine and sphingomyelin, synthesized mainly through glycerophospholipid and sphingolipid metabolism, were key precursors for aldehyde formation. This study provides a theoretical basis for controlling the flavor quality of oyster during mild processing.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 266100, China; College of Food Science and Engineering, Ocean University of China, Sansha Road, Qingdao, Shandong Province, 266100, China
| | - Zhenxiao Hou
- College of Food Science and Engineering, Ocean University of China, Sansha Road, Qingdao, Shandong Province, 266100, China
| | - Zhe Jia
- College of Food Science and Engineering, Ocean University of China, Sansha Road, Qingdao, Shandong Province, 266100, China
| | - Kunya Cheng
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 266100, China; College of Food Science and Engineering, Ocean University of China, Sansha Road, Qingdao, Shandong Province, 266100, China
| | - Zekai Fan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 266100, China; College of Food Science and Engineering, Ocean University of China, Sansha Road, Qingdao, Shandong Province, 266100, China
| | - Shi Yuan Dong
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, 266100, China; College of Food Science and Engineering, Ocean University of China, Sansha Road, Qingdao, Shandong Province, 266100, China; Sanya Oceanographic Institution, Ocean University of China, Sanya, Hainan Province, 572025, China.
| |
Collapse
|
3
|
Rahmani-Manglano NE, Guadix EM, Yesiltas B, Prieto C, Lagaron JM, Jacobsen C, García-Moreno PJ. Non-emulsion-based encapsulation of fish oil by coaxial electrospraying assisted by pressurized gas enhances the oxidative stability of a capsule-fortified salad dressing. Food Chem 2024; 431:137157. [PMID: 37611360 DOI: 10.1016/j.foodchem.2023.137157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/02/2023] [Accepted: 08/13/2023] [Indexed: 08/25/2023]
Abstract
The influence of the encapsulation technology (spray-drying, mono- or coaxial electrospraying assisted by pressurized gas, EAPG) and the oil load (13, 26 or 39 wt%) on the oxidative stability of: i) fish oil-loaded capsules, and ii) capsule-fortified salad dressings were investigated. The highest encapsulation efficiency (EE > 83%) was achieved by the emulsion-based encapsulation methods (e.g., spray-drying and monoaxial EAPG), irrespective of the oil load. Nonetheless, monoaxially EAPG capsules were the most oxidized during storage due to their increased surface-to-volume ratio. On the contrary, non-emulsion-based coaxial EAPG resulted in low lipid oxidation after processing and subsequent storage. The oxidative stability of the capsule-fortified salad dressings correlated well with that of the encapsulates, with the dressing fortified with the coaxially EAPG capsules showing significantly lower levels of oxidation. Our results show that the fortification approach (e.g., emulsion or non-emulsion-based delivery systems) significantly influenced the oxidative stability of the enriched food matrix.
Collapse
Affiliation(s)
| | - Emilia M Guadix
- Department of Chemical Engineering, University of Granada, Granada, Spain
| | - Betül Yesiltas
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Cristina Prieto
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Valencia, Spain
| | - Jose M Lagaron
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Valencia, Spain
| | - Charlotte Jacobsen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | |
Collapse
|
4
|
Zhao W, Wei Z, Xue C. Foam-templated oleogels constructed by whey protein isolate and xanthan gum: Multiple-effect delivery vehicle for Antarctic krill oil. Int J Biol Macromol 2024; 256:128391. [PMID: 38029892 DOI: 10.1016/j.ijbiomac.2023.128391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/05/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
To address the limitations of Antarctic krill oil (AKO) such as easy oxidation, unacceptable fishy flavor and low bioaccessibility of astaxanthin in it, a multiple-effect delivery vehicle for AKO is needed. In this study, whey protein isolate (WPI) and xanthan gum (XG) were utilized to construct AKO into oleogels by generating foam-templates. The effects of the concentration of XG on the properties of foam, cryogel and the corresponding oleogels were investigated, and the formation mechanism of oleogel was discussed from the perspective of the correlation between foam-cryogel-oleogel. The results demonstrated that with the increase of the concentration of XG, the foam stability was improved, the cryogel after freeze drying had a more uniform network structure and superior oil absorption ability, and the corresponding oleogel had excellent oil holding ability after oil absorption. The AKO oleogels showed superior oxidative stability compared with AKO. The in vitro digestion experiments demonstrated that the bioaccessibility of the astaxanthin in this oleogel was also considerably higher than that in AKO. In addition, this oleogel had masking effect on the odor-presenting substances in AKO, while retaining other flavors of AKO. The foam-templated oleogel can be considered as a multiple-effect vehicle for AKO to facilitate its application in food products. This study provides theoretical basis and data support for the development and utilization of novel vehicle for AKO, broadening the application of AKO in the field of food science.
