1
|
Zhang Y, Chen T, Wang Z, Liang W, Wang X, Zhang X, Lu X, Liu X, Zhao C, Xu G. High-resolution mass spectrometry-based suspect and nontarget screening of natural toxins in foodstuffs and risk assessment of dietary exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 365:125338. [PMID: 39577611 DOI: 10.1016/j.envpol.2024.125338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/24/2024]
Abstract
Daily dietary intake inevitably exposes individuals to various natural toxins, which may pose potential health threats. Focusing only on specific toxins could underestimate dietary risks. Therefore, we have developed a suspect and nontarget method based on ultrahigh-performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) to screen both known and unknown natural toxins in various foodstuffs. An in-house database containing 2952 natural toxins including fungal toxins, phytotoxins, animal toxins and cyanotoxins was established, facilitating suspect screening. Predicted retention time and mass spectrometry data were employed to enhance the confidence levels. Subsequently, Nontarget screening method was conducted based on molecular network analysis, annotating the edges and nodes through modified types and fragmentation characteristics. Finally, we analyzed 102 foodstuff samples and identified a total of 90 natural toxins, including mycotoxins and phytotoxins, with 65 identified by suspect screening and 25 by nontarget screening. Based on measured concentrations, the daily per capita dietary intake of total natural toxins was estimated, it was below risk doses for natural toxins with available reference values. Overall, this work established a novel method for the comprehensive identification of natural toxins in foodstuffs and emphasized the importance of dietary risk assessment for natural toxins.
Collapse
Affiliation(s)
- Yujie Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Tiantian Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zixuan Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Wenying Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xinxin Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiuqiong Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xin Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, 116023, China.
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, 116023, China.
| | - Chunxia Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, 116023, China.
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, 116023, China.
| |
Collapse
|
2
|
Yang R, Zhao C, Ding S, Ruan J, Li D, Xiang Y, Zhou J, Su H, Li N. Label-free SELEX of aptamers for ultra-sensitive electrochemical aptasensor detection of amanitin in wild mushrooms. Anal Chim Acta 2024; 1326:343136. [PMID: 39260920 DOI: 10.1016/j.aca.2024.343136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/25/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Mushroom poisoning poses a significant global health concern, with high morbidity and mortality rates. The primary lethal toxins responsible for this condition are alpha-amanitin (ɑ-AMA) and beta-amanitin (β-AMA). As a promising bio-recognition molecules in biosensors, aptamers, have been broadly used in the field of food detection. However, the current SELEX-based methods for screening aptamers for structurally similar small molecules were limited by the labelling or salt ion induction. In this study, we aimed to develop a novel label-free SELEX strategy for the screening of aptamers with high affinity and constructed new aptasensors for the detection of ɑ-AMA and β-AMA. RESULTS A novel label-free SELEX strategy based on the positively charged gold nanoparticles (AuNPs) was proposed to simultaneous screening of aptamers for ɑ-AMA and β-AMA. Only 18 rounds of SELEX were required to obtain new aptamers. The candidate aptamers were analyzed by colloidal gold assay, and the sequences of ɑ-30 and β-37 displayed great affinity with Kd values of 22.26 nM and 23.32 nM, respectively, without interference from botanical toxins. Notably, the truncated aptamers ɑ-30-2 (50 bp) and β-37-2 (57 bp) exhibited higher affinity than their original counterpart (79 bp). Subsequently, the selected aptamers were utilized to construct recognition probes for electrochemical aptasensors based on hairpin cyclic cleavage of substrates by Cu2+ dependent DNAzyme and Exo I-triggered recycling cascades. The detection platform showed excellent analytical performance with limits of detection as low as 4.57 pg/mL (ɑ-AMA) and 8.49 pg/mL (β-AMA). Moreover, the aptasensors exhibited superior performance in mushroom and urine samples. SIGNIFICANCE This work developed a simple and efficient label-free SELEX method for screening new aptamers for ɑ-AMA and β-AMA, which employed the positively charged AuNPs as the screening medium, without the need for chemical labelling of libraries or induction of salt ions. Furthermore, two novel electrochemical aptasensors were developed based on our newly obtained aptamers, which offer the new biosensing tool for ultrasensitive detection of the AMA poisoning, showing great potential in practical applications.