Collapse
Affiliation(s)
- Wanjun Zhao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Zihao Wei
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; Laboratory of Marine Drugs and Biological Products, The Laoshan Laboratory, Qingdao 266235, China
| |
Collapse
|
5
|
Zhu S, Zhu H, Xu S, Lv S, Liu S, Ding Y, Zhou X. Gel-type emulsified muscle products: Mechanisms, affecting factors, and applications. Compr Rev Food Sci Food Saf 2022; 21:5225-5242. [PMID: 36301621 DOI: 10.1111/1541-4337.13063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/08/2022] [Accepted: 10/05/2022] [Indexed: 01/28/2023]
Abstract
The gel-type emulsified muscle products improve fatty acid composition, maintain the oxidative stability, and achieve a better sensory acceptability. This review emphasizes the stabilization mechanisms of these emulsified muscle products. In particular, factors associated with the stability of the emulsified muscle systems are outlined, including the processing conditions (pH and heating), lipids, and emulsifiers. Besides, some novel systems are further introduced, including the Pickering emulsions and organogels, due to their great potential in stabilizing emulsified gels. Moreover, the promising prospects of emulsion muscle products such as improved gel properties, oxidative stability, freeze-thaw stability, fat replacement, and nutraceutical encapsulation were elaborated. This review comprehensively illustrates the considerations on developing gel-type emulsified products and provides inspiration for the rational design of emulsified muscle formulations with both oxidatively stable and organoleptically acceptable performance.
Collapse
Affiliation(s)
- Shichen Zhu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China.,National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Hao Zhu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Siyao Xu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Shuangbao Lv
- Zhejiang NF Refrigerated Food Co. Ltd, Hangzhou, China
| | - Shulai Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China.,National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China.,National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Xuxia Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China.,National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| |
Collapse
|
6
|
Preparation of Cellulose Modified Wall Material Microcapsules and Its Effect on the Properties of Wood Paint Coating. Polymers (Basel) 2022; 14:polym14173534. [PMID: 36080609 PMCID: PMC9459786 DOI: 10.3390/polym14173534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/11/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
An orthogonal experiment with four factors and three levels was designed. Nine different microcapsules were prepared by changing four factors: the core–wall ratio, emulsifier concentration, reaction temperature, and rotation speed. Through an analysis of the microcapsule yield and morphology, it was determined that the microcapsule of sample 6 performed the best in the orthogonal test and that the core–wall ratio was the largest factor affecting the microcapsule morphology and yield. In order to further optimize the performance of the microcapsules, single factor independent tests were carried out using the core–wall ratio as a single variable. It was found that the microcapsules with the core–wall ratio of 0.75:1 had good micro morphology and yield. The properties of the coating were the best when the microcapsules were added into the primer and the topcoat at the same time with an additional amount of 10.0%. The mechanical properties of the coating containing cellulose microcapsules and the coating without cellulose microcapsules were tested. Cellulose can enhance the toughness of the microcapsules, inhibit the generation of microcracks, and enhance the performance of the coating to a certain extent. The elongation at break of the coating with cellulose microcapsules was 9.49% higher than that without cellulose and was 11.1% higher than that without cellulose microcapsules.