Collapse
Affiliation(s)
- Renxiang Yang
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Changsong Zhao
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Sheng Ding
- Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu, Sichuan, 610041, China
| | - Jia Ruan
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Dongqiu Li
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500, China
| | - Yijia Xiang
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Jie Zhou
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Huilan Su
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Na Li
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, 610500, China.
| |
Collapse
|
3
|
Ying WX, Shi SW, Wang HF, Chen JB, Pan JZ, Fang Q. Falcon Probe: A High-Pressure and Robust Sampling Interface for Coupling Lossless Liquid Chromatography Injection with In Situ Nanoliter-Scale Sample Pretreatment. Anal Chem 2024; 96:12991-12998. [PMID: 39075986 DOI: 10.1021/acs.analchem.4c00856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
With the increasing demand for trace sample analysis, injecting trace samples into liquid chromatography-mass spectrometry (LC-MS) systems with minimal loss has become a major challenge. Herein, we describe an in situ LC-MS analytical probe, the Falcon probe, which integrates multiple functions of high-pressure sample injection without sample loss, high-efficiency LC separation, and electrospray. The main body of the Falcon probe is made of stainless steel and fabricated by the computer numerical control (CNC) technique, which has ultrahigh mechanical strength. By coupling a nanoliter-scale droplet reactor made of polyether ether ketone (PEEK) material, the Falcon probe-based LC-MS system was capable of operating at mobile-phase pressures up to 800 bar, which is comparable to those of conventional ultraperformance liquid chromatography (UPLC) systems. Using the probe pressing microamount in situ (PPMI) injection approach, the Falcon probe-based LC-MS system showed high separation efficiency and good repeatability with relative standard deviations (RSDs) of retention time and peak area of 1.8% and 9.9%, respectively, in peptide mixture analysis (n = 6). We applied this system to the analysis of a trace amount of 200 pg of HeLa protein digest and successfully identified an average of 766 protein groups (n = 5). By combining in situ sample pretreatment at the nanoliter range, we further applied the present system in single-cell proteomic analysis, and 241 protein groups were identified in single 293 cells, which preliminarily demonstrated its potential in the analysis of trace amounts of samples with complex compositions.
Collapse
Affiliation(s)
- Wei-Xin Ying
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Shao-Wen Shi
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
| | - Hui-Feng Wang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
| | - Jian-Bo Chen
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jian-Zhang Pan
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
| | - Qun Fang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, Cancer Center, Zhejiang University, Hangzhou 310007, China
- Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou 310007, China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
4
|
Zeng J, Li X, Cai R, Chen B, Li C, Hu Q, Sun Y. Proposing anti-counterfeiting pharmacopoeia quality markers for Shenlingbaizhu granule based on UHPLC-Q-orbitrap-MS identification. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:220-238. [PMID: 37735858 DOI: 10.1002/pca.3284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/23/2023]
Abstract
INTRODUCTION Shenlingbaizhu granule, a Traditional Chinese Medicine prescription comprising Renshen, Gancao, and Shanyao, is widely consumed in China nowadays. OBJECTIVE The study tries to propose pharmacopoeia quality markers (Q-markers) to prevent counterfeiting involving Renshen, Gancao, and Shanyao. METHODOLOGY A novel strategy, that is, library-based ultra-high-performance liquid chromatography-quadrupole-orbitrap mass spectrometry, was used to analyse the lyophilised aqueous powder of Shenlingbaizhu granule. Subsequently, quantum chemistry calculation and UV-vis spectra scanning were also performed through theoretical or experimental approaches. RESULT Thirty-two isomers have been strictly distinguished, especially positional isomeric isochlorogenic acid B versus isochlorogenic acid C, positional isomeric schaftoside versus isoschaftoside, positional isomeric ginsenoside Rg2 versus 20S-ginsenoside Rg3, and stereoisomeric 20S-ginsenoside Rg3 versus 20R-ginsenoside Rg3. Seventeen compounds were unexpectedly observed, particularly scoparone and pectolinarigenin, while a total of 76 bioactive compounds have been putatively identified in the study. The quantum chemistry calculation and UV-vis spectra scanning results revealed that glycyrrhizic acid, ginsenoside Re, ginsenoside Rb1, and diosgenin displayed different dipole moment values and maximum absorption wavelengths from each other. CONCLUSION The study recommends glycyrrhizic acid, ginsenoside Re, ginsenoside Rb1, and diosgenin as four anti-counterfeiting Q-markers for the pharmacopoeia. The anti-counterfeiting Q-markers can be detected using conventional HPLC. The observation of 17 unexpected compounds updates our knowledge regarding the bioactives of Shenlingbaizhu granule.