Collapse
|
7
|
Preparation of Tung Oil Microcapsule and Its Effect on Wood Surface Coating. Polymers (Basel) 2022; 14:polym14081536. [PMID: 35458287 PMCID: PMC9029811 DOI: 10.3390/polym14081536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022] Open
Abstract
Through the optimized preparation of tung oil microcapsules, five kinds of microcapsules containing different core material content were obtained to explore the influence of microcapsules on water-based paint film and the self-healing ability of microcapsules. The results showed that the microcapsules had good appearance, and the microcapsules were successfully prepared. The color difference in the paint film increased with the increase in microcapsule content, and the gloss decreased gradually. The mechanical test showed that adding microcapsules increased the toughness of the paint film to a certain extent, and the performance of the paint film was unchanged or better. The results showed that paint film with the core–wall ratio of 0.78:1 had the best performance and self-healing function when microcapsules were added.
Collapse
|
8
|
Yang L, Li F, Cao X, Qiao X, Xue C, Xu J. Stability and bioavailability of protein matrix-encapsulated astaxanthin ester microcapsules. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2144-2152. [PMID: 34614199 DOI: 10.1002/jsfa.11556] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/21/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Astaxanthin ester derived from Haematococcus pluvialis is often used as a functional and nutritional ingredient in foods. However, its utilization is currently limited as a result of its chemical instability and low bioavailability. Food matrix microcapsules are becoming increasingly popular because of their safety and high encapsulation efficiency. In the present study, the effect of protein matrixes on the properties of microcapsules was evaluated. RESULTS We investigated the effects of storage on astaxanthin ester microcapsules and the corresponding rehydration solution at 40 °C under a nitrogen atmosphere, as well as in darkness. The results showed that the stability of products prepared based on whey protein (WP) and corn-gluten was superior to that of products prepared based on lactoferrin, soy protein and sodium caseinate. The bioavailability of astaxanthin ester microcapsules encapsulated with different proteins and examined by means of astaxanthin concentrations in the serum and liver after oral administration was compared. All five protein wall materials could significantly improve the bioavailability of astaxanthin ester. The microcapsules prepared based on WP had the highest bioavailability, with a value of 10.69 ± 0.75 μg·h mL-1 , which was 3.15 times higher compared to that of the control group. CONCLUSION The results of the present study showed that protein encapsulation, especially WP encapsulation, could effectively improve the stability, water solubility and bioavailability of astaxanthin esters. Thus, WP can be used as the main wall material in delivery systems. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lu Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Fei Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xinyu Cao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xing Qiao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
9
|
Marques MC, Perina NP, Mosquera EMB, Tomé TM, Lazarini T, Mariutti LRB. DHA bioaccessibility in infant formulas and preschool children milks. Food Res Int 2021; 149:110698. [PMID: 34600692 DOI: 10.1016/j.foodres.2021.110698] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/17/2022]
Abstract
Docosahexaenoic acid (DHA, 22:6n-3) is an essential long chain polyunsaturated fatty acid associated with the development of the nervous system that has to be consumed by infants through breast milk or complementary food sources and which consumption is also usually inadequate in preschoolers. In this work, the in vitro bioaccessibility of DHA from two commercial infant formulas (8.9 and 9.1%) and two preschool children milks (6.9 and 7.2%), with similar DHA contents but formulated with different ingredients, was not improved by the presence of egg phospholipids in the product formulation. In addition, the importance of the choice of an age-appropriate in vitro digestion method was demonstrated by comparing the DHA bioaccessibility from the infant formulas by the Infogest 2.0 standardized method and a simulated digestion method specific for infants.