Collapse
Affiliation(s)
- Jingyuan Zeng
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xican Li
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rongxin Cai
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ban Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, China
| | - Chunhou Li
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qingzhong Hu
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Sun
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
5
|
Chen T, Liang W, Zhang X, Wang Y, Lu X, Zhang Y, Zhang Z, You L, Liu X, Zhao C, Xu G. Screening and identification of unknown chemical contaminants in food based on liquid chromatography-high-resolution mass spectrometry and machine learning. Anal Chim Acta 2024; 1287:342116. [PMID: 38182389 DOI: 10.1016/j.aca.2023.342116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/02/2023] [Accepted: 12/04/2023] [Indexed: 01/07/2024]
Abstract
Unknown or unexpected chemical contaminants and/or their transformation products in food that may be harmful to humans need to be discovered for comprehensive safety evaluation. Liquid chromatography-high-resolution mass spectrometry (LC-HRMS) is a powerful tool for detecting chemical contaminants in food samples. However, identifying all of peaks in LC-HRMS is not possible, but if class information is known in advance, further identification will become easier. In this work, a novel MS2 spectra classification-driven screening strategy was constructed based on LC-HRMS and machine learning. First, the classification model was developed based on machine learning algorithm using class information and experimental MS2 data of chemical contaminants and other non-contaminants. By using the developed artificial neural network classification model, in total 32 classes of pesticides, veterinary drugs and mycotoxins were classified with good prediction accuracy and low false-positive rate. Based on the classification model, a screening procedure was developed in which the classes of unknown features in LC-HRMS were first predicted through the classification model, and then their structures were identified under the guidance of class information. Finally, the developed strategy was tentatively applied to the analysis of pork and aquatic products, and 8 chemical contaminants and 11 transformation products belonging to 8 classes were found. This strategy enables screening of unknown chemical contaminants and transformation products in complex food matrices.
Collapse
Affiliation(s)
- Tiantian Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Wenying Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiuqiong Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yuting Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xin Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, 116023, China.
| | - Yujie Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhaohui Zhang
- Science and Technology Research Center of China Customs, Beijing, 100026, China.
| | - Lei You
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, 116023, China.
| | - Chunxia Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, 116023, China.
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, 116023, China.
| |
Collapse
|
6
|
Zhao Z, E H, Tian E, Fan T, Yang X, Li X, Zhang Y, Li X, Chen A, Zhou C, Zhao X. Structural annotation and discovery of toxic cyclopeptides and their analogues in lethal mushroom Amanita and Lepiota species using UPLC-HRMS and molecular networking strategy. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
7
|
Chen S, Li S, Fang K, Wang Y, Yang Y, Han C, Shen Y. Rapid determination of 93 banned industrial dyes in beverage, fish, cookie using solid-supported liquid-liquid extraction and ultrahigh-performance liquid chromatography quadrupole orbitrap high-resolution mass spectrometry. Food Chem 2022; 388:132976. [PMID: 35447592 DOI: 10.1016/j.foodchem.2022.132976] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/31/2022] [Accepted: 04/11/2022] [Indexed: 11/04/2022]
Abstract
Banned industrial dyes are composed of a large number of chemicals with diverse physical and chemical properties, making their simultaneous determination a challenging task. A one-step extraction and purification of 93 banned industrial dyes from beverage, fish and cookie sample methods was proposed by using solid supported liquid-liquid extraction (SLE). The extract was analyzed by ultrahigh-performance liquid chromatography quadrupole orbitrap high-resolution mass spectrometry (UPLC-Q-Orbitrap-HRMS). The quantitative and qualitative mode adopts Q-Orbitrap-HRMS full scan MS (full scan MS1) and data-dependent MS/MS (dd-MS2) acquisition mode. The mass resolution was screened under 70,000 FWHM for full-scan MS1 and 35,000 FWHM for dd-MS2. Linearity was observed in the range of 0.01 ∼ 0.5 μg/mL and the limits of quantification were 0.04 ∼ 0.2 mg/kg for 93 dyes. The average recoveries were 70.5-105.8%, with RSD ≤ 10%. The proposed method has the ability to simultaneously screen many banned dyes in foods with high throughput, sensitivity and reliability.
Collapse
Affiliation(s)
- Shubing Chen
- Technical Center of Ningbo Customs, Ningbo 315040, China
| | - Shuang Li
- Technical Center of Ningbo Customs, Ningbo 315040, China
| | - Keyi Fang
- Technical Center of Ningbo Customs, Ningbo 315040, China
| | - Yongjian Wang
- Technical Center of Ningbo Customs, Ningbo 315040, China
| | - Yan Yang
- Technical Center of Ningbo Customs, Ningbo 315040, China
| | - Chao Han
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Yan Shen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
8
|
Xie X, Li B, Fan Y, Duan R, Gao C, Zheng Y, Tian E. Identification of Gyromitra infula: A Rapid and Visual Method Based on Loop-Mediated Isothermal Amplification. Front Microbiol 2022; 13:842178. [PMID: 35250953 PMCID: PMC8894891 DOI: 10.3389/fmicb.2022.842178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/27/2022] [Indexed: 11/25/2022] Open
Abstract
With mushroom poisoning emerging as one of the most serious food safety problems worldwide, a rapid identification method of poisonous mushrooms is urgently required to investigate the source of poisoning. Gyromitra infula, a kind of poisonous mushroom, contains gyromitrin toxin, which causes epileptogenic neurotoxicity and hemolytic disease. This study aimed to establish a rapid and visual method of G. infula identification based on loop-mediated isothermal amplification (LAMP). A set of specific LAMP primers was designed, and its specificity in G. infula was confirmed against various mushroom species, including its closely related species and other macrofungi. The sensitivity assay showed that the minimum concentration of genomic DNA detected by LAMP was 1 ng/μl. The method's applicability was conducted by preparing mushroom samples that were boiled and digested in artificial gastric juice. The results showed that the content as low as 1% G. infula can be successfully detected. This method can be completed within 90 min, and the reaction results can be directly observed by the naked eyes. Hence, the identification method of G. infula established based on LAMP in this study is accurate, rapid, sensitive, and low-cost, which is required for clinical treatment or forensic analysis when mushroom poisoning occurs.
Collapse
Affiliation(s)
- Xiaomei Xie
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Bu Li
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yuguang Fan
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Pharmacy, Hainan Medical University, Haikou, China
| | - Renhe Duan
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chonghua Gao
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yuan Zheng
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Enjing Tian
- Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
9
|
Liang W, Zheng F, Chen T, Zhang X, Xia Y, Li Z, Lu X, Zhao C, Xu G. Nontargeted screening method for veterinary drugs and their metabolites based on fragmentation characteristics from ultrahigh-performance liquid chromatography-high-resolution mass spectrometry. Food Chem 2022; 369:130928. [PMID: 34469842 DOI: 10.1016/j.foodchem.2021.130928] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 11/19/2022]
Abstract
Nontargeted screening of both veterinary drugs and their metabolites is important for comprehensive safety evaluation of animal-derived foods. In this study, a novel nontargeted screening strategy was developed for veterinary drugs and their metabolites based on fragmentation characteristics from ultrahigh-performance liquid chromatography-high-resolution mass spectrometry. First, an in-house database of mass spectra including 3,710 veterinary drugs and their metabolites was constructed. Second, fragmentation characteristics of parent drugs and their metabolites in mass spectrometry were investigated and summarized. Then, a nontargeted screening procedure was established based on fragmentation characteristics to screen unknown parent drugs and their metabolites. Finally, the strategy was applied to 33 egg samples, and four veterinary drugs and three drug metabolites were determined and identified. These results showed that the developed strategy can realize suspect and nontargeted screening of veterinary drugs and their metabolites, and can also be applied to other animal-derived foods.
Collapse
Affiliation(s)
- Wenying Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fujian Zheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tiantian Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuqiong Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yueyi Xia
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zaifang Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chunxia Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Wang N, Zhao Z, Gao J, Tian E, Yu W, Li H, Zhang J, Xie R, Zhao X, Chen A. Rapid and Visual Identification of Chlorophyllum molybdites With Loop-Mediated Isothermal Amplification Method. Front Microbiol 2021; 12:638315. [PMID: 33815325 PMCID: PMC8013719 DOI: 10.3389/fmicb.2021.638315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/10/2021] [Indexed: 11/14/2022] Open
Abstract
Chlorophyllum molybdites is a kind of common poisonous mushroom in China that is widely distributed in different areas. Food poisoning caused by accidentally eating C. molybdites has become more frequent in recent years. In 2019, there were 55 food poisoning incidents caused by eating this mushroom in China. Mushroom poisoning continues to be a common health issue of global concern. When mushroom poisoning occurs, an effective, simple, and rapid detection method is required for accurate clinical treatment or forensic analysis. For the first time, we established a loop-mediated isothermal amplification (LAMP) assay for the visual detection of C. molybdites. A set of specific LAMP primers was designed, and the specificity was confirmed against 43 different mushroom species. The LAMP method could detect as low as 1 pg of genomic DNA. Boiled mushrooms and artificial gastric-digested mushroom samples were prepared to test the applicability of the method, and the results showed that as low as 1% C. molybdites in boiled and digested samples could be successfully detected. The LAMP method can also be completed within 45 min, and the reaction results could be directly observed based on a color change under daylight by the naked eye. Therefore, the LAMP assay established in this study provides an accurate, sensitive, rapid, and low-cost method for the detection of C. molybdites.
Collapse
Affiliation(s)
- Nan Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiyong Zhao
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jie Gao
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Enjing Tian
- Institute of Mycology, Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Jilin, China
| | - Wenjie Yu
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hui Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Juan Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruibin Xie
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyan Zhao
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Ailiang Chen
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|