Collapse
Affiliation(s)
- M C Marques
- School of Food Engineering, University of Campinas, São Paulo, Brazil
| | - N P Perina
- Medical, Scientific and Regulatory Affairs - Nestlé Nutrition / Nestlé Brazil Ltda, São Paulo, Brazil
| | - E M B Mosquera
- Medical, Scientific and Regulatory Affairs - Nestlé Nutrition / Nestlé Brazil Ltda, São Paulo, Brazil
| | - T M Tomé
- Medical, Scientific and Regulatory Affairs - Nestlé Nutrition / Nestlé Brazil Ltda, São Paulo, Brazil
| | - T Lazarini
- Medical, Scientific and Regulatory Affairs - Nestlé Nutrition / Nestlé Brazil Ltda, São Paulo, Brazil
| | - L R B Mariutti
- School of Food Engineering, University of Campinas, São Paulo, Brazil.
| |
Collapse
|
10
|
Kawecki K, Stangierski J, Konieczny P. An Analysis of Oxidative Changes and the Fatty Acid Profile in Stored Poultry Sausages with Liquid and Microencapsulated Fish Oil Additives. Molecules 2021; 26:molecules26144293. [PMID: 34299569 PMCID: PMC8303385 DOI: 10.3390/molecules26144293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 11/30/2022] Open
Abstract
This study deals with the fatty acid profile and oxidative changes (TBARS) in vacuum-packed (VP) or modified-atmosphere-packed (MAP) finely-comminuted poultry sausages with liquid fish oil and microencapsulated fish oil (MC) additives. An analysis of omega-3 fatty acids (EPA and DHA) showed that their content in the samples with the fish oil additive decreased from the initial value of 0.22 g∙100 g−1 of the product to 0.18 g∙100 g−1 (MAP) and 0.17 g∙100 g−1 (VP), respectively. After in vitro digestion, the total EPA and DHA content in the sample with microencapsulated oil amounted to 0.17 g∙100 g−1 of the product. The TBARS values showed the VP samples with both forms of the fish oil additive had the lowest values on the first day of storage. Storage of the samples for 21 days caused a slight increase in the degree of lipid oxidation. The research indicated that the forms of the oil additive did not have a negative influence on the sensory features or the physicochemical properties of the sausages. The EPA and DHA levels in samples with liquid fish oil and those with oil microcapsules were sufficient for the sausage producer to declare high content of these fatty acids in accordance with the current EC regulation.
Collapse
Affiliation(s)
- Krzysztof Kawecki
- Correspondence: (K.K.); (J.S.); Tel.: +48-798-137-580 (K.K.); +48-618-487-324 (J.S.)
| | - Jerzy Stangierski
- Correspondence: (K.K.); (J.S.); Tel.: +48-798-137-580 (K.K.); +48-618-487-324 (J.S.)
| | | |
Collapse
|
11
|
Preparation of Microcapsules of Urea Formaldehyde Resin Coated Waterborne Coatings and Their Effect on Properties of Wood Crackle Coating. COATINGS 2020. [DOI: 10.3390/coatings10080764] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Urea formaldehyde coated waterborne acrylic resin microcapsules with core-wall ratios of 0.30, 0.45, 0.60, 0.67, and 0.75, and mass fractions of 1.0%, 4.0%, 7.0%, 10.0%, 13.0%, and 16.0% were prepared by in situ polymerization. Their micro morphology was examined by scanning electron microscope and infrared spectrum measurements. The gloss, color difference, adhesion, hardness, and impact resistance of the coating surface were investigated in detail. The influence of the core-wall ratio on the performance of the waterborne crackle coating on the wood surface and the self-healing performance were examined. The results showed that when the core-wall ratio of microcapsules was 0.67, an evenly dispersed powder state with particle size of about 3 μm microcapsules was obtained, and the highest coverage was achieved. When the mass fraction of the microcapsule was 4.0%, it had the optimum effect on surface performance. The adhesion was grade two, gloss was 10.9%, impact resistance was 15 kg·cm, chromatic aberration was 1.0, hardness was H, and it had the best effect on the healing of microcracks in the wood coating. As the coating added with microcapsules can inhibit the microcracks of the coating and plays a protective role for the substrate to achieve a self-healing effect, this study lays a technical foundation for the self-healing of surface cracks in coatings for wood.
Collapse
